

Report No.: SZEM180300168901 Page: 1 of 53

Appendix B

E-UTRA Band 17

1

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300168901 Page: 2 of 53

CONTENT

EFFECTIVE (ISOTROPIC) RADIATED POWER OUTPUT DATA	3
	~

Page

2	PEAK-TO-AVERAGE RATIO	6
	2.1 For LTE	6
	2.1.1 Test Band = LTE Band 17	6
3	MODULATION CHARACTERISTICS	9
	3.1 For LTE	9
	3.1.1 Test Band = LTE Band 17	9
4	BANDWIDTH	10
	4.1 For LTE	
	4.1.1 Test Band = LTE Band 17	
5	BAND EDGES COMPLIANCE	20
	5.1 For LTE	20
	5.1.1 Test Band = LTE Band 17	20
6	SPURIOUS EMISSION AT ANTENNA TERMINAL	32
	6.1 FOR LTE	
7	FIELD STRENGTH OF SPURIOUS RADIATION	50
	7.1 For LTE	50
	7.1.1 Test Band = LTE Band 17	50
8		52
	8.1 FREQUENCY ERROR VS. VOLTAGE	
	8.2 FREQUENCY ERBOR VS TEMPERATURE	53

Report No.: SZEM180300168901 Page: 3 of 53

1 Effective (Isotropic) Radiated Power Output Data

Effective Radiated Power of Transmitter (ERP) for LTE BAND 17											
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict			
				RB1#0	21.68	22.53	38.45	PASS			
				RB1#13	21.53	22.38	38.45	PASS			
				RB1#24	21.63	22.48	38.45	PASS			
			LCH	RB12#0	22.39	23.24	38.45	PASS			
				RB12#6	22.44	23.29	38.45	PASS			
				RB12#13	22.25	23.1	38.45	PASS			
				RB25#0	21.68		38.45	PASS			
				RB1#0	21.50		38.45	PASS			
				RB1#13	21.65 22.5 21.52 22.37	22.5	38.45	PASS			
				RB1#24		22.37	38.45	PASS			
BAND 17	LTE/TM1	5M	RB12#6 22.80 23.65	RB12#0	22.56	23.41	38.45	PASS			
				23.65	38.45	PASS					
				23.61	38.45	PASS					
				RB25#0	21.67	22.52	38.45	PASS			
				RB1#0	21.51	22.36	38.45	PASS			
				RB1#13	21.65	22.5	38.45	PASS			
				RB1#24	21.60	22.45	38.45	PASS			
			НСН	RB12#0	22.45	23.3	38.45	PASS			
				RB12#6	22.57	23.42	38.45	PASS			
				RB12#13	22.33	23.18	38.45	PASS			
				RB25#0	21.54	22.39	38.45	PASS			

Report No.: SZEM180300168901 Page: 4 of 53

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	20.67	21.52	38.45	PASS
				RB1#13	20.59	21.44	38.45	PASS
				RB1#24	20.52	21.37	38.45	PASS
			LCH	RB12#0	21.20	22.05	38.45	PASS
				RB12#6	21.27	22.12	38.45	PASS
					RB12#13	21.16	22.01	38.45
				RB25#0 20.74 21.59 38.4	38.45	PASS		
				RB1#0	20.54	21.39	38.45	PASS
				RB1#13	20.59	21.44	38.45	PASS
				RB1#24	20.54	21.39	38.45	PASS
BAND 17	LTE/TM2	5M	МСН	RB12#0	21.47	22.32	38.45	PASS
				RB12#6	21.82	22.67	38.45	PASS
				RB12#13	21.97	22.82	38.45	PASS
				RB25#0	20.60	21.45	38.45	PASS
				RB1#0	20.49	21.34	38.45	PASS
				RB1#13	20.65	21.5	38.45	PASS
				RB1#24	20.58	21.43	38.45	PASS
			НСН	RB12#0	21.41	22.26	38.45	PASS
				RB12#6	21.60	22.45	38.45	PASS
				RB12#13	21.58	22.43	38.45	PASS
				RB25#0	20.61	21.46	38.45	PASS

Report No.: SZEM180300168901 Page: 5 of 53

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	22.53	23.38	38.45	PASS
				RB1#25	22.62	23.47	38.45	PASS
				RB1#49	22.51	23.36	38.45	PASS
			LCH	RB25#0	21.69	22.54	38.45	PASS
				RB25#13	21.72	22.57	38.45	PASS
				RB25#25	21.78	22.63	38.45	PASS
				RB50#0	21.67	22.52	38.45	PASS
				RB1#0	22.36	23.21	38.45	PASS
				RB1#25	22.93	23.78	38.45	PASS
				RB1#49 22.55	23.4	38.45	PASS	
BAND 17	LTE/TM1	10M	MCH	RB25#0	21.62	22.47	38.45	PASS
				RB25#13	21.65	22.5	38.45	PASS
				RB25#25	21.73	22.58	38.45	PASS
				RB50#0	21.64	22.49	38.45	PASS
				RB1#0	22.40	23.25	38.45	PASS
				RB1#25	22.78	23.63	38.45	PASS
				RB1#49	22.41	23.26	38.45	PASS
			НСН	RB25#0	21.54	22.39	38.45	PASS
				RB25#13	21.59	22.44	38.45	PASS
				RB25#25	21.77	22.62	38.45	PASS
Noto:				RB50#0	21.64	22.49	38.45	PASS

Note:

a: For getting the ERP (Efficient Radiated Power) in substitution method, the following formula should be taken to calculate it,

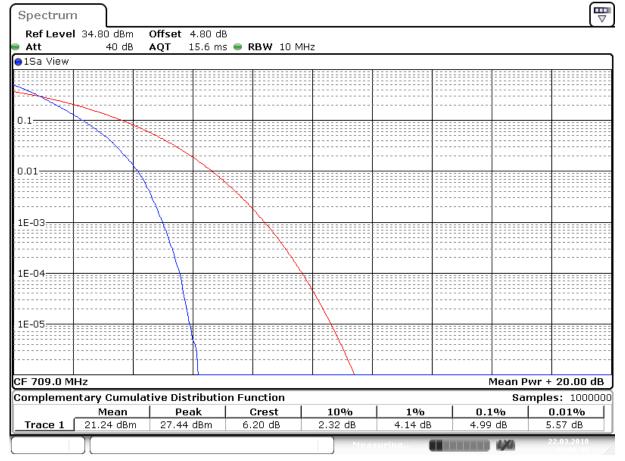
ERP [dBm] = SGP [dBm] – Cable Loss [dB] + Gain [dBd] b: SGP=Signal Generator Level

Report No.: SZEM180300168901 Page: 6 of 53

2 Peak-to-Average Ratio

Part I - Test Results

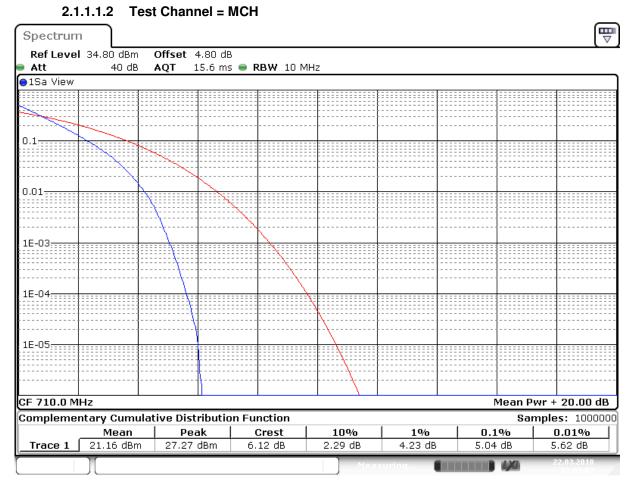
Test Band	Test Mode	Test Channel	Measured[dB]	Limit [dB]	Verdict
		LCH	4.99	13	PASS
Band 17	TM1/10M	MCH	5.04	13	PASS
		HCH	5.01	13	PASS


Part II - Test Plots

2.1 For LTE

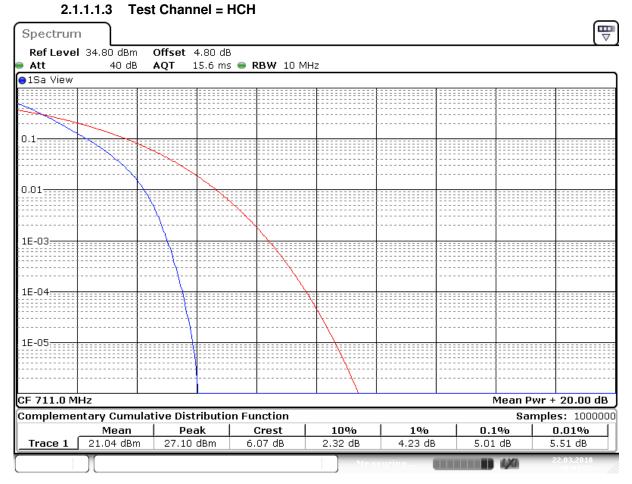
2.1.1 Test Band = LTE Band 17

2.1.1.1 Test Mode = LTE/TM1.Bandwidth=10MHz



Date: 22 MAR.2018 10:02:49

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

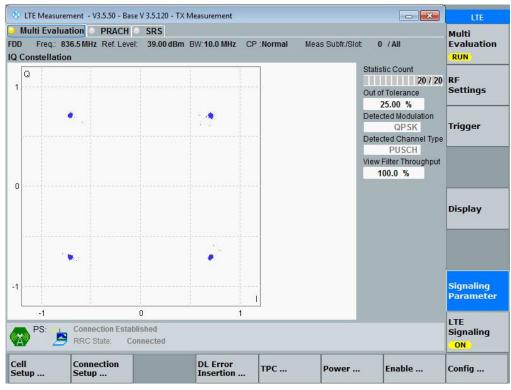

Report No.: SZEM180300168901 Page: 7 of 53

Date: 22 MAR 2018 10:03:08

Report No.: SZEM180300168901 Page: 8 of 53

Date: 22 MAR 2018 10:03:26

Report No.: SZEM180300168901 Page: 9 of 53


3 Modulation Characteristics

3.1 For LTE

3.1.1 Test Band = LTE Band 17

3.1.1.1 Test Mode = LTE /TM1 10MHz

3.1.1.1.1 Test Channel = MCH

Report No.: SZEM180300168901 Page: 10 of 53

4 Bandwidth

Part I - Test Results

Test Band	Test Mode	Test Channel	Occupied Bandwidth [MHz]	Emission Bandwidth [MHz]	Verdict
		LCH	4.466	4.740	PASS
	TM1/ 5MHz	MCH	4.476	4.730	PASS
		HCH	4.476	4.700	PASS
	TM2/ 5MHz	LCH	4.466	4.700	PASS
Band 17		MCH	4.476	4.720	PASS
		HCH	4.476	4.720	PASS
		LCH	8.951	9.300	PASS
	TM1/10MHz	MCH	8.951	9.340	PASS
		HCH	8.951	9.320	PASS

Report No.: SZEM180300168901 Page: 11 of 53

Part II - Test Plots

4.1 For LTE

4.1.1 Test Band = LTE Band 17

4.1.1.1 Test Mode = LTE/TM1 5MHz

	4.1.	1.1.1	Test C	hanr	nel = L	СН									_
Spect	rum)													[
Ref Le	evel	24.90	dBm Of	fset	4.90 dB	🔵 RB	W 50 kH	Ηz							
🛛 Att		31	O dB 😑 SV	ΥT	100 ms	😑 VB	W 200 kH	Ηz	Mode	Auto S	weep				
⊖1Av Vi	ew														
20 dBm·									M	1[1]					7.42 dB
															38200 MH
10 dBm·				M1						cc Bw			4		34466 MH
				Jahr	monthew	Nughan	nound	L.A.M.	when the DA	2ht Inn	when	72 V			19.05 dB
0 dBm—										I	1	1	1	704.	12000 MH
10 40															
-10 dBm			N	42								МЗ			
-20 dBm		1 -18.	576 dBm-	7								<u> </u>			
20 000	'		1 1	/ I								- <u>\</u>			
-30 dBm	η <u> </u>		- A start									<u></u>	And so a	1.16	
	where the	مان بالموجوم المارين الان بالموجوم المحارين	when the state											which the way was	multinentroy
-40 dBm	ν 														
-50 dBm	—														
-60 dBm															
-00 001	'														
-70 dBm	ι														
CF 706	E MI	1-1					1001	nt.						Cooo	10.0 MHz
	.5 M	12					1001	pes	,					span	10.0 19162
Marker	n (1 1						- 1	-			F		n 11	
Type	Ref	Trc 1		value	32 MHz	Y	- value 7.42 dBi		Func	tion		Fu	inction	Result	
M1 T1		1			2 MHZ		3.37 dB			cc Bw				4 4655	34466 MHz
T2		1			7 MHz		2.26 dB		0					1.4033	
M2		1			.2 MHz	-	-19.05 dB								
M3		1			6 MHz		-18.67 dB								
		1						1]	curring			I 1 1 1 1		21.03.2018
		Л)				- 19 H		

Date:21 MAR.2018 07:23:10

Report No.: SZEM180300168901 Page: 12 of 53

	4.1.	1.1.2	rest Chan		СП							_
Spect	rum											
Ref Lo	evel	24.90 di	Bm Offset	4.90 dB	👄 RBW 50 kH	١z						
🗕 Att		30	dB 👄 SWT	100 ms	🔵 VBW 200 kH	Ιz	Mode	Auto S	weep			
😑 1AV Vi	iew											,
20 dBm							M	1[1]				7.04 dBm
20 0.011												3.25200 MHz
10 dBm·				M1				c Bw	т	2	4.475	524476 MHz
your Manune manune Malille T2 -19.22 dBm												
0 dBm—			+						I.	1	707	.62000 MHz
-10 dBm										1		
-10 aBn			M2							мз		
-20 dBm		1 -18.95								110 I		
20 0.011	.		1							<u>N</u> .		
-30 dBm	י—⊢	. Iteate	when when							-		
Aman	berno	and all the second s								100	allering ale the street	www.www.www.w
-40 dBrr	י_+-י											
-50 dBm												
-30 ubii	'											
-60 dBm	י—⊢											
-70 dBm	+-י											
CF 710	.0 MF	Ηz			1001	pts	;		I		Spa	n 10.0 MHz
Marker						<u> </u>					· · ·	
Type	Ref	Trc	X-value	. 1	Y-value	Т	Func	tion		Fu	nction Resu	lt ĺ
M1		1		52 MHz	7.04 dBr	m						
T1		1	707.7622	24 MHz	5.15 dBr	m	0	cc Bw			4.475	524476 MHz
Т2		1	712.2373		3.66 dBr							
M2		1		52 MHz	-19.22 dBr							
M3		1	712.3	35 MHz	-19.53 dBr	m						
][Mea	suring.		1111	1/4	21.03.2018

4.1.1.1.2 Test Channel = MCH

Date: 21 MAR.2018 07:23:46

Report No.: SZEM180300168901 Page: 13 of 53

	4.1.	1.1.3	Test Chan		СП							
Spect	rum											
Ref Lo	evel	24.90 0	iBm Offset	4.90 dB	🔵 RBW – 50 kH	łz						
🗕 Att		30	dB 👄 SWT	100 ms	🔵 VBW 200 kH	łz	Mode	Auto S	weep			
😑 1AV Vi	iew											
20 dBm							M:	l[1]				7.09 dBm
												.56900 MHz
10 dBm T1 Old Bw T2 4.475524476 MH												
10 dBm T1 Varent Mundum Marine Mari												
0 dBm / /11.15000 MHz												
-10 dBm	_											
-10 UBII	'		M2							МЗ		
-20 dBm	-20 dBm D1 -18.911 dBm											
			1							1		
-30 dBm		l. when the	oun and							\rightarrow		
			- •••							Lune		
-40 dBm	ו—ר										Newshandson	and the mark of the second
-50 dBm	ע											
50 abii	'											
-60 dBm	י—+											
-70 dBm	ר−י											
CF 713	.5 M	Hz	I		1001	pts			I		Spar	10.0 MHz
Marker						<u> </u>						
Type	Ref	Trc	X-value	.	Y-value	1	Funct	ion		Fun	ction Result	t
M1		1	714.56	59 MHz	7.09 dBi	n						
T1		1	711.2622		3.50 dBi		Oc	c Bw	N 4.47552		24476 MHz	
T2		1	715.737		4.15 dBi							
M2		1		15 MHz	-20.14 dBi							
МЗ		1	/15.8	35 MHz	-19.95 dBi	n						
[Л									1,00	21.03.2018 07:24:23

4.1.1.1.3 Test Channel = HCH

Date:21 MAR.2018 07:24:23

Report No.: SZEM180300168901 Page: 14 of 53

4.1.1.2.1 Test Channel = LCH ₩ Spectrum Ref Level 24.90 dBm Offset 4.90 dB 👄 RBW 50 kHz 30 dB 💿 SWT 100 ms 👄 **VBW** 200 kHz Att Mode Auto Sweep ●1Av View M1[1] 6.31 dBm 20 dBm-706.32000 MHz Occ Bw 4.465534466 MHz 10 dBm-Which -19.76 dBm women will all all 7. 704.14000 MHz 0 dBm--10 dBm-M2 hэ D1 -19.695 dBm -20 dBm--30 dBm Prototo and provide way we have and 40 dBm— -50 dBm· -60 dBm· -70 dBm-CF 706.5 MHz 1001 pts Span 10.0 MHz Marker Type | Ref | Trc X-value Y-value Function Function Result 706.32 MHz 6.31 dBm M1 1 Τ1 1 704.26224 MHz 4.41 dBm Occ Bw 4.465534466 MHz 708.72777 MHz 2.36 dBm Τ2 1 M2 1 704.14 MHz -19.76 dBm ΜЗ 1 708.84 MHz -19.72 dBm 100 AX4

4.1.1.2 Test Mode = LTE/TM2 5MHz

Date:21 MAR.2018 07:23:26

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

Report No.: SZEM180300168901 Page: 15 of 53

	4.1.	1.2.2	Test Chan	nel = IVIC	-							_
Spectr	um											
Ref Le	evel	24.90 d	Bm Offset	4.90 dB (📄 RBW 50 kH	z						
🔵 Att		30	dB 👄 SWT	100 ms (📄 VBW 200 kH	z I	Mode	Auto S	weep			
😑 1 AV Vie	ew											
20 dBm-							M1	[1]				6.69 dBm
												86200 MHz
10 dBm-								c Bw	т	2		24476 MHz
he al such a												
0 dBm—							I		I)	707.	63000 MHZ
-10 dBm												
-10 080			M2							Niз		
-20 dBm	-20 dBm D1 -19.313 dBm											
										A.		
-30 dBm	+		aburattlater							- <u>h</u>		
ellowahunder	wheethe	-lakurolli 1900	Mary Mary M							-04)	well when have a server of the	mandenerstyleners
-40 dBm												
-50 dBm	\rightarrow											
-60 dBm	-+											
-70 dBm	+											
CF 710	.0 MH	Ηz	•		1001	pts					Span	10.0 MHz
Marker												
Туре	Ref	Trc	X-value	,	Y-value		Funct	ion		Fui	nction Result	t I
M1		1 707.862 MHz			6.69 dBn	_						
T1		1	707.7622		4.44 dBn		00	C BW			4.4755	24476 MHz
T2 M2		1	712.237		3.31 dBn	_						
M2 M3		1		53 MHz 35 MHz	-19.67 dBn -19.36 dBn	_						
			1120		19.50 000	· · ·			-			21.02.2010
L		Л									100	07:24:02

4.1.1.2.2 Test Channel = MCH

Date:21 MAR.2018 07:24:03

Report No.: SZEM180300168901 Page: 16 of 53

	4.1.	1.2.3	Test Chan	nel = HC	JH					_	
Spect	rum)									
Ref L	evel	24.90 I	dBm Offset	4.90 dB	🔵 RBW 50 kHz						
👄 Att		30)dB 👄 SWT	100 ms	🔵 VBW 200 kHz	Mode	Auto S	weep			
😑 1AV V	iew									,	
20 dBm						M	1[1]			6.68 dBm	
20 40.00										84100 MHz	
10 dBm			T1		M1		cc Bw	т2		24476 MHz	
	The and the second seco										
0 dBm—							I		/11.	15000 MHZ	
-10 dBn											
-10 UBI			M2								
-20 dBn	n	1 -19.	317 dBm 🚽 📕					N3			
			ļ ļ								
-30 dBn	n Mahduna d	and my A	and and a start					-			
· · · ·								Lu Vu	margheten		
-40 dBn									- 1000000000000000000000000000000000000	the population of the second	
-50 dBn	n										
-60 dBn	n										
-70 dBn	n										
CF 713	3.5 MI	Ηz	•		1001 p	ts		ł	Span	10.0 MHz	
Marker											
Туре	Ref	Trc	X-value	,	Y-value	Func	tion	Fu	nction Result	:	
M1		1		41 MHz	6.68 dBm						
T1		1	711.2722		3.05 dBm	0	cc Bw		4.4755	24476 MHz	
T2		1	715.747		3.57 dBm						
M2 M3		1		15 MHz 37 MHz	-19.84 dBm -22.02 dBm						
			, 10,(21 1911/2	22.02 0011	<u> </u>		-		1 02 2010	
L		Л				Mea				07:24:39	

A 1 1 0 0 Test Ober

Date: 21 MAR 2018 07:24:39

Report No.: SZEM180300168901 Page: 17 of 53

4.1.1.3 Test Mode = LTE/TM1 10MHz

		Test Chann		-				G
Spectrum								
Ref Level				RBW 100 kHz				
Att	30 d	B 👄 SWT	100 ms 👄	VBW 300 kHz	: Mode	Auto S	weep	
∋1Av View								
20 dBm					M	1[1]		6.43 dB
								706.6620 MI
10 dBm		Т1	M1			cc Bw		8.951048951 MI
		Van	human with wh	under marine	M	2[1]	T2 Acceler alter	-20.79 dB
0 dBm		+ + +				1		704.3400 MI
-10 dBm								
-20 dBm	01 -19.57:						M3	
	1 -19,07.						- 4	
-30 dBm——		post de la						
-40 dB#	mounder	where and						mander and the manual and the second
-40 dBm	enter -	+		+				
-50 dBm								
-60 dBm								
-00 0811								
-70 dBm								
CF 709.0 MH	HZ			1001 p	ots			Span 20.0 MH
Marker	1 - 1				1 -		_	
Type Ref		X-value		Y-value	Func	tion	Fun	ction Result
M1 T1	1	706.66 704.524		6.43 dBm 3.11 dBm		CC BW		8.951048951 MH
T2		704.524		1.45 dBm		CC BW		0.931048951 MH
M2	1		4 MHz	-20.79 dBm				
M3	1		4 MHz	-19.69 dBm				
				1)			22.03.2018
					Mea			19/0 01:55:52

Date: 22 MAR .2018 09:55:52

Report No.: SZEM180300168901 Page: 18 of 53

	4.1.	1.3.2	Test Chan	nel = wi	СП						
Spect	rum	J									
Ref L	evel	24.80	dBm Offset	4.80 dB	🔵 RBW 100 kHz	2					
🔵 Att		3	O dB 🔵 SWT	100 ms	🔵 VBW 300 kHz	z I	Mode Aut	to Sv	weep		
<mark>⊝</mark> 1Av V	iew										
20 dBm							M1[1]			5.96 dBm
20 00.00											5.5840 MHz
10 dBm							Occ E		т2		48951 MHz
				and the second	algunger ward and have any de	where	M2[1	manur	numeritation of		20.77 dBm
0 dBm–									- i)	708	5.3200 MHz
10 40-	_										
-10 dBn											
-20 dBn		1 -20.	.039 dBm						M3		
	. [1 20									
-30 dBn	n		And Milliam Stranger						- Million	huh	
	www.	and the second second	N*							the when and the were	Made
,≂4®/d₿n	ň—†										the had we had
-50 dBn											
-60 dBn	n										
	.										
-70 dBn	n										
CF 710		-17				nte				Snan	20.0 MHz
Marker		16			1001					opun	2010 11112
Type		Trc	X-value	. 1	Y-value	1	Function	. 1	Eur	nction Result	- 1
M1	KGI	1		, 34 MHz	5.96 dBm		Tunction		1 41	ICCIOII RESUL	
T1		1	705.52		3.66 dBm		Occ E	3w		8.9510	48951 MHz
T2		1	714.47		2.82 dBm	_					
M2		1	705.3	32 MHz	-20.77 dBm						
МЗ		1	714.0	56 MHz	-22.18 dBm						
)[Measur	in g		1,420	22.03.2018

4.1.1.3.2 Test Channel = MCH

Date: 22 MAR.2018 09:56:02

Report No.: SZEM180300168901 Page: 19 of 53

Spectrum											Ę
Ref Level			_	RBW 100 kH							
Att 📃	30	dB 👄 SWT 🛛 1	100 ms 👄	VBW 300 kH	IZ	Mode	Auto Sv	weep			
●1Av View											
20 dBm						M	1[1]				5.05 dB
20 00										714	F.9160 MF
10 dBm		T1		+			c Bw	M1 T2			48951 MH
		Veryon	والمساولة المحالية بالمحالية	www.un.lowgeree.have	all and a second	and Million	2[1]	W-WWWWW			22.80 dB
0 dBm				and a second second second				·····		706	5.3400 MH
-10 dBm											
		M2						мз			
-20 dBm	01 -20.9	954 dBm 🚽 🕇									
-30 dBm		h and and									
-30 dBm	wernhapped	halla of bit we are							Human	and have been been and	
-40 dBm										mound white here	
-+0 ubiii											when we have the
-50 dBm——											
-60 dBm											
-70 dBm——				+ +							
CF 711.0 M	Hz			1001	pts					Span	20.0 MHz
Marker					F						
Type Ref	Trc	X-value	1	Y-value	1	Func	ion		Funct	ion Result	•
M1 M1	1	714.916	6 MHz	5.05 dBr	$\frac{1}{n}$						•
T1	1	706.5245		3.41 dBr		0	c Bw			8.9510	48951 MHz
T2	1	715.4755		3.07 dBr							
M2	1	706.34	F MHz	-22.80 dBr	n						
M3	1	715.66	i MHz	-22.41 dBr	n						
	1					Mea	surina			1.X1	22.03.2018

4.1.1.3.3 Test Channel = HCH

Date:22 MAR.2018 09:56:11

Report No.: SZEM180300168901 Page: 20 of 53

5 Band Edges Compliance

5.1 For LTE

5.1.1 Test Band = LTE Band 17

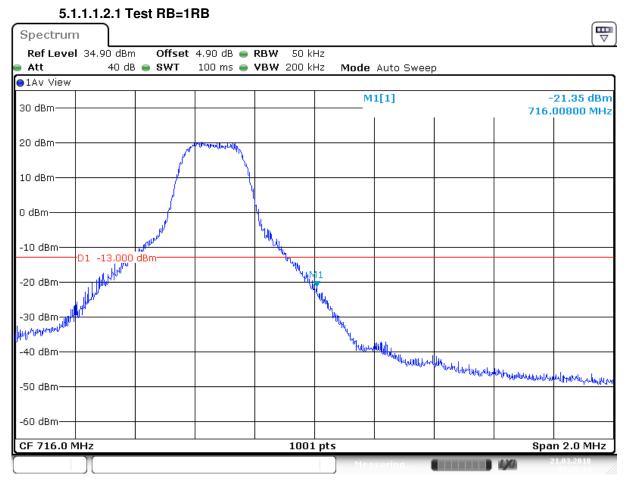
5.1.1.1 Test Mode = LTE/TM1 5MHz

5.1.1.1.1 Test Channel = LCH

5.1.1.1.1.1 Test RB=1RB ₩ Spectrum Ref Level 34.90 dBm Offset 4.90 dB 🔵 RBW 50 kHz 40 dB 🔵 SWT Att 100 ms 👄 VBW 200 kHz Mode Auto Sweep ●1Av View M1[1] -18.86 dBm 30 dBm· 703.98800 MHz 20 dBm 10 dBm· 0 dBm-Mp . -10 dBm-D1 -13.000 dBm-Milly, The way -20 dBm Mulululu -50 dBm -30 dBm· -60 dBm-CF 704.0 MHz 1001 pts Span 2.0 MHz ----

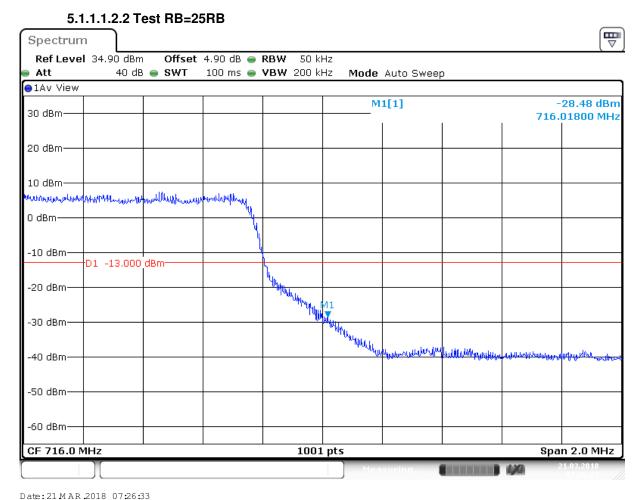
Date:21 MAR.2018 07:24:54

Report No.: SZEM180300168901 Page: 21 of 53



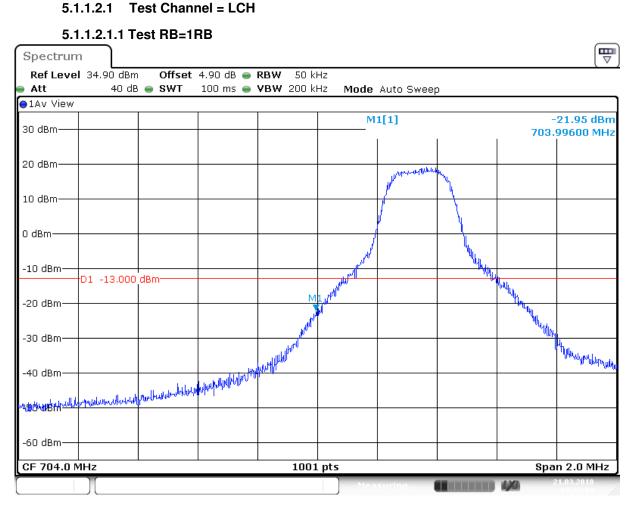
Date:21 MAR.2018 07:25:32

Report No.: SZEM180300168901 Page: 22 of 53


5.1.1.1.2 Test Channel = HCH

Date:21 MAR.2018 07:26:14

Report No.: SZEM180300168901 Page: 23 of 53

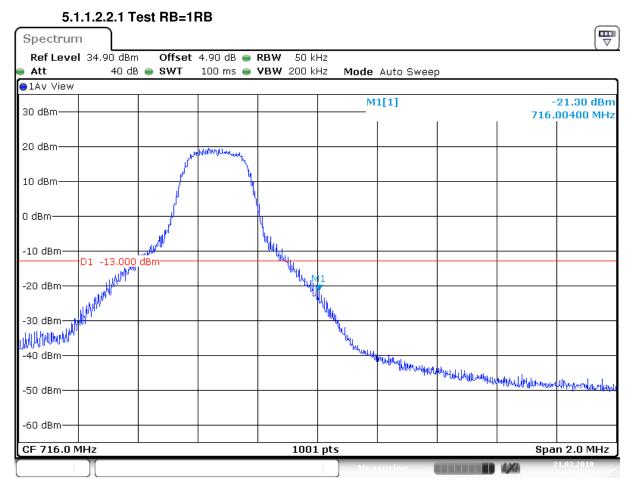


Dace:2121111(2010 072020

Report No.: SZEM180300168901 Page: 24 of 53

5.1.1.2 Test Mode = LTE/TM2 5MHz

Date:21 MAR.2018 07:25:03


Report No.: SZEM180300168901 Page: 25 of 53

5.1	1.1.2.1.2 T	est RB=2	5RB						_
Spectrun	n								[₩
Ref Leve	l 34.90 dBm	n Offset	4.90 dB 👄	RBW 50 k	Hz				
Att	40 dB	8 👄 SWT	100 ms 👄	VBW 200 k	Hz Mode	Auto Swee	р		
●1Av View			_						
30 dBm					M	1[1]	-27.34 dBm		
30 UBIII						I	1	703.	98800 MHz I
20 dBm									
10 dBm									
						www.	many provided with	wyber wyrwork W	hundren with the mention
0 dBm						1			
						1			
-10 dBm—						(
	D1 -13.000				لى				
-20 dBm					مر المراجع المراجع (1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -				
				M:	wether				
-30 dBm				- College	Hun.				
يريد والحريد والمريدة	unander and the	ampantante	10 May march m	and applications					
-40 dBm—	n in and interna								
10 abiii									
-50 dBm									
-30 0011									
-60 dBm—									
CF 704.0 M	MHz			1001	pts		1	Spa	n 2.0 MHz
					Mea	suring		1/0	21.03.2018

Date: 21 MAR.2018 07:25:41

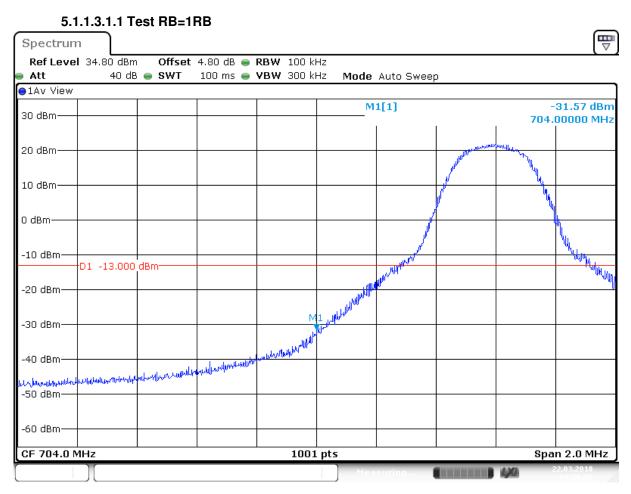
Report No.: SZEM180300168901 Page: 26 of 53



5.1.1.2.2 Test Channel = HCH

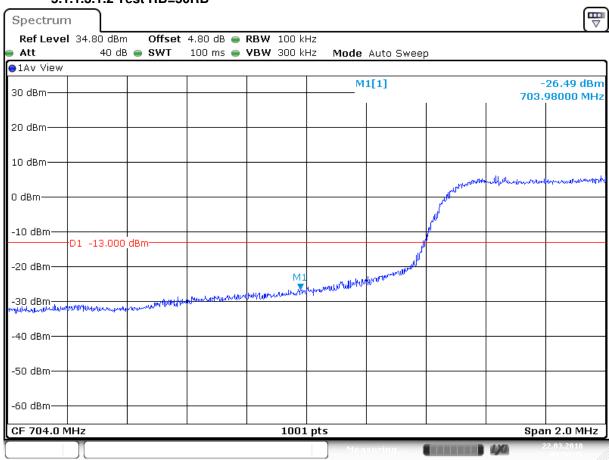
Date:21 MAR.2018 07:26:24

Report No.: SZEM180300168901 Page: 27 of 53



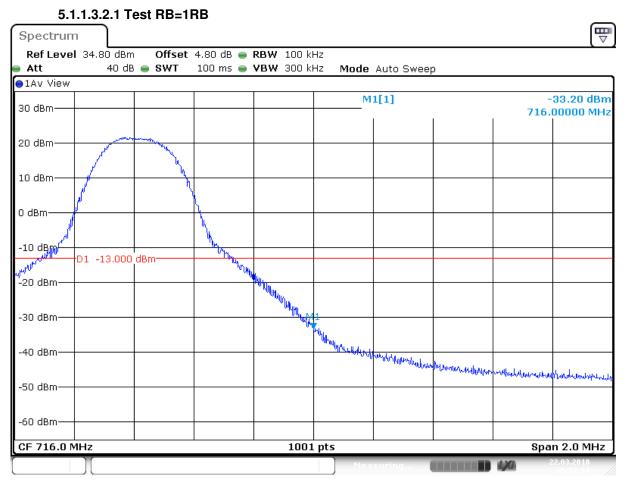
Date:21 MAR.2018 07:26:43

Report No.: SZEM180300168901 Page: 28 of 53


5.1.1.3 Test Mode = LTE/TM1 10MHz 5.1.1.3.1 Test Channel = LCH

Date: 22 MAR.2018 09:56:26

Report No.: SZEM180300168901 Page: 29 of 53


5.1.1.3.1.2 Test RB=50RB

Date: 22 MAR.2018 09:56:45

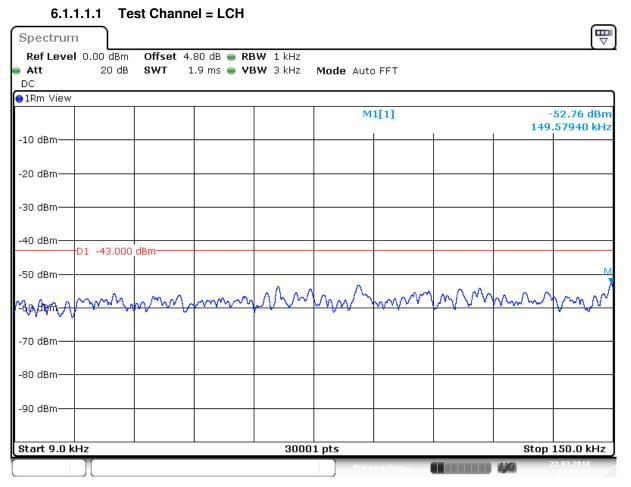
Report No.: SZEM180300168901 Page: 30 of 53


5.1.1.3.2 Test Channel = HCH

Date: 22 MAR.2018 09:57:18

Report No.: SZEM180300168901 Page: 31 of 53

Date:22 MAR.2018 09:57:27


Report No.: SZEM180300168901 Page: 32 of 53

6 Spurious Emission at Antenna Terminal

NOTE: For the averaged unwanted emissions measurements, the measurement points in each sweep is greater than twice the Span/RBW in order to ensure bin-to-bin spacing of < RBW/2 so that narrowband signals are not lost between frequency bins. As to the present test item, the "Measurement Points = k * (Span / RBW)" with k between 4 and 5, which results in an acceptable level error of less than 0.5 dB. Part I - Test Plots

6.1 For LTE

6.1.1.1 Test Mode = LTE / TM1 15MHz RB1#0

Date: 22 MAR.2018 09:58:29

Report No.: SZEM180300168901 Page: 33 of 53

Spectrum									[₩
	20.00 dBm			RBW 100					
Att	30 dB	SWT	37.9 µs 🧉	VBW 300	kHz Mode	Auto FFT			
DC									
●1Rm View									
					M	11[1]			53.38 dBm
							1	18.3	96200 MHz
10 dBm									
0 dBm									
-10 dBm									
10 0.0									
-20 dBm	D1 -23.000	dBm							
	51 20,000	(abin							
-30 dBm						+			
-40 dBm			_						
						1.4.1			
-50 dBm						Y			
2000 cm o					mannah	Monwow	- mannamany	Merenten	an her rolad
-80 9811-7-4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ward Parts and Ir 1	water a water	Called And And And And And And And And And An	hina	r r	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Charles and a state of the stat	A PARTY OF A
	1								
-70 dBm									
01	L.I.								
Start 150.0	KHZ			300)01 pts			Stop	30.0 MHz
	Д				Mea			1,20	22.03.2018

Date:22 MAR.2018 09:58:34

Report No.: SZEM180300168901 Page: 34 of 53

963.0753 MH: 0 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -60 dBm	Spectrun	л								₩
1Rm View M1[1] M1 26.45 dBn 10 dBm M2[1] -43.98 dBn 963.0753 MH 963.0753 MH 0 dBm 0 0 -10 dBm 0 0 -20 dBm 0 0 -30 dBm 0 0 -70 dBm 0 0 -70 dBm 0 0										
10 dBm M1[1] 1 26.45 dBm 10 dBm M2[1] -43.98 dBm 963.0753 MH: 963.0753 MH: 0 dBm 01 -13.000 dBm -20 dBm -10 dBm -30 dBm -10 dBm -70 dBm -10 dBm -70 dBm -10 dBm -70 dBm -10 dBm		30 dE	SWT	131.3 µs 🥃	VBW 3 MHz	Mode A	uto FFT			
10 dBm M2[1] 704.4990 MH: 0 dBm 963.0753 MH: 963.0753 MH: 0 dBm 01 -13.000 dBm 0 0 -10 dBm 01 -13.000 dBm 0 0 -20 dBm 0 0 0 -30 dBm 0 0 0 -20 dBm 0 0 0 0 -30 dBm 0 0 0 0 -40 dBm 0 0 0 0 -70 dBm 0 0 0 0 -70 dBm 0 0 0 0 -70 dBm 0 0 0 0 0 0	OIKW New					м	1[1]			26 45 dBm
963.0753 MH: 963.0753 MH: 963.0754 MH: 96							тгтј М	1		
0 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -70 d	10 dBm					M	2[1]			
-10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -10							I	963.0753 MHz		
-20 dBm -30 dBm -40 dBm -40 dBm -70	0 dBm									
-20 dBm -30 dBm -40 dBm -40 dBm -70										
-20 dBm -30 dBm -40 dBm -40 dBm -60 dBm -70	-10 dBm—									
-30 dBm -40 dBm -40 dBm -60 dBm -70 dBm		D1 -13.000	dBm							
-40 dBm -60 dBm -70 dB	-20 dBm—									
-40 dBm -60 dBm -70 dB										
-60 dBm -70 dBm Start 30.0 MHz 30001 pts Stop 1.0 GHz	-30 dBm									
-60 dBm -70 dBm Start 30.0 MHz 30001 pts Stop 1.0 GHz										
-60 dBm -70 dBm Start 30.0 MHz 30001 pts Stop 1.0 GHz	-40 dBm—									M2
-60 dBm -70 dBm Start 30.0 MHz 30001 pts Stop 1.0 GHz								M	يفريلا بديد	
-60 dBm -70 dBm Start 30.0 MHz 30001 pts Stop 1.0 GHz	the dame							W Nith to the		
-70 dBm	i k i Autor da i a ka	is work with	a ta anti chi con confi	a harar sama	al da a ann	ant wheel and a	11 N N T	and the state		
Start 30.0 MHz 30001 pts Stop 1.0 GHz	-60 dBm									
Start 30.0 MHz 30001 pts Stop 1.0 GHz										
	-70 dBm—									
	Start 30.0	MHz			3000	1 pts			Sto	p 1.0 GHz
							surina		LXI	2.03.2018

Date:22 MAR.2018 09:58:40

Report No.: SZEM180300168901 Page: 35 of 53

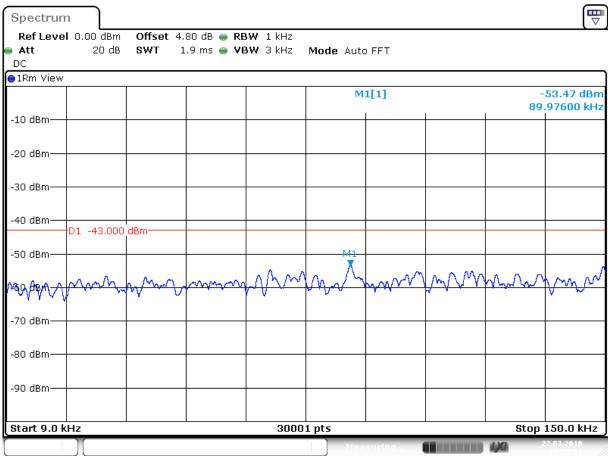
Spectrun	n								
	l 20.00 dBm			RBW 1 MHz					
e Att		B 👄 SWT	5 s 👄	VBW 3 MHz	Mode A	uto Sweep			
⊖1Rm View									
					M	1[1]			39.45 dBm
							1	2.1	13760 GHz
10 dBm									
0 dBm									
-10 dBm—									
	D1 -13.000	dBm							
-20 dBm—									
-30 dBm									
-30 0011									
		M1							
-40 dBm—									
-50 dBm—									
-60 dBm—									
-70 dBm—									
Start 1.0 (GHz			30001	pts				p 5.0 GHz
[Л				Mea	suring		4,70	22.03.2018

Date:22 MAR.2018 09:59:02

Report No.: SZEM180300168901 Page: 36 of 53

Spectrun	n							
	l 20.00 dBm			RBW 1 MHz				
e Att		🖷 SWT	5 s 👄	VBW 3 MHz	Mode A	uto Sweep		
●1Rm View								
					м	1[1]		49.52 dBm
10 dBm								
0 dBm								
-10 dBm								
-20 dBm	D1 -13.000	dBm						
-30 dBm								
-40 dBm		M1						
-50 dBm—							 	`
-60 dBm—								
-70 dBm								
Start 5.0 C	GHz			30001	pts		 Stop) 12.0 GHz
][Mea	suring	1/1	22.03.2018

Date:22 MAR.2018 09:59:24


Report No.: SZEM180300168901 Page: 37 of 53

Spectrum	ı								□
	l 20.00 dBn			RBW 1 MHz		_			
● Att ●1Rm View	30 at	B 👄 SWT	5 S 🖷	VBW 3 MHz	Mode Auto	o Sweep			
					M1[1	1]			49.57 dBm 44350 GHz
10 dBm									
0 dBm									
-10 dBm	D1 -13.000	dBm							
-20 dBm									
-30 dBm									
-40 dBm							M1		
-50 dBm						~~~	<u> </u>		
-60 dBm									
-70 dBm									
Start 12.0	GHz			30001	pts			Stop	18.0 GHz
][Measur	ing		1/0	22.03.2018

Date:22 MAR.2018 09:59:45

Report No.: SZEM180300168901 Page: 38 of 53

6.1.1.1.2 Test Channel = MCH

Date:22 MAR.2018 09:59:51

Report No.: SZEM180300168901 Page: 39 of 53

Spectrum	ı)								₩
Ref Level	20.00 dBm	Offset	4.80 dB 🔵 R	BW 100 kHz	2				
👄 Att	30 dB	SWT	37.9 µs 👄 🖌	'BW 300 kHz	Mode .	Auto FFT			
DC									
⊖1Rm View									
					M	1[1]			53.64 dBm
								21.4	61690 MHz
10 dBm									
0 dBm									
-10 dBm									
10 0.0									
-20 dBm—	D1 -23.000	dBm							
	22 20,000								
-30 dBm—									
-40 dBm									
-50 dBm							8.6.1		
					- 0		T		
martin ann	u., h.,	-0-0		and the state	Inner Charles	flow by the work	and the workers when	non marine	MWWWWWWW
-60'08m/	بالأرجاب إسريقين	and a subscription of the	PUP CAP & CAPACADA	A S WALLAND AND A S A S A S A S A S A S A S A S A S A					
-70 dBm—									
Start 150.0	160-2			30001	nte			Ston	30.0 MHz
Cotart 130.0				30001	. prs				2 02 2010
	Л				Mea	suring		1,20	09:59:56

Date:22 MAR.2018 09:59:56

Report No.: SZEM180300168901 Page: 40 of 53

Spectrum	ι								
	20.00 dBm		4.80 dB 😑						
Att	30 dB	SWT	131.3 µs 😑	VBW 3 MHz	Mode A	uto FFT			
⊖1Rm View									
					M	1[1] M	1		25.60 dBm
						0[4]			.5990 MHz
10 dBm					IVI	2[1]			44.13 dBm .2947 MHz
0 dBm									
-10 dBm									
	D1 -13.000	dBm							
-20 dBm									
20 00111									
00 ID									
-30 dBm—									
-40 dBm——								1712	
						1		l. Lua	, است
WALKIRG I	A MARINE MA			antitude at the Walt					
, a duratar da a	An and the said of	a a uth di dia a	n se mandada an	ada a dha a t	EN AN ALL AND	n in the days and	I. L. Markey in	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	tre to rea
-60 dBm									
-70 dBm									
-70 ubm									
Start 30.0	MHz	1	1	3000:	1 pts	1	1	Sta	p 1.0 GHz
	Υ				Mea	suring		1,00	2.03.2018

Date:22 MAR.2018 10:00:02

Report No.: SZEM180300168901 Page: 41 of 53

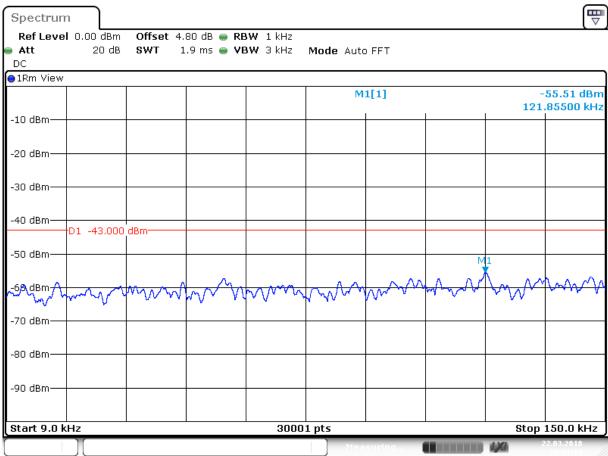
Spectrur	n]								
	el 20.00 dBm			RBW 1 MHz					
🔵 Att		B 👄 SWT	5 s 👄	VBW 3 MHz	Mode A	uto Sweep			
⊖1Rm View			-						
					M	1[1]			39.90 dBm
						I	1	2.1	16830 GHz
10 dBm									
0 dBm				+ +					
-10 dBm—									
	-D1 -13.000	I dBm							
-20 dBm—									
-20 0011									
-30 dBm—									
		M1							
-40 dBm—		<u> </u>							
-50 dBm—									
-60 dBm—									
00 00									
-70 dBm—									
Start 1.0 (GHz	1		30001	pts		<u> </u>	Sto	p 5.0 GHz
	Υ					suring			22.03.2018

Date:22 MAR.2018 10:00:24

Report No.: SZEM180300168901 Page: 42 of 53

Spectrun	n							
	l 20.00 dBm			RBW 1 MHz				
e Att		SWT 🖷	5 s 👄	VBW 3 MHz	Mode A	uto Sweep		
∣o1Rm View								
					M	1[1]		49.59 dBm
10 dBm							6.9	29490 GHz
0 dBm								
-10 dBm								
	D1 -13.000	dBm						
-20 dBm—								
-30 dBm								
-40 dBm								
		M1						
-50 dBm—							 	
-60 dBm—								
-70 dBm								
Start 5.0 G	GHz			30001	pts) 12.0 GHz
[Л				Mea	suring	1)(1)	22.03.2018

Date:22 MAR.2018 10:00:46


Report No.: SZEM180300168901 Page: 43 of 53

Spectrun									□□□
Ref Leve Att		dBm 🕠 OdB 🕳 🕯		RBW 1 MHz VBW 3 MHz	Mode A	uto Sweep			
●1Rm View			 						
					М	1[1]	I		-49.31 dBm 47150 GHz
10 dBm									
0 dBm									
-10 dBm	D1 -13.	.000 dBm							
-20 dBm—									
-30 dBm—									
-40 dBm			 						
-50 dBm			 		الإرافينية الانتاجية	~~~~	M1		
-60 dBm									
-70 dBm			 						
Start 12.0	GHz			30001	pts			Stop) 18.0 GHz
)(Mea	suring		4/4	22.03.2018

Date:22 MAR.2018 10:01:08

Report No.: SZEM180300168901 Page: 44 of 53

6.1.1.1.3 Test Channel = HCH

Date: 22 MAR.2018 10:01:13

Report No.: SZEM180300168901 Page: 45 of 53

Spectrum									₿
Ref Level	20.00 dBm	Offset	4.80 dB 👄 F	RBW 100 kHz	2				
👄 Att	30 dB	SWT	37.9 µs 👄 \	/BW 300 kHz	Mode	Auto FFT			
DC									
●1Rm View									
					M	1[1]			53.35 dBm
								20.2	01070 MHz
10 dBm									
0 dBm									
-10 dBm									
-10 0.011									
-20 dBm—	D1 -23.000	dBm							
	01 -23,000								
-30 dBm—									
-40 dBm									
10 0.011									
-50 dBm						M1 7			
Mary a					mannen	way water and a second	hanne	when my new me	www.mww.
-60 altro-An	W WAR WAR	4 word to any and	^{Mal} warghangenergyye	hay bran pay to get				and strate of	N. ANK - NIMM
-70 dBm									
Start 150.0	l kHz			30001	pts			Stop	30.0 MHz
					Mea	suring		120	22.03.2018

Date:22 MAR.2018 10:01:19

Report No.: SZEM180300168901 Page: 46 of 53

Spectrum	ı								[₩
	20.00 dBm		4.80 dB 👄						
Att	30 dB	SWT	131.3 µs 🥃	VBW 3 MHz	Mode A	uto FFT			
●1Rm View									
					M	1[1] M	1		26.02 dBm
10 dBm					54	0[1]			6010 MHz 42.78 dBm
10 aBm					IVI	2[1]			42.78 UBIT).9643 MHz
0 dBm									
-10 dBm									
	D1 -13.000	dBm							
-20 dBm									
-30 dBm									
-30 abiii									
in in								M2	
-40 dBm—								Ţ	
		La ra M	les a de sa		1		MALA	. J. co. M. Jac	and the m
hile Abdent		WIN WHITE			NWWWWWWW		W WHA		
a substantia de la construcción de	Lines Lissie	tite i tea	l i sue i subi	he distant	in the form		an offer co		
-60 dBm									
-70 dBm									
Start 30.0	MHz			3000	1 pts			Sto	p 1.0 GHz
					Mea	suring		1,20	2.03.2018

Date:22 MAR.2018 10:01:25

Report No.: SZEM180300168901 Page: 47 of 53

Spectrum	ı						
	20.00 dBm			RBW 1 MHz			
Att	30 dB	😑 SWT	5 s 👄	VBW 3 MHz	Mode Auto Sweep		
⊖1Rm View			1				
					M1[1]		-40.14 dBm .413120 GHz
10 dBm							
0 dBm							
-10 dBm	D1 -13.000	dBm					
-20 dBm	DI -13.000						
-30 dBm							
-40 dBm	1						
-50 dBm							
-60 dBm							
-70 dBm							
Start 1.0 G	Hz			30001	pts	<u> </u> s	top 5.0 GHz
][·		22.03.2018

Date:22 MAR.2018 10:01:46

Report No.: SZEM180300168901 Page: 48 of 53

Spectrun	n								
	1 20.00 dBm			RBW 1 MHz					
Att		8 👄 SWT	5 s 👄	VBW 3 MHz	Mode A	uto Sweep			
⊖1Rm View	1	1	1						
					М	1[1]	1		-49.57 dBm 09190 GHz
10 dBm									
0 dBm									
-10 dBm—	D1 -13.000	dBm							
-20 dBm—									
-30 dBm									
-40 dBm—									
-50 dBm		M1							
-60 dBm—									
-70 dBm									
Start 5.0 G	GHz			30001	pts			Stop) 12.0 GHz
	Π				Mea	suring			22.03.2018

Date:22 MAR.2018 10:02:08

Report No.: SZEM180300168901 Page: 49 of 53

Spectrum Ref Level	20.00 dBn	n Offset	: 5.00 dB 👄	RBW 1 MHz				
Att .	30 dE	B 👄 SWT	5 s 👄	VBW 3 MHz	Mode A	uto Sweep		
●1Rm View		1	1	<u>т</u>		1[1]		40.00 dDm
					IVI	1[1]		-49.38 dBm L99790 GHz
10 dBm								+
0 dBm								
-10 dBm	D1 -13.000	dBm						
-20 dBm	01 -13.000							
-30 dBm								
-40 dBm								-
-50 dBm					M1 Y			
-60 dBm—								
-70 dBm								
Start 12.0	GHz			30001	pts		Stop) 18.0 GHz

Date:22 MAR.2018 10:02:30

Report No.: SZEM180300168901 Page: 50 of 53

7 Field Strength of Spurious Radiation

7.1 For LTE

7.1.1 Test Band = LTE Band 17

7.1.1.1 Test Mode =LTE/TM1 10MHz RB1#0

7.1.1.1 T	7.1.1.1.1 Test Channel = LCH											
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization								
64.206667	-81.51	-13.00	68.51	Vertical								
191.980000	-79.95	-13.00	66.95	Vertical								
1409.000000	-58.37	-13.00	45.37	Vertical								
2114.000000	-52.42	-13.00	39.42	Vertical								
2818.500000	-55.25	-13.00	42.25	Vertical								
3522.600000	-66.40	-13.00	53.40	Vertical								
55.246667	-77.89	-13.00	64.89	Horizontal								
191.980000	-73.81	-13.00	60.81	Horizontal								
1409.000000	-47.78	-13.00	34.78	Horizontal								
2114.000000	-51.12	-13.00	38.12	Horizontal								
2818.500000	-52.91	-13.00	39.91	Horizontal								
3523.087500	-65.99	-13.00	52.99	Horizontal								

7.1.1.1.2 Test Channel = MCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
63.786667	-81.89	-13.00	68.89	Vertical
244.526667	-78.53	-13.00	65.53	Vertical
1411.000000	-57.32	-13.00	44.32	Vertical
2117.000000	-51.87	-13.00	38.87	Vertical
2822.500000	-55.18	-13.00	42.18	Vertical
4233.375000	-61.94	-13.00	48.94	Vertical
62.620000	-77.88	-13.00	64.88	Horizontal
243.920000	-70.30	-13.00	57.30	Horizontal
1411.000000	-49.65	-13.00	36.65	Horizontal
2117.000000	-50.84	-13.00	37.84	Horizontal
2822.500000	-52.94	-13.00	39.94	Horizontal
3527.962500	-65.13	-13.00	52.13	Horizontal

Report No.: SZEM180300168901 Page: 51 of 53

<u>7.1.1.1.3 T</u>	est Channel = HCH			
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
64.486667	-81.69	-13.00	68.69	Vertical
162.766667	-74.86	-13.00	61.86	Vertical
1413.000000	-58.37	-13.00	45.37	Vertical
2120.000000	-52.91	-13.00	39.91	Vertical
3532.837500	-66.11	-13.00	53.11	Vertical
4239.225000	-62.19	-13.00	49.19	Vertical
62.013333	-78.35	-13.00	65.35	Horizontal
135.606667	-71.91	-13.00	58.91	Horizontal
1413.000000	-50.58	-13.00	37.58	Horizontal
2120.000000	-50.76	-13.00	37.76	Horizontal
2826.500000	-54.16	-13.00	41.16	Horizontal
3532.837500	-65.16	-13.00	52.16	Horizontal

7.1.1.1.3 Test Channel = HCH

NOTE:

- 1) All modes are tested, but the data presented above is the worst case. the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
- 2) We have tested all modulation and Bandwidth, but only the worst case data presented in this report.

Report No.: SZEM180300168901 Page: 52 of 53

8 Frequency Stability

8.1 Frequency Error VS. Voltage

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
LTE Band 17	LTE/TM1 10MHz	LCH	TN	VL	-2.66	-0.00321	PASS
				VN	1.42	0.00171	PASS
				VH	-5.23	-0.00631	PASS
		МСН	TN	VL	-1.56	-0.00186	PASS
				VN	-2.80	-0.00335	PASS
				VH	1.72	0.00206	PASS
		нсн	TN	VL	-5.36	-0.00635	PASS
				VN	-4.90	-0.00581	PASS
				VH	-1.88	-0.00223	PASS

Report No.: SZEM180300168901 Page: 53 of 53

8.2 Frequency Error VS. Temperature

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
	LTE/TM1 10MHz	LCH	VN	-30	-4.30	-0.00519	PASS
				-20	-2.38	-0.00287	PASS
				-10	-2.77	-0.00334	PASS
				0	1.20	0.00145	PASS
				10	1.22	0.00147	PASS
				20	0.59	0.00071	PASS
				30	-0.68	-0.00082	PASS
				40	-2.70	-0.00326	PASS
				50	-6.02	-0.00726	PASS
		МСН	VN	-30	-5.44	-0.00650	PASS
				-20	-5.20	-0.00622	PASS
				-10	-3.32	-0.00397	PASS
				0	-1.55	-0.00185	PASS
LTE Band 17				10	-2.27	-0.00271	PASS
				20	-0.89	-0.00106	PASS
				30	-3.09	-0.00369	PASS
				40	-4.88	-0.00583	PASS
				50	-5.42	-0.00648	PASS
		НСН	VN	-30	-6.66	-0.00789	PASS
				-20	-3.24	-0.00384	PASS
				-10	0.69	0.00082	PASS
				0	-2.40	-0.00284	PASS
				10	2.44	0.00289	PASS
				20	-0.39	-0.00046	PASS
				30	-2.49	-0.00295	PASS
				40	-4.39	-0.00520	PASS
				50	-3.88	-0.00460	PASS

The End