

Report No.: SZEM180400306503 Page: 1 of 101

Appendix B

E-UTRA Band 2

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180400306503 Page: 2 of 101

CONTENT

1	EFFECTIVE (ISOTROPIC) RADIATED POWER OUTPUT DATA	3
2	PEAK-TO-AVERAGE RATIO	12
	2.1 For LTE	
	2.1.1 Test Band = LTE band2	
3	MODULATION CHARACTERISTICS	15
	3.1 For LTE	15
	3.1.1 Test Band = LTE band2	
4	BANDWIDTH	16
	4.1 For LTE	
	4.1.1 Test Band = LTE band2	
5	BAND EDGES COMPLIANCE	44
	5.1 For LTE	
	5.1.1 Test Band = LTE band2	
6	SPURIOUS EMISSION AT ANTENNA TERMINAL	80
	6.1 For LTE	80
	6.1.1 Test Band = LTE band2	
7	FIELD STRENGTH OF SPURIOUS RADIATION	98
	7.1 For LTE	
	7.1.1 Test Band = LTE band2	
8	FREQUENCY STABILITY	100
	8.1 FREQUENCY ERROR VS. VOLTAGE	100
	8.2 FREQUENCY ERROR VS. TEMPERATURE	

Report No.: SZEM180400306503 Page: 3 of 101

1 Effective (Isotropic) Radiated Power Output Data

Effect	Effective Isotropic Radiated Power of Transmitter (EIRP) for LTE BAND 2										
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict			
				RB1#0	22.45	25.45	33.00	PASS			
				RB1#2	22.57	25.57	33.00	PASS			
				RB1#5	22.47	25.47	33.00	PASS			
			LCH	RB3#0	22.21	25.21	33.00	PASS			
				RB3#2	22.20	25.2	33.00	PASS			
				RB3#3	22.23	25.23	33.00	PASS			
				RB6#0	21.30	24.3	33.00	PASS			
	LTE/TM1	1.4M	МСН	RB1#0	22.32	25.32	33.00	PASS			
				RB1#2	22.47	25.47	33.00	PASS			
				RB1#5	22.42	25.42	33.00	PASS			
BAND2				RB3#0	22.46	25.46	33.00	PASS			
				RB3#2	22.47	25.47	33.00	PASS			
				RB3#3	22.33	25.33	33.00	PASS			
				RB6#0	21.53	24.53	33.00	PASS			
				RB1#0	22.47	25.47	33.00	PASS			
				RB1#2	22.37	25.37	33.00	PASS			
				RB1#5	22.44	25.44	33.00	PASS			
			НСН	RB3#0	22.51	25.51	33.00	PASS			
				RB3#2	22.49	25.49	33.00	PASS			
			-	RB3#3	22.39	25.39	33.00	PASS			
				RB6#0	21.68	24.68	33.00	PASS			

Report No.: SZEM180400306503 Page: 4 of 101

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	21.56	24.56	33.00	PASS
				RB1#2	21.69	24.69	33.00	PASS
				RB1#5	21.46	24.46	33.00	PASS
			LCH	RB3#0	21.19	24.19	33.00	PASS
				RB3#2	21.18	24.18	33.00	PASS
				RB3#3	21.22	24.22	33.00	PASS
				RB6#0	20.42	23.42	33.00	PASS
	LTE/TM2	1.4M		RB1#0	21.17	24.17	33.00	PASS
			МСН	RB1#2	21.40	24.4	33.00	PASS
				RB1#5	21.38	24.38	33.00	PASS
BAND2				RB3#0	21.34	24.34	33.00	PASS
				RB3#2	21.33	24.33	33.00	PASS
				RB3#3	21.56	24.56	33.00	PASS
				RB6#0	20.39	23.39	33.00	PASS
				RB1#0	21.43	24.43	33.00	PASS
				RB1#2	21.63	24.63	33.00	PASS
				RB1#5	21.76	24.76	33.00	PASS
			НСН	RB3#0	21.52	24.52	33.00	PASS
				RB3#2	21.50	24.5	33.00	PASS
				RB3#3	21.54	24.54	33.00	PASS
				RB6#0	20.56	23.56	33.00	PASS

Report No.: SZEM180400306503 Page: 5 of 101

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	21.29	24.29	33.00	PASS
				RB1#7	22.57	25.57	33.00	PASS
				RB1#14	22.17	25.17	33.00	PASS
			LCH	RB8#0	22.21	25.21	33.00	PASS
				RB8#4	21.33	24.33	33.00	PASS
				RB8#7	21.32	24.32	33.00	PASS
				RB15#0	21.26	24.26	33.00	PASS
	LTE/TM1	ЗМ		RB1#0	21.49	24.49	33.00	PASS
			МСН	RB1#7	22.69	25.69	33.00	PASS
				RB1#14	22.45	25.45	33.00	PASS
BAND2				RB8#0	22.83	25.83	33.00	PASS
				RB8#4	21.53	24.53	33.00	PASS
				RB8#7	21.44	24.44	33.00	PASS
				RB15#0	21.55	24.55	33.00	PASS
				RB1#0	21.69	24.69	33.00	PASS
				RB1#7	22.48	25.48	33.00	PASS
				RB1#14	22.43	25.43	33.00	PASS
			НСН	RB8#0	22.49	25.49	33.00	PASS
				RB8#4	21.67	24.67	33.00	PASS
				RB8#7	21.56	24.56	33.00	PASS
				RB15#0	21.63	24.63	33.00	PASS

Report No.: SZEM180400306503 Page: 6 of 101

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	20.28	23.28	33.00	PASS
				RB1#7	21.63	24.63	33.00	PASS
				RB1#14	21.29	24.29	33.00	PASS
			LCH	RB8#0	21.18	24.18	33.00	PASS
				RB8#4	20.40	23.4	33.00	PASS
				RB8#7	20.40	23.4	33.00	PASS
				RB15#0	20.53	23.53	33.00	PASS
	LTE/TM2	ЗМ		RB1#0	20.61	23.61	33.00	PASS
			МСН	RB1#7	21.68	24.68	33.00	PASS
				RB1#14	21.53	24.53	33.00	PASS
BAND2				RB8#0	21.63	24.63	33.00	PASS
				RB8#4	20.61	23.61	33.00	PASS
				RB8#7	20.52	23.52	33.00	PASS
				RB15#0	20.74	23.74	33.00	PASS
				RB1#0	20.75	23.75	33.00	PASS
				RB1#7	21.65	24.65	33.00	PASS
				RB1#14	21.58	24.58	33.00	PASS
			НСН	RB8#0	21.54	24.54	33.00	PASS
				RB8#4	20.65	23.65	33.00	PASS
				RB8#7	20.76	23.76	33.00	PASS
				RB15#0	20.67	23.67	33.00	PASS

Report No.: SZEM180400306503 Page: 7 of 101

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	21.38	24.38	33.00	PASS
				RB1#13	21.38	24.38	33.00	PASS
				RB1#24	21.38	24.38	33.00	PASS
			LCH	RB12#0	22.44	25.44	33.00	PASS
				RB12#6	22.43	25.43	33.00	PASS
				RB12#13	22.37	25.37	33.00	PASS
	LTE/TM1			RB25#0	21.34	24.34	33.00	PASS
		5M		RB1#0	21.50	24.5	33.00	PASS
			MCH	RB1#13	21.53	24.53	33.00	PASS
				RB1#24	21.49	24.49	33.00	PASS
BAND2				RB12#0	22.38	25.38	33.00	PASS
				RB12#6	22.37	25.37	33.00	PASS
				RB12#13	22.54	25.54	33.00	PASS
				RB25#0	21.51	24.51	33.00	PASS
				RB1#0	21.73	24.73	33.00	PASS
				RB1#13	21.61	24.61	33.00	PASS
				RB1#24	21.63	24.63	33.00	PASS
			НСН	RB12#0	22.63	25.63	33.00	PASS
				RB12#6	22.63	25.63	33.00	PASS
				RB12#13	22.59	25.59	33.00	PASS
				RB25#0	21.57	24.57	33.00	PASS

Report No.: SZEM180400306503 Page: 8 of 101

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	20.52	23.52	33.00	PASS
				RB1#13	20.40	23.4	33.00	PASS
				RB1#24	20.44	23.44	33.00	PASS
			LCH	RB12#0	21.32	24.32	33.00	PASS
				RB12#6	21.69	24.69	33.00	PASS
				RB12#13	21.40	24.4	33.00	PASS
	LTE/TM2			RB25#0	20.31	23.31	33.00	PASS
		5M		RB1#0	20.40	23.4	33.00	PASS
				RB1#13	20.35	23.35	33.00	PASS
			MCH	RB1#24	20.40	23.4	33.00	PASS
BAND2				RB12#0	21.46	24.46	33.00	PASS
				RB12#6	21.58	24.58	33.00	PASS
				RB12#13	21.46	24.46	33.00	PASS
				RB25#0	20.52	23.52	33.00	PASS
				RB1#0	20.68	23.68	33.00	PASS
				RB1#13	20.67	23.67	33.00	PASS
				RB1#24	20.67	23.67	33.00	PASS
			НСН	RB12#0	21.09	24.09	33.00	PASS
				RB12#6	21.12	24.12	33.00	PASS
			-	RB12#13	21.38	24.38	33.00	PASS
				RB25#0	20.64	23.64	33.00	PASS

Report No.: SZEM180400306503 Page: 9 of 101

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	22.50	25.5	33.00	PASS
				RB1#25	22.67	25.67	33.00	PASS
				RB1#49	22.32	25.32	33.00	PASS
			LCH	RB25#0	21.54	24.54	33.00	PASS
				RB25#13	21.54	24.54	33.00	PASS
				RB25#25	21.40	24.4	33.00	PASS
				RB50#0	21.54	24.54	33.00	PASS
	LTE/TM1	10M		RB1#0	22.43	25.43	33.00	PASS
			МСН	RB1#25	22.94	25.94	33.00	PASS
				RB1#49	22.21	25.21	33.00	PASS
BAND2				RB25#0	21.54	24.54	33.00	PASS
				RB25#13	21.63	24.63	33.00	PASS
				RB25#25	21.55	24.55	33.00	PASS
				RB50#0	21.57	24.57	33.00	PASS
				RB1#0	22.65	25.65	33.00	PASS
				RB1#25	23.09	26.09	33.00	PASS
				RB1#49	22.50	25.5	33.00	PASS
			НСН	RB25#0	21.67	24.67	33.00	PASS
				RB25#13	21.66	24.66	33.00	PASS
				RB25#25	21.80	24.8	33.00	PASS
				RB50#0	21.77	24.77	33.00	PASS

Report No.: SZEM180400306503 Page: 10 of 101

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	22.28	25.28	33.00	PASS
				RB1#38	22.53	25.53	33.00	PASS
				RB1#74	22.36	25.36	33.00	PASS
			LCH	RB36#0	22.61	25.61	33.00	PASS
				RB36#18	22.54	25.54	33.00	PASS
	LTE/TM1			RB36#39	22.39	25.39	33.00	PASS
				RB75#0	21.67	24.67	33.00	PASS
		15M		RB1#0	22.57	25.57	33.00	PASS
				RB1#38	22.92	25.92	33.00	PASS
			МСН	RB1#74	22.43	25.43	33.00	PASS
BAND2				RB36#0	22.59	25.59	33.00	PASS
				RB36#18	22.87	25.87	33.00	PASS
				RB36#39	22.41	25.41	33.00	PASS
				RB75#0	21.69	24.69	33.00	PASS
				RB1#0	22.64	25.64	33.00	PASS
				RB1#38	22.86	25.86	33.00	PASS
				RB1#74	22.58	25.58	33.00	PASS
			HCH	RB36#0	22.72	25.72	33.00	PASS
				RB36#18	22.88	25.88	33.00	PASS
				RB36#39	22.62	25.62	33.00	PASS
				RB75#0	21.86	24.86	33.00	PASS

Report No.: SZEM180400306503 Page: 11 of 101

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	21.52	24.52	33.00	PASS
				RB1#50	22.35	25.35	33.00	PASS
				RB1#99	22.90	25.9	33.00	PASS
			LCH	RB50#0	22.30	25.3	33.00	PASS
				RB50#25	21.56	24.56	33.00	PASS
				RB50#50	21.56	24.56	33.00	PASS
				RB100#0	21.45	24.45	33.00	PASS
		20M		RB1#0	21.64	24.64	33.00	PASS
			МСН	RB1#50	22.68	25.68	33.00	PASS
				RB1#99	22.73	25.73	33.00	PASS
BAND2	LTE/TM1			RB50#0	22.33	25.33	33.00	PASS
				RB50#25	21.53	24.53	33.00	PASS
				RB50#50	21.52	24.52	33.00	PASS
				RB100#0	21.54	24.54	33.00	PASS
				RB1#0	21.90	24.9	33.00	PASS
				RB1#50	22.54	25.54	33.00	PASS
				RB1#99	23.09	26.09	33.00	PASS
			НСН	RB50#0	22.59	25.59	33.00	PASS
				RB50#25	21.78	24.78	33.00	PASS
				RB50#50	21.78	24.78	33.00	PASS
Noto:				RB100#0	21.76	24.76	33.00	PASS

Note:

a: For getting the EIRP (Efficient Isotropic Radiated Power) in substitution method, the following formula should be taken to calculate it,

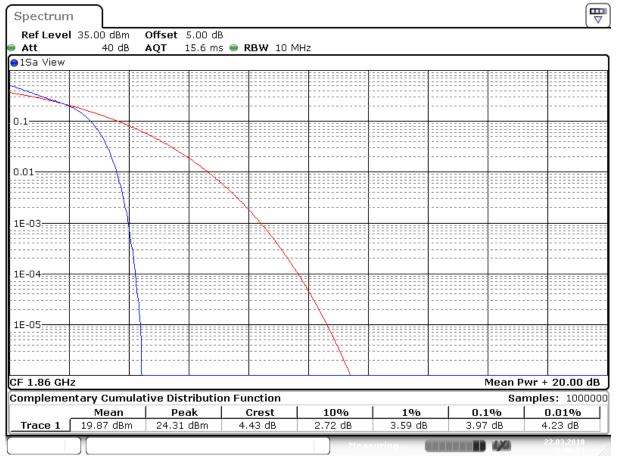
EIRP [dBm] = SGP [dBm] – Cable Loss [dB] + Gain [dBi] b: SGP=Signal Generator Level

Report No.: SZEM180400306503 Page: 12 of 101

2 Peak-to-Average Ratio

Part I - Test Results

Test Band	Test Mode	Test Channel	Measured[dB]	Limit [dB]	Verdict
	TM1/20M	LCH	3.97	13	PASS
Band 2		MCH	4.20	13	PASS
		НСН	4.06	13	PASS


Part II - Test Plots

2.1 For LTE

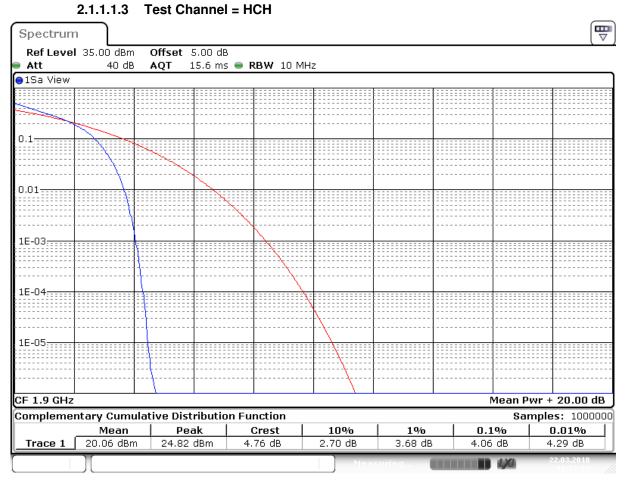
2.1.1 Test Band = LTE band2

2.1.1.1 Test Mode = LTE/TM1.Bandwidth=20MHz


2.1.1.1.1 Test Channel = LCH

Date: 22 MAR .2018 10:36:24

Report No.: SZEM180400306503 Page: 13 of 101



2.1.1.1.2 Test Channel = MCH

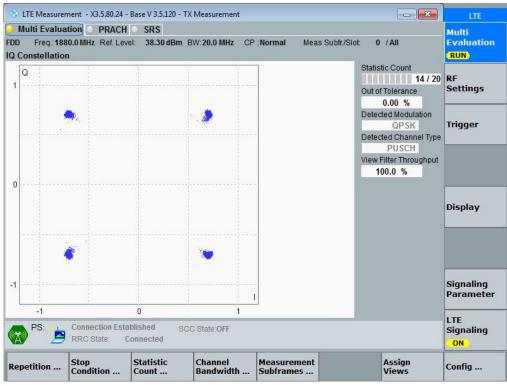
Date: 22 MAR 2018 10:36:44

Report No.: SZEM180400306503 Page: 14 of 101

Date: 22 MAR 2018 10:37:03

Report No.: SZEM180400306503 Page: 15 of 101

3 Modulation Characteristics


Part I - Test Plots

3.1 For LTE

3.1.1 Test Band = LTE band2

3.1.1.1 Test Mode = LTE /TM1 20MHz

3.1.1.1.1 Test Channel = MCH

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180400306503 Page: 16 of 101

4 Bandwidth

Part I - Test Results

Test Band	Test Mode	Test Channel	Occupied Bandwidth [MHz]	Emission Bandwidth [MHz]	Verdict
		LCH	1.091	1.227	PASS
	TM1/1.4MHz	MCH	1.091	1.242	PASS
		HCH	1.094	1.245	PASS
		LCH	1.091	1.248	PASS
	TM2/1.4MHz	MCH	1.088	1.245	PASS
		HCH	1.091	1.251	PASS
		LCH	2.697	2.892	PASS
	TM1/ 3MHz	MCH	2.697	2.856	PASS
		HCH	2.691	2.880	PASS
		LCH	2.697	2.886	PASS
	TM2/3MHz	MCH	2.697	2.850	PASS
		HCH	2.691	2.880	PASS
		LCH	4.476	4.700	PASS
Band 2	TM1/ 5MHz	MCH	4.476	4.730	PASS
		HCH	4.476	4.740	PASS
		LCH	4.466	4.780	PASS
	TM2/ 5MHz	MCH	4.486	4.730	PASS
		HCH	4.476	4.720	PASS
		LCH	8.931	9.320	PASS
	TM1/10MHz	MCH	8.931	9.300	PASS
		HCH	8.951	9.280	PASS
		LCH	13.457	14.280	PASS
	TM1/ 15MHz	MCH	13.457	14.280	PASS
		HCH	13.457	14.280	PASS
		LCH	17.862	18.800	PASS
	TM1/ 20MHz	MCH	17.942	19.421	PASS
		HCH	17.902	18.800	PASS

Report No.: SZEM180400306503 Page: 17 of 101

4.1 For LTE

4.1.1 Test Band = LTE band2

4.1.1.1 Test Mode = LTE/TM1 1.4MHz

4.1.1.1.1 Test Channel = LCH ₩ Spectrum Ref Level 25.10 dBm Offset 5.10 dB 👄 RBW 🛛 30 kHz 30 dB 💿 SWT 100 ms 👄 **VBW** 100 kHz Att Mode Auto Sweep ●1Av View M1[1] 11.58 dBm 20 dBm· 1.85084690 GHz M1 966.Bw M2[1] 1.090909091 MHz Т2 10 dBm--15.03 dBm 1.85008500 GHz 0 dBm--10 dBm-D1 -14.423 dBm -20 dBm--30 dBm No. Have -40 dBm· -50 dBm· -60 dBm· -70 dBm-CF 1.8507 GHz 1001 pts Span 3.0 MHz Marker Type | Ref | Trc X-value Y-value Function **Function Result** 11.58 dBm 1.8508469 GHz M1 1 Τ1 1 1.85015455 GHz 5.54 dBm Occ Bw 1.090909091 MHz 1.85124545 GHz 6.02 dBm Т2 1 M2 1 1.850085 GHz -15.03 dBm ΜЗ 1.851312 GHz -16.16 dBm 1

Date:21 MAR.2018 05:31:51

Report No.: SZEM180400306503 Page: 18 of 101

Spectr												
Ref Le Att	evel :	للے 25.10 dB 30 (m Offset dB e SWT		 RBW 30 kH VBW 100 kH 		Mode	Auto S	weep			
😑 1 A V Vie	вw											
20 dBm-							M	1[1]				11.95 dBm
20 00111							M1					3026670 GHz
10 dBm-				Thursday	met manager and any	Ande		C BW	MT2		1.090	909091 MHz
				₹			M:	2[1]	Ĩ.			-14.55 dBm
0 dBm—				1				1	- 11-		1.8.	7937900 GHz
				U					- 11 -			
-10 dBm		1 -14.05	1 dBm	7					¥13			
-20 dBm		1 1.00							<u> </u>			
			- And							Y.		
-30 dBm 	Butter	all proposition	where where the							- Hat wheel	way we we have the owner of the owner owne	Un the providence
-40 dBm												
-50 dBm												
-60 dBm												
-70 dBm												
CF 1.88	GHz				1001	pts					Sp	an 3.0 MHz
Marker												
Туре	Ref	Trc	X-value	,	Y-value		Func	tion		Fun	ction Resu	ılt
M1		1	1.88026		11.95 dBr							
T1		1	1.879454		5.65 dBr		0	cc Bw			1.090	909091 MHz
T2		1	1.880545		6.96 dBr	_						
M2 M3		1	1.8793 1.8806		-14.55 dBr -16.56 dBr	_						
			1.0000	ZI GHZ	-10,30 UBI							
		Л					Mea				1,70	21.03.2018

4.1.1.1.2 Test Channel = MCH

Date:21 MAR.2018 05:32:16

Report No.: SZEM180400306503 Page: 19 of 101

			S TESCON	unner	- 11011								
Spectru	m												(₩
Ref Lev	el 2				👄 RBW 30 k								
🗕 Att		30	dB 👄 SWT	100 ms	😑 VBW 100 k	Hz	Mode	Auto S	Sweep				
⊖1Av Viev	V												
20 dBm—							M	1[1]					1.88 dBm
							_	M					7950 GHz
10 dBm—	_			- Thursdown	approxide the according to the second	Reptil	In Addition Planter	H. B.K.	hm -		1.09		6094 MHz
				1			M	2[1]	٦				5.40 dBm 7900 GHz
0 dBm	+							1	- \i		1 1.3	9080	7900 GHZ
10 d0m	-10 dBm												
-10 ubiii—	D1 -14.116 dBm												
-20 dBm—													
	-20 dBm												
_30_dBm_	pti pob	Colo marter of	Werner							(Jord		well out	Marting works a hard
-40 dBm—	+												
-50 dBm—													
00 00													
-60 dBm—	_												
-70 dBm—	+												
CF 1.909	3 GI	Hz			1001	pt	5		I			Span	3.0 MHz
Marker													
Type R	lef	Trc	X-value		Y-value		Fund	tion		Fu	nction Re:	sult	
M1		1	1.90977		11.88 dB								
T1		1	1.908754		6.71 dB		0	cc Bw			1.09	93906	5094 MHz
T2		1	1.909848		7.92 dB								
M2 M3		1	1.9086		-15.40 dB -15.82 dB								
WI3	_	1	1.9099;	24 GHZ	-15.82 dB								
							Mea				1X1	21	103121018

4.1.1.1.3 Test Channel = HCH

Date:21 MAR.2018 05:32:38

4.1.1.2 Test Mode = LTE/TM2 1.4MHz

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180400306503 Page: 20 of 101

4.1.1.2.1 Test Channel = LCH ₽ Spectrum Ref Level 25.10 dBm Offset 5.10 dB 👄 RBW 🛛 30 kHz 30 dB 💿 SWT Att 100 ms 👄 **VBW** 100 kHz Mode Auto Sweep ●1Av View M1[1] 10.74 dBm 20 dBm-1.85077790 GHz M1 1.090909091 MHz 10 dBm-Т2 newskillellanden -15.89 dBm 1.85007000 GHz 0 dBm--10 dBm-D1 -15.263 dBm -20 dBmđИ -30 dBm J. M. Barry and the state of th -40 dBm--50 dBm· -60 dBm· -70 dBm-CF 1.8507 GHz 1001 pts Span 3.0 MHz Marker Type | Ref | Trc X-value Y-value Function Function Result 1.8507779 GHz 10.74 dBm M1 1 Τ1 1 1.85015754 GHz 4.52 dBm Occ Bw 1.090909091 MHz 1.85124845 GHz 5.68 dBm Τ2 1 M2 1 1.85007 GHz -15.89 dBm ΜЗ 1 1.851318 GHz -16.55 dBm 1 120

Date:21 MAR.2018 05:32:01

Report No.: SZEM180400306503 Page: 21 of 101

	4.1.1.2.2	Test Ch	annei =	мсн						_
Spectrum	ı]									
Ref Level	25.10 dBr	m Offset	5.10 dB 🧉	• RBW 30 kH	lz					
Att	30 d	B 👄 SWT		• VBW 100 kH	lz r	Mode Auto 9	Sweer)		
●1Av View										
20 dBm						M1[1]				11.05 dBm
20 00.00					M1				1.880	007490 GHz
10 dBm			T 1	and the second particulation		Occ Bw	w 72		1.0879	012088 MHz
			Annon we	and the weather and the second states of the second		M2[1]	WW Y			-17.04 dBm
0 dBm						<u> </u>			1.879	937600 GHz
-10 dBm		Ma	/					43		
	D1 -14.954	4 dBm 🚽 🚽	/					۳		
-20 dBm		/						<u>u</u>		
		s and a second sec						M.		
-30 dBm	dament and dates of	White wat the state						mound	all all mildles the and	Mulhnapagna
	0 M00 M00								0.0.0.0.0000.000	a comparate all the
-40 dBm										
-50 dBm										
50 JD										
-60 dBm										
70 -10										
-70 dBm—										
CF 1.88 GH	lz			1001	pts				Spa	an 3.0 MHz
Marker										
Type Ret	f Trc	X-value		Y-value		Function		Fun	ction Resul	t
M1	1	1.880074	49 GHz	11.05 dBr	n					
T1	1	1.8794575	54 GHz	5.74 dBr	n	Occ Bw			1.0879	12088 MHz
T2	1	1.8805454	45 GHz	5.59 dBr	n					
M2	1	1.87937	76 GHz	-17.04 dBr	n					
M3	1	1.88062	21 GHz	-15.16 dBr	n					
						Measuring			1.00	21.03.2018
									- 200	

4.1.1.2.2 Test Channel = MCH

Date: 21 MAR.2018 05:32:25

Report No.: SZEM180400306503 Page: 22 of 101

	-	+. . .2		esiun	anner:											_
Spect	rum	J														[₩
	evel	25.10			5.10 dB	_		-								
🔵 Att		30)dB 😑	SWT	100 ms	e vbw	/ 100 kH	Z	Mode	Auto S	Sweep)				
😑 1AV Vi	iew															
20 dBm									M	1[1]					11.0	5 dBm
20 UDIII							M1							1.90	9180	10 GHz
10 dBm					T1	(Thursda Mathath	an the state	d ba had		2[1]	њТ2			1.090		91 MHz
					Port	o orde a single	المنتخر الم	prop. or	M	2[1]	Ϋ́Υ.					7 dBm
0 dBm-											<u>۱</u>			1.90	86700	DO GHZ
					1						- 4 I					
-10 dBm				M2	/						-	<u>/</u> 3				
		01 -14.	950 dBn	n — — — — "								ũ.				
-20 dBr												- Ungla				
₊ _₽ 30,d₿₥		و ما الحالية	Junhammen	which proved								Ulma	way the	Hurmitmantes	1.1	
MAR BAR	Contraction of	10-201 - 201 W												1.00000000	of the party of th	and lines pay
-40 dBm																
-40 UBII	'															
-50 dBm	ן														_	
00 0.00	.															
-60 dBrr	י—⊢															
-70 dBr	ι															
CF 1.9	<u>193 (</u>	3Hz					1001	nts						Sn	an 3.0	1 MHz
Marker							1001	pts							<u>un o.</u>	5
	Ref	Trc		X-value	. 1	ν.	value	-	Func	lon	1	F	unati	ion Resu	1+	1
Type M1	Rei	1		<u>7-value</u> 1.909180			.1.05 dBn		Func	lion		F	uncu	ion kesu	п.	
T1		1		1.909180 .908754!			6.14 dBn	_	0	cc Bw				1 000	90909:	1 MH7
T2		1		.9098454			4.96 dBn	_		55 6 %				1.090	55565.	
M2		1			57 GHz		.5.17 dBn	_								
M3		1		1.90992			.5.71 dBn	_								
_		7)						1.9/1	21.03.2	018
L																

4.1.1.2.3 Test Channel = HCH

Date:21 MAR.2018 05:32:48

4.1.1.3 Test Mode = LTE/TM1 3MHz

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180400306503 Page: 23 of 101

4.1.1.3.1 Test Channel = LCH ₩ Spectrum Ref Level 25.10 dBm Offset 5.10 dB 👄 RBW 50 kHz 30 dB 💿 SWT Att 100 ms 👄 **VBW** 200 kHz Mode Auto Sweep ●1Av View M1[1] 9.31 dBm 20 dBm-1.85234520 GHz Occ B 2.697302697 MHz 10 dBm-J^{T2} Alexandra Hould House at math war and a start With any many many port of the -20.02 dBm 1.85004800 GHz 0 dBm--10 dBm-D1 -16.691 dBm M -20 dBm· -30 dBmto potration and the diam' they Herden where the -40 dBm--50 dBm· -60 dBm· -70 dBm-CF 1.8515 GHz 1001 pts Span 6.0 MHz Marker Type | Ref | Trc X-value Y-value Function Function Result 1.8523452 GHz 9.31 dBm M1 1 Τ1 1 1.85015135 GHz 4.35 dBm Occ Bw 2.697302697 MHz 1.85284865 GHz 4.71 dBm Τ2 1 M2 1 1.850048 GHz -20.02 dBm ΜЗ 1 1.85294 GHz -16.83 dBm ----

Date:21 MAR.2018 05:47:05

Report No.: SZEM180400306503 Page: 24 of 101

				anner -						_				
Spectru	ım													
Ref Lev	zel 2	25.10 di	Bm Offset	5.10 dB	🔵 RBW 50 kHz	2								
🔵 Att		30	dB 👄 SWT	100 ms	👄 VBW 200 kHz	: Me	ode Auto S	weep						
😑 1Av Vie	W													
20 dBm—							M1[1]			9.48 dBm				
20 00111							M1			47950 GHz				
10 dBm—	_						Occ Bw	Т2		02697 MHz				
			South South	مرسور المديد	where and the second of the second	analiapenas	will a fill and	Marrie werten		16.69 dBm				
0 dBm—			+ +					- i (1.878	56600 GHz				
-10 dBm-														
M3														
-20 dBm-	-20 dBm													
	-20 dBm													
-30 dBm-			111-2-50 ⁰⁰					"L Heres	ultăba construction de la					
-30 dBm-	Jan Mary	and and a start	when we						Manuman	and and and and and have				
-40 dBm-														
-50 dBm-														
-30 ubm-														
-60 dBm-	_													
-70 dBm-														
CF 1.88	GHz				1001 p	ots		I	Spa	n 6.0 MHz				
Marker														
Type I	Ref	Trc	X-value	, I	Y-value	F	unction	Fun	ction Result					
M1		1	1.88047	95 GHz	9.48 dBm									
T1		1	1.878651		5.49 dBm	_	Occ Bw		2.69730	02697 MHz				
T2		1	1.881348		4.22 dBm	_								
M2 M2		1	1.8785		-16.69 dBm	_								
МЗ		1	1.8814	22 GHZ	-17.53 dBm									
		Л							100	11.03.2018				

4.1.1.3.2 Test Channel = MCH

Date:21 MAR.2018 05:47:27

Report No.: SZEM180400306503 Page: 25 of 101

		+. 1. 1.3	J TESU CI	anner -	- 11011							
Spect	rum)										
Ref L	evel	25.10 c		5.10 dB	🔵 RBW – 50 kH	Ηz						
🔵 Att		30	dB 🔵 SWT	100 ms	🔵 VBW 200 kH	Ηz	Mode	Auto S	weep			
⊖1Av V	iew											
20 dBm							M:	l[1]				8.67 dBm
20 0011											1.908	13440 GHz
10 dBm	·——				M1		0	C BW	т2			08691 MHz
			Jun	umuthat	aller prace all all we want that	www.	he may the	efildurha	Armal Milling			20.61 dBm
0 dBm-			+ +						k		1.907	'06000 GHz
-10 dBn	n-+-								M13			
-20 dBn		01 -17.3	133 dBm 🕊									
-20 ubii	"		J.						հ			
-30 dBn	n	naktina	way and a start and						`	Windowys	wallowly managerity	and the state of the second
WHAT WANTER	Ahran	1 (()) - () - () - () - () - ()										T
-40 dBn	n——											
-50 dBn	n											
co do-	_											
-60 dBn	n——————											
-70 dBn	n											
CF 1.9		GHz			1001	pts					Spa	n 6.0 MHz
Marker												
Туре	Ref		X-value		Y-value	-	Funct	ion		Func	tion Result	
M1		1	1.90813		8.67 dB			_				
T1		1	1.907157		4.61 dB		00	C BW			2,6913	08691 MHz
T2 M2		1	1.909848	06 GHZ	4.20 dB -20.61 dB							
M3		1		94 GHz	-17.76 dB							
	1	7	2.505		25 db				-		-4.34%	21.02.2019
L		Л					Mea				4,44	05:47:50

4.1.1.3.3 Test Channel = HCH

Date:21 MAR.2018 05:47:50

Report No.: SZEM180400306503 Page: 26 of 101

4.1.1.4.1 Test Channel = LCH ₽ Spectrum Ref Level 25.10 dBm Offset 5.10 dB 👄 RBW 50 kHz 30 dB 💿 SWT Att 100 ms 👄 **VBW** 200 kHz Mode Auto Sweep ●1Av View M1[1] 8.14 dBm 20 dBm-1.85037310 GHz 11 2.697302697 MHz Occ Bw 10 dBm-Т2 ununubre HAB [ab] Mush from the Munumum -19.29 dBm memorial 1.85005400 GHz 0 dBm--10 dBm-M2 ŃЗ D1 -17.864 dBm--20 dBm--30 dBm· when purely the mannama Hernermullur ليماله -40 dBm--50 dBm--60 dBm--70 dBm-CF 1.8515 GHz 1001 pts Span 6.0 MHz Marker Type | Ref | Trc X-value Y-value Function Function Result 1.8503731 GHz 8.14 dBm M1 1 Τ1 1 1.85015135 GHz 4.64 dBm Occ Bw 2.697302697 MHz 1.85284865 GHz 5.00 dBm Τ2 1 M2 1 1.850054 GHz -19.29 dBm ΜЗ 1 1.85294 GHz -19.48 dBm LXI.

Date:21 MAR.2018 05:47:15

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms

4.1.1.4 Test Mode = LTE/TM2 3MHz

Report No.: SZEM180400306503 Page: 27 of 101

	•	+. . .4	1.2 10310									_	
Spect	rum												
Ref L	evel	25.10	dBm Offse	et 5.10 dB	🔵 RBW 50 kH	Ιz							
🗕 Att		30) dB 💿 SWT	100 ms	🔵 VBW 200 kH	Ιz	Mode	Auto S	weep				
😑 1AV V	iew												
20 dBm							M	l[1]				9.46 dBm	
20 ubili							N/1				1.880	46750 GHz	
10 dBm							T	c Bw	_			02697 MHz	
				innormaly	the marshes and the second of	han-lake	Inchallone	3 H Jane	multhur	₽		17.60 dBm	
0 dBm—									1	1	1.878	57800 GHz	
10 dbm													
-10 dBm	n		мź							Mз			
00 d0m	-20 dBm												
-20 UBII			P							1			
-30 dBr	n		/							<u> </u>			
Hunner	man	vertilitions	mandersonal							and the second	williamentation	here werden when	
-40 dBm													
-50 dBm	n-+												
-60 dBm													
-00 UBII													
-70 dBm	n										_		
CF 1.8	8 GH	z			1001	pts					Spa	n 6.0 MHz	
Marker	-								1				
Туре	Ref		X-val		Y-value		Funct	ion		Fur	iction Result		
M1 T1		1		4675 GHz 5135 GHz	9.46 dBr 3.51 dBr			c Bw			2 6072	02697 MHz	
T2		1		4865 GHZ	2.98 dBr		00	.C BW			2.0973	02097 MHZ	
M2		1		3578 GHz	-17.60 dBr								
M3		1		1428 GHz	-18.37 dBr								
		7				<u>, i</u>			-	1111	A 4444	21.03.2018	

4.1.1.4.2 Test Channel = MCH

Date:21 MAR.2018 05:47:37

Report No.: SZEM180400306503 Page: 28 of 101

Spectr	um												
Ref Le	vel	25.10	dBm	Offset	5.10 dB (RBW 50 k	Hz						
🔵 Att		3	0 dB	e swt	100 ms (> VBW 200 k	Hz	Mode	Auto S	weep			
😑 1 Av Vie	вw												
20 dBm-								M	1[1]				8.76 dBm
20 ubiii-						6.4.1						1.90	0813440 GHz
10 dBm-						M1	—		cc Bw		т9	2.691	308691 MHz
				your.	Auranna	here was have been and	hour	www.www.ww	<u>e[4</u>]vu	numuh	8		-17.55 dBm
0 dBm—							+		I	1	1	1.90	1706600 GHz
-10 dBm	-			мź			+				ŇЗ		
-20 dBm	C	01 -17.	241 c	IBm 📝 🚽									
20 0.0111											h.		
-30 dBm	office of the		and the second	JE YAN			–				How the	adler the property of the prop	malley degrade why why why why why why
mymeran													
-40 dBm	-						+						
-50 dBm													
-50 UBIII													
-60 dBm							<u> </u>						
-70 dBm							+						
CF 1.90	85 0	GHz				100	1 pts	5				Sp	an 6.0 MHz
Marker													
	Ref	Trc		X-value	•	Y-value	1	Func	tion		Fun	ction Resu	lt
M1		1		1.90813		8.76 di	3m						
T1		1		1.907157	34 GHz	4.23 di	3m	0	cc Bw			2.691	308691 MHz
T2		1		1.909848		4.19 di							
M2		1		1.9070		-17.55 di							
M3		1		1.9099	46 GHz	-17.35 di	3m						
								Mea	suring.			4/4	21.03.2018

4.1.1.4.3 Test Channel = HCH

Date:21 MAR.2018 05:47:59

4.1.1.5 Test Mode = LTE/TM1 5MHz

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180400306503 Page: 29 of 101

4.1.1.5.1 Test Channel = LCH ₩ Spectrum Ref Level 25.10 dBm Offset 5.10 dB 👄 RBW 50 kHz 30 dB 💿 SWT Att 100 ms 👄 **VBW** 200 kHz Mode Auto Sweep ●1Av View M1[1] 7.47 dBm 20 dBm-1.85273000 GHz M1 Occ Bw 4.475524476 MHz 10 dBmт 2 -19.27 dBm round fliplan alas Mum n Ne 1.85015000 GHz 0 dBm--10 dBm-M M₃ D1 -18.525 dBm--20 dBm--30 dBmand and a second of Mary more m -low when you MANOLIA -40 dBm--50 dBm--60 dBm--70 dBm-CF 1.8525 GHz 1001 pts Span 10.0 MHz Marker Type | Ref | Trc X-value Y-value Function Function Result 1.85273 GHz 7.47 dBm M1 1 Τ1 1 1.8502622 GHz 4.03 dBm Occ Bw 4.475524476 MHz 1.8547378 GHz 4.20 dBm Τ2 1 M2 1 1.85015 GHz -19.27 dBm ΜЗ 1 1.85485 GHz -19.73 dBm ----

Date:21 MAR.2018 06:02:04

Report No.: SZEM180400306503 Page: 30 of 101

Spect		<u> </u>												
Ref L		ل 25.10		5.10 dB	-	-					(🗸			
e Att		31	D dB 🔵 SWT	100 ms	🔵 VBW 200 kH	Z	Mode /	Auto S	weep					
<mark>0</mark> 1Av V	iew													
20 dBm							M1	[1]			7.66 dBm			
											.06900 GHz			
10 dBm								d Bw	Т2		24476 MHz			
			Year	margetenothe	where where where	Adam	mound	Hhu	munition		19.07 dBm			
0 dBm–							ı			1.877	62000 GHz			
	-10 dBm													
-10 dBn	-10 dBm M3													
- <u>20. d</u> D e	-20 dBm D1 -18.339 dBm 7													
-20 UBI	-20 dBm D1 -18.339 dBm													
-30 dBn	n								\					
™40°dBh			any we have						Wind	the work when we have a	advant in a set			
™40 dBn	handle far	quu.									- 1			
-50 dBn	n-+-													
-60 dBn	n-+													
-70 dBn														
-70 UBI														
CF 1.8	8 GH:	z			1001	pts				Span	10.0 MHz			
Marker														
Туре	Ref	Trc	X-value	e	Y-value		Functi	ion	Fu	nction Result	t l			
M1		1		69 GHz	7.66 dBr									
T1		1	1.87776		4.33 dBr		Oc	сBw		4.4755	24476 MHz			
T2		1	1.88223		5.11 dBr									
M2		1		62 GHz	-19.07 dBr	_								
МЗ		1	1.882	35 GHz	-18.80 dBr	n								
][Meas	uring.		1,00	21.03.2018			

4.1.1.5.2 Test Channel = MCH

Date: 21 MAR .2018 06:02:41

Report No.: SZEM180400306503 Page: 31 of 101

Spect	um												
	evel	25.10 0			5.10 dB								
e Att		30)dB 😑	SWT	100 ms	VBW	200 kHz	Mode	Auto S	Sweep			
😑 1AV Vi	ew												
20 dBm-								M	1[1]				7.27 dBm
20 00.00													327900 GHz
10 dBm-									cc Bw		т2		24476 MHz
				Jul	havenant	honor	wanter	mar when the second	2 ful low	worknesser	Ý		-19.12 dBm
0 dBm—												1.903	5 13000 GHz
											1		
-10 dBm	-			M2							M3		
-20 dBm		1 -18 3	727 dBr										
-20 ubiii		.1 10.		5							Y		
-30 dBm				J							Wing	and the second second	
-30 dBm ԱՎԻՊԿԿԿ	men	www.dr.al.	Vertis Haston	w									ingland million and here
-40 dBm	_												
-50 dBm	-												
60 d0													
-60 dBm													
-70 dBm													
CF 1.90	075 0	GHz					1001 p	its				Spar	10.0 MHz
Marker													
	Ref	Trc		X-value			alue	Func	tion		Fur	nction Result	t
M1		1		1.9082			7.27 dBm						
T1		1		1.90526			4.35 dBm		cc Bw			4.4755	24476 MHz
T2 M2		1		1.90973	78 GHZ 13 GHZ		3.85 dBm 9.12 dBm						
M2 M3		1			13 GHZ 87 GHZ		9.12 UBM 8.79 dBm						
				1,509		-10	5.79 ubm						24.02.2040
L		Л						Mea				1,20	2110512018

4.1.1.5.3 Test Channel = HCH

Date:21 MAR.2018 06:03:17

4.1.1.6 Test Mode = LTE/TM2 5MHz

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180400306503 Page: 32 of 101

4.1.1.6.1 Test Channel = LCH ₽ Spectrum Ref Level 25.10 dBm Offset 5.10 dB 👄 RBW 50 kHz 30 dB 💿 SWT Att 100 ms 👄 **VBW** 200 kHz Mode Auto Sweep ●1Av View 5.87 dBm M1[1] 20 dBm-1.85308900 GHz 4.465534466 MHz _Occ Bw 10 dBm-Τ2 martinent 12 1 -22.70 dBm Q.a. and more have Amaria manualitica AMARIA MARKS 1.85012000 GHz 0 dBm--10 dBmиз Mi 20 dBm· D1 -20.128 dBm -30 dBm-لطغب an hundren to be here of where we have pranting with محمد والمعادر والمس -40 dBm--50 dBm--60 dBm--70 dBm-CF 1.8525 GHz 1001 pts Span 10.0 MHz Marker Type | Ref | Trc X-value Y-value Function Function Result 1.853089 GHz 5.87 dBm M1 1 Τ1 1 1.8502722 GHz 4.23 dBm Occ Bw 4.465534466 MHz 1.8547378 GHz 3.21 dBm Τ2 1 M2 1 1.85012 GHz -22.70 dBm ΜЗ 1 1.8549 GHz -21.62 dBm 1 120

Date: 21 MAR 2018 06:02:21

Report No.: SZEM180400306503 Page: 33 of 101

Spect	rum											
	evel	25.10 d		5.10 dB								
🗕 Att		30	dB 👄 SWT	100 ms	🔵 VBW 200 ki	Hz	Mode	Auto S	weep			
<mark>⊝</mark> 1Av V	iew											
20 dBm							M	1[1]				7.12 dBm
20 42												936100 GHz
10 dBm			т1		M1			cc Bw		Г2		14486 MHz
				when the rest	mentermenter	tompou	al walk with	211 Mary	Mushim	7		-19.12 dBm
0 dBm-								I	1		1.877	764000 GHz
1.0.10										1		
-10 dBn			Mź									
-20 dBn		01 -18.8								N13		
20 001	"									N		
-30 dBn			- <i>1</i>							<u> </u>		
. I Jaian	August	lowender	when the seal of the							Ser	monuterment	pour man have
-40 dBn	n <u></u>											
-50 dBn	n											
-60 dBn												
-00 061												
-70 dBn	n											
CF 1.8	8 GH	z			1001	. pts					span	10.0 MHz
Marker												
Туре	Ref		X-value		Y-value		Func	tion		Fu	nction Result	t
M1		1	1.8793		7.12 dB			0			4 4055	14406 MILLE
T1 T2		1	1.87776		3.07 dB 4.30 dB		0	cc Bw			4,4855	14486 MHz
M2		1		78 GH2 64 GH2	-19.12 dB							
M3		1		37 GHz	-20.45 dB							
(<u> </u>				<u> </u>					B 4.975	21.03.2018
							Mea				174	

4.1.1.6.2 Test Channel = MCH

Date:21 MAR.2018 06:02:57

Report No.: SZEM180400306503 Page: 34 of 101

	-	+. 1. 1.0									_		
Spect	rum												
Ref L	evel	25.10 d		5.10 dB (■ RBW 50 kH	łz							
🔵 Att		30	dB 🔵 SWT	100 ms (🍯 VBW 200 kH	łz	Mode	Auto S	weep				
😑 1AV V	'iew												
20 dBm							M1	l[1]			6.71 dBm		
20 UBII										1.90	1.90971800 GHz		
10 dBm) — —						0	c Bw	M2	4.475	5524476 MHz		
			Vin	a my company water and the source of the					-19.68 dBm				
0 dBm-										1.90	0514000 GHz		
-10 dBr	n-+-												
			M2						N13				
-20 dBr		JI -19.2	94 dBm										
-30 dBr			and the second sec						No.				
-30 UBI	moun	and all and	ren word war							the manufall when all	49-all margan and how		
-40 dBr													
-50 dBr	n												
-60 dBr	n-+-												
-70 dBr	n												
CF 1.9	075 0	GHz			1001	pts				Spa	an 10.0 MHz		
Marker													
Туре	Ref	Trc	X-value	e	Y-value		Funct	ion	F	unction Resu	ılt		
M1		1	1.909718 GHz		6.71 dBm								
T1		1	1.90526		4.61 dBm		Occ Bw			4.475524476 MHz			
T2		1											
	M2 1			14 GHz	-19.68 dBm								
МЗ		1	1.909	86 GHz	-20.07 dBi	n							
							Meas	suring.		III 4/4	21.03.2018		

4.1.1.6.3 Test Channel = HCH

Date:21 MAR.2018 06:03:34

Report No.: SZEM180400306503 Page: 35 of 101

4.1.1.7.1 Test Channel = LCH ₩ Spectrum Ref Level 25.00 dBm Offset 5.00 dB 👄 RBW 100 kHz 30 dB 💿 SWT Att 100 ms 👄 **VBW** 300 kHz Mode Auto Sweep ●1Av View M1[1] 5.56 dBm 20 dBm-1.8538810 GHz 8.931068931 MHz Occ Bw 10 dBm-Τ1 M2[1] т2 -22.76 dBm and Turney where the <u>۷</u>. 1.8503400 GHz 0 dBm--10 dBm-M M 20 dBm· D1 -20.440 dBm -30 dBm· where the second where the an margine alder dert Alter March March -40 dBm--50 dBm· -60 dBm· -70 dBm-CF 1.855 GHz 1001 pts Span 20.0 MHz Marker Type | Ref | Trc X-value Y-value Function Function Result 1.853881 GHz 5.56 dBm M1 1 Τ1 1 1.8505245 GHz 2.52 dBm Occ Bw 8.931068931 MHz 1.8594555 GHz 2.69 dBm Τ2 1 M2 1 1.85034 GHz -22.76 dBm ΜЗ 1 1.85966 GHz -22.27 dBm **III 420**

4.1.1.7 Test Mode = LTE/TM1 10MHz

Date: 22 MAR .2018 10:06:13

Report No.: SZEM180400306503 Page: 36 of 101

		4.1.1.7.4	2 Test Ch	annei =							_
Specti	rum										
Ref Le	evel	25.00 dE	Bm Offset	5.00 dB	● RBW 100 kH	z					
🔵 Att		30	dB 画 SWT	100 ms	● VBW 300 kH	z N	Mode Auto S	Sweep			
😑 1AV Vi	ew										
20 dBm-							M1[1]				5.89 dBm
20 00111											'92210 GHz
10 dBm-			T1		M1		OCC BW	т	·		68931 MHz
			Jan Van	بسليسبيهم	up man man	month	mullituder	hurrounder	7		20.40 dBm
0 dBm—			1				I	1)	1.87	53600 GHz
10 40									1		
-10 dBm			M2								
-20 dBm		01 -20.11							M3		
									h		
-30 dBm	ι 	John Marine	unpersonal						Weinstree	tyman ar hal he have a	بالملتق بمرافله والمحمد
content for had	-ezt ^{en} tu	Palataration									an real rational for
-40 dBm											
-50 dBm											
-JU UBII											
-60 dBm	∩										
-70 dBm	ו—ו										
CF 1.88	BGH	z			1001	pts		I		Span	20.0 MHz
Marker						<u> </u>				· · ·	
Type	Ref	Trc	X-value	,	Y-value	1	Function	1	Fund	ction Result	: 1
M1		1	1.879221 GHz		5.89 dBm						
T1		1	1.8755445 GHz		3.21 dBm		Occ Bw		8.931068931 MHz		
T2		1	1.8844755 GHz		3.09 dBm						
M2		1	1.87536 GHz		-20.40 dBm						
M3		1	1.884	66 GHz	-21.73 dBr	n					
][]					Measuring.			1,70	22.03.2018

4.1.1.7.2 Test Channel = MCH

Date: 22 MAR .2018 10:06:23

Report No.: SZEM180400306503 Page: 37 of 101

Spect	rum														ſ	V
Ref L	evel	25.00	dBm	Offset	5.00 dB	● RB\	V 100 kł	Ηz								_
🗕 Att		3	O dB 🏾	∎ SWT	100 ms	e VB'	₩ 300 kł	Ηz	Mode	Auto S	weep					
😑 1AV Vi	iew															
20 dBm									M	1[1]					6.22 dB	
20 000															11040 G	
10 dBm	\rightarrow			^	11					CC BW	т	2	1		48951 M	
				Y~~	heartypitor	have have a state of the second	monum	mou	polision with	Hitan	hundertown	Ŕ			20.22 dB	
0 dBm—										I	1	1	1	1.90	103600 GI	HZ
-10 dBm												1				
-10 UBII	' _			Me												
-20 dBn	┉┿	D1 -19.	784 di									MЗ				
				×								Y.				
-30 dBm	ו	1	July alat	Justifican		_						. Marken Ma	mun	MANNUME.	monteren	
where the second	d runds	NO-UNIPADO													and murder	nga
-40 dBm	די															
-50 dBm																
00 0.0.0	·															
-60 dBm	ן—ר															
-70 dBm	רי															
CF 1.9	05 ĠI	Hz	I			I	1001	pts	;		I			Span	20.0 MH	z
Marker																_
Type	Ref	Trc		X-value	.	Y-	value		Func	tion		Fu	nction	Result		
M1		1		1.9011	D4 GHz		6.22 dB	m								
T1		1		1.90052			3.99 dB		0	cc Bw				8.9510	48951 MH	z
T2		1		1.90947			2.86 dB									
M2		1			36 GHz		20.22 dB									
M3				1.909	54 GHz		21.37 dB	ILI								
[П							Mea				1 1,70		22.03.2018	

4.1.1.7.3 Test Channel = HCH

Date:22 MAR.2018 10:06:32

Report No.: SZEM180400306503 Page: 38 of 101

4.1.1.8.1 Test Channel = LCH ₩ Spectrum Ref Level 25.00 dBm Offset 5.00 dB 👄 RBW 300 kHz 30 dB 💿 SWT Att 100 ms 👄 **VBW** 1 MHz Mode Auto Sweep ●1Av View M1[1] 7.37 dBm 20 dBm· 1.8589990 GHz 13.456543457 MHz M1 _Occ Bw 10 dBmт2 Mar 42 4 -20.43 dBm 1.8503600 GHz 0 dBm--10 dBm-М D1 -18.629 dBm= -20 dBm-۹UD -30 **d**Bm— HIIII MARTIN MARTINE -40 dBm· -50 dBm· -60 dBm--70 dBm-CF 1.8575 GHz 1001 pts Span 30.0 MHz Marker Type | Ref | Trc X-value Y-value Function Function Result 1.858999 GHz 7.37 dBm M1 1 Τ1 1 1.8507567 GHz 3.96 dBm Occ Bw 13.456543457 MHz 1.8642133 GHz 3.15 dBm Τ2 1 M2 1 1.85036 GHz -20.43 dBm ΜЗ 1 1.86464 GHz -19.97 dBm ----

4.1.1.8 Test Mode = LTE/TM1 15MHz

Date:22 MAR.2018 10:16:35

Report No.: SZEM180400306503 Page: 39 of 101

		+. . .0	z rest un	anner							_
Spect	rum	J									
	evel	25.00 d			👄 RBW 300 kH:						
🔵 Att		30	dB 🔵 SWT	100 ms	VBW 1 MH:	z M	ode Auto S	weep			
⊖1Av V	iew										
20 dBm							_M1[1]				7.35 dBm
20 0011											41060 GHz
10 dBm			<u>1</u>					-			43457 MHz
			Yun		ware and a second	un anti-		Munun 2	÷.		20.88 dBm
0 dBm-							— .	. I		1.87	28600 GHz
									l		
-10 dBn	n								{		
		10.6						P	3		
-20 dBn	n — T	JI -18.0	45 dBm								
00.40		سحدد يسمد	- market						Count	manun	
₩ <mark>₽0_dBn</mark>	Addine										and and a second a s
-40 dBn											
-+0 001	"										
-50 dBn	∩										
00 401	.										
-60 dBn	n										
-70 dBn	n										
CF 1.8	8 CH	7			1001	nts				Snan	30.0 MHz
Marker		2			1001					opan	00.0 1/11/2
		1 7 1	¥	. 1	v	1 -			F		1
Type M1	Ref	Trc 1	X-value	9 06 GHz	<u>Y-value</u> 7.35 dBm	_	unction		Fund	ction Result	
T1		1	1.8841		4.50 dBm		Occ Bw			12 4565	43457 MHz
T2		1	1.88674		3.48 dBm	_	OLC BW			13.4303	+3+37 MHZ
M2		1		86 GHz	-20.88 dBm	_					
M3		1		14 GHz	-19.64 dBm	_					
(<u> </u>		<u>) (</u>				· ·		(1) (1)		4.342	2 03 2018
										444	

4.1.1.8.2 Test Channel = MCH

Date: 22 MAR.2018 10:16:45

Report No.: SZEM180400306503 Page: 40 of 101

	4	+.1.1.0.3	rest Ch	anner:							_
Spect	rum										
	evel	25.00 dBr			🔵 RBW 300 kH:						
🔵 Att		30 d	B 🔵 SWT	100 ms	🔵 VBW 1 MH:	z Mod	e Auto S	Sweep			
<mark>⊝</mark> 1Av V	iew										
20 dBm							M1[1]				7.54 dBm
20 ubiii											79450 GHz
10 dBm			T1	M1			Occ Bw	та	,		43457 MHz
			7	monto			₩ 2 [4],	mulund	-		19.84 dBm
0 dBm-			+							1.89	53600 GHz
-10 dBn	∩—+		1								
00 -00-		01 -18.458	I M2 3 dBm					1	vi3		
ullilli	بالملاديم	Mun mar	mann						ling		
00 GB										Walnut.	manne
-40 dBn	n										
-50 dBr	n-+-										
-60 dBr	∩—†										
-70 dBr	.										
-70 aBh											
CF 1.9	025 0	GHz			1001	pts				Span	30.0 MHz
Marker											
Туре	Ref	Trc	X-value	.	Y-value	Fur	iction		Func	tion Result	:
M1		1	1.8979	45 GHz	7.54 dBm	1					
T1		1	1.89575		4.75 dBm		Occ Bw			13,4565	43457 MHz
T2		1	1.90921		4.01 dBm						
M2		1		36 GHz	-19.84 dBm						
МЗ		1	1.909	64 GHz	-20.18 dBm	ו ו					
						M	easuring.			1/0	22.03.2018
<u> </u>											

4.1.1.8.3 Test Channel = HCH

Date:22 MAR.2018 10:16:54

Report No.: SZEM180400306503 Page: 41 of 101

4.1.1.9.1 Test Channel = LCH ₩ Spectrum Ref Level 25.00 dBm Offset 5.00 dB 👄 RBW 300 kHz 30 dB 💿 SWT Att 100 ms 👄 **VBW** 1 MHz Mode Auto Sweep ●1Av View M1[1] 6.43 dBm 20 dBm-1.8588410 GHz 17.862137862 MHz Occ Bw 10 dBm-Jur M2[1] Т2 -20.71 dBm 1.8506000 GHz 0 dBm--10 dBmмt D1 -19.573 dBm -20 dBm--30 dBm· -40 dBm--50 dBm -60 dBm· -70 dBm-CF 1.86 GHz 1001 pts Span 40.0 MHz Marker Type | Ref | Trc X-value Y-value Function Function Result 1.858841 GHz 6.43 dBm M1 1 Τ1 1 1.851049 GHz 2.88 dBm Occ Bw 17.862137862 MHz 1.8689111 GHz 2.08 dBm Τ2 1 M2 1 1.8506 GHz -20.71 dBm ΜЗ 1 1.8694 GHz -22.11 dBm 1 120

Date: 22 MAR 2018 10:28:36

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms

4.1.1.9 Test Mode = LTE/TM1 20MHz

Report No.: SZEM180400306503 Page: 42 of 101

Spectrum	ι								
	35.00 dBm			RBW 300 k					· · · ·
Att	50 dE	s 👄 SMT	100 ms 👄	VBW 1 M	Hz Mode	Auto Swee	p		
●1Pk View				- F					
20 d0					D	1[1]			-2.85 dB
30 dBm					_	_			.3810 MHz
						CC BW		17.9420	57942 MHz
20 dBm——					IVI	1[1]		1.97	-8.09 dBm 03300 GHz
	D1 16.510	dBm T1 𝕎	Mmonth	howard	month	thornoun	ant the	1.07	00000 0112
10 dBm—									
0 dBm——									
o ubili		м							
		I 🔶					1 4.		
-10 dBm—	──D2 -9.	490 dBm====					4		
-20 dBm	, Li	L J M					h/white	Muran Muran M	Marcalah sara
-20 dBm-	pole-Hippopele-de-U-Man	Kann.						other flotterts.	monoralistantes
-30 dBm—									
-40 dBm									
-50 dBm									
-60 dBm—									
CF 1.88 GF	łz	1		1001	. pts			l Span	40.0 MHz
)(asuring		-	13.04.2018
						isaring		-	08:25:54

4.1.1.9.2 Test Channel = MCH

Date: 13.APR.2018 08:25:55

Report No.: SZEM180400306503 Page: 43 of 101

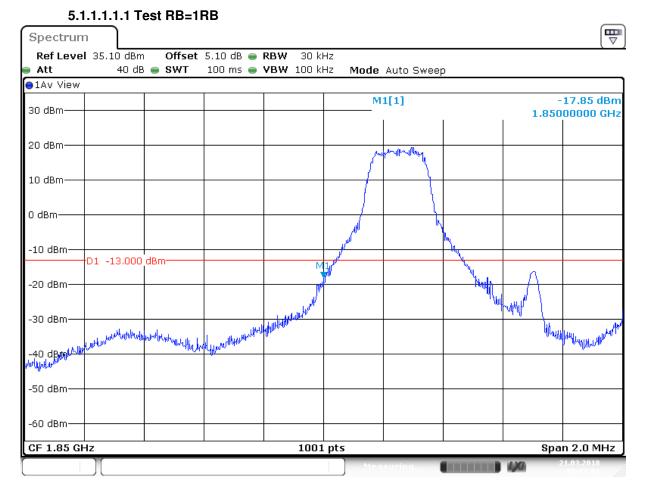
	4	+. . .9.	s rest cr	anner =						_
Spect	rum									
	evel	25.00 d			RBW 300 kH					
Att		30	dB 👄 SWT	100 ms	🔵 VBW 1 MH	IZ	Mode Auto S	weep		
<mark> </mark> 1Av V	iew									
20 dBm							M3[1]			-22.05 dBm
										94000 GHz
10 dBm				M1			Occ Bw	Т2	17.9020	97902 MHz
			ý~				M1[1]	mint		6.72 dBm
0 dBm-								}	1.89	938460 GHz
-10 dBn	n									
		1 -10 2	81_dBm					Mз		
-20 UBI		/1 -19.2								
-30 dBr	n		- man							
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								~~	mannen	
-40 dBn	n——									
-50 dBr	n——									
-60 dBr	n—†-									
70.10										
-70 dBr	n———									
CF 1.9	GHz				1001	pts			Spar	40.0 MHz
Marker										
Type	Ref	Trc	X-value	e	Y-value		Function	Fi	unction Result	t
M1		1	1.8938	46 GHz	6.72 dBi	m				
T1		1	1.8910	09 GHz	3.65 dBi	m	Occ Bw		17.9020	97902 MHz
T2		1	1.90891	11 GHz	3.63 dBi					
M2		1		06 GHz	-19.97 dBi					
M3		1	1.90	94 GHz	-22.05 dBi	m				
							Measuring.		134	22.03.2018

#### 4.1.1.9.3 Test Channel = HCH

Date: 22 MAR .2018 10:29:47



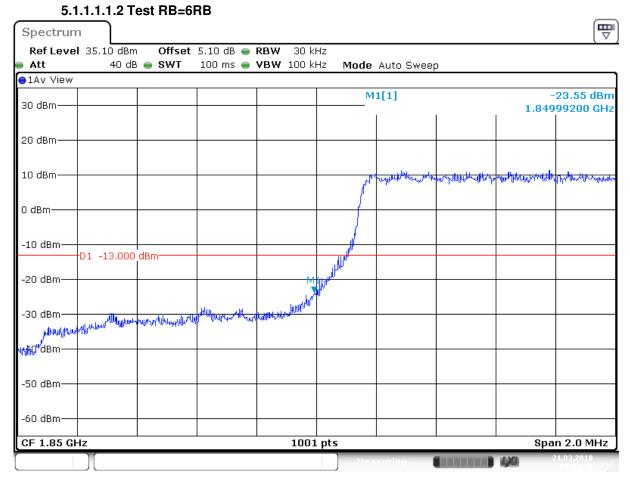
Report No.: SZEM180400306503 Page: 44 of 101


### 5 Band Edges Compliance

#### 5.1 For LTE

#### 5.1.1 Test Band = LTE band2

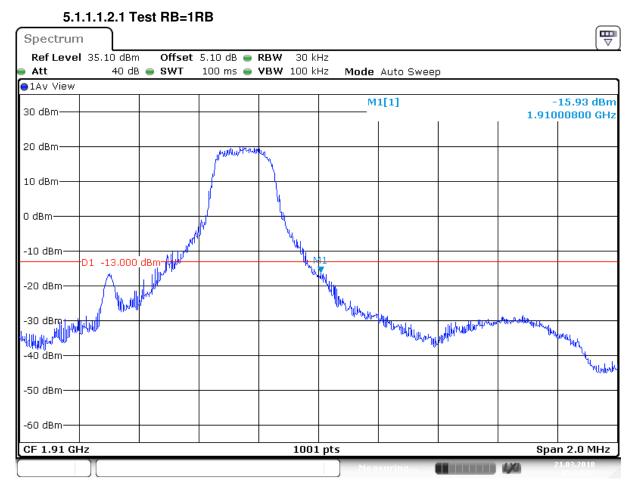
#### 5.1.1.1 Test Mode = LTE/TM1 1.4MHz


5.1.1.1.1 Test Channel = LCH



Date:21 MAR.2018 05:33:02



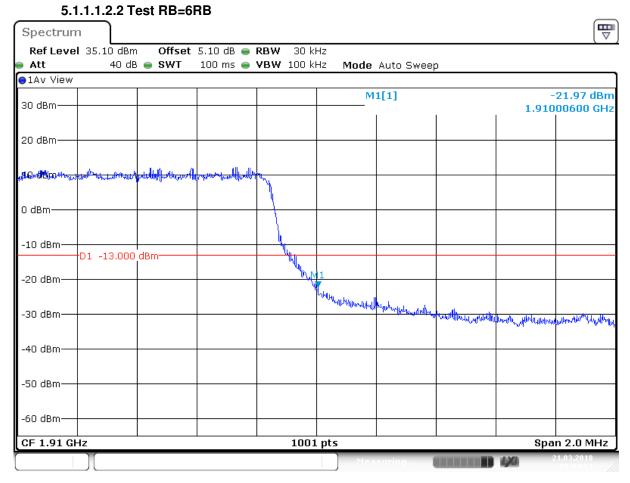

Report No.: SZEM180400306503 Page: 45 of 101



Date:21 MAR.2018 05:33:40



Report No.: SZEM180400306503 Page: 46 of 101




#### 5.1.1.1.2 Test Channel = HCH

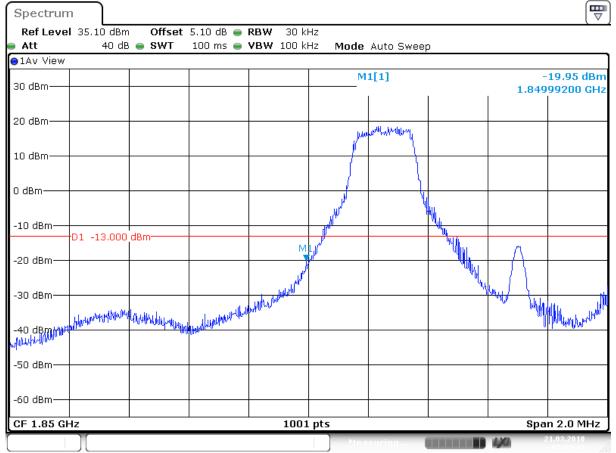
Date:21 MAR.2018 05:34:32



Report No.: SZEM180400306503 Page: 47 of 101



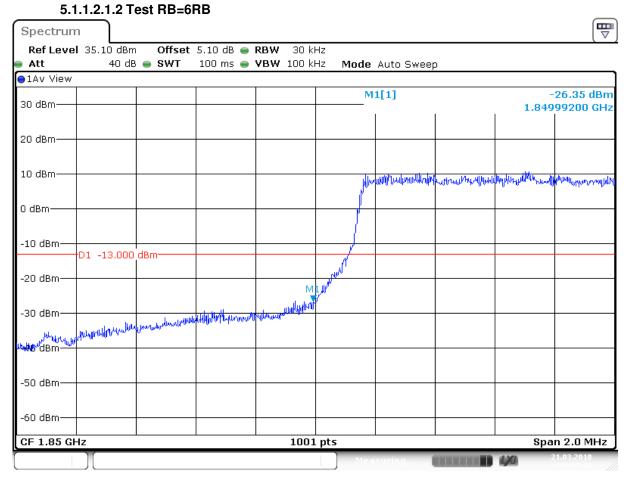
Date:21 MAR.2018 05:34:51




Report No.: SZEM180400306503 Page: 48 of 101

### 5.1.1.2 Test Mode = LTE/TM2 1.4MHz

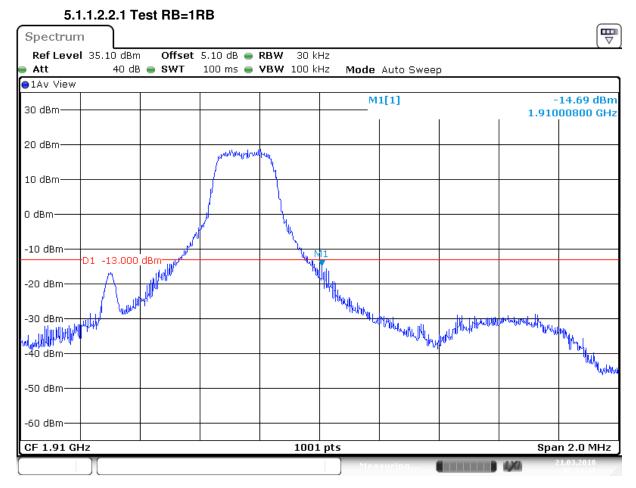
#### 5.1.1.2.1 Test Channel = LCH


#### 5.1.1.2.1.1 Test RB=1RB



Date:21 MAR.2018 05:33:11



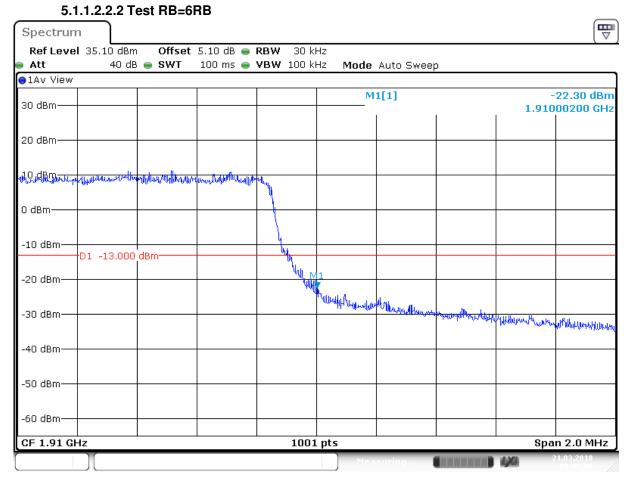

Report No.: SZEM180400306503 Page: 49 of 101



Date:21 MAR.2018 05:33:49



Report No.: SZEM180400306503 Page: 50 of 101




#### 5.1.1.2.2 Test Channel = HCH

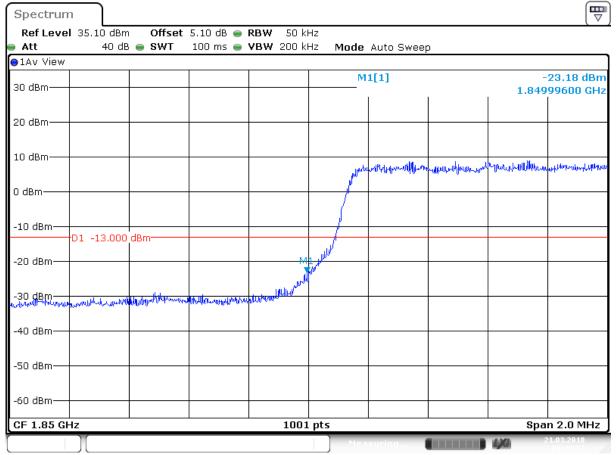
Date:21 MAR.2018 05:34:41



Report No.: SZEM180400306503 Page: 51 of 101



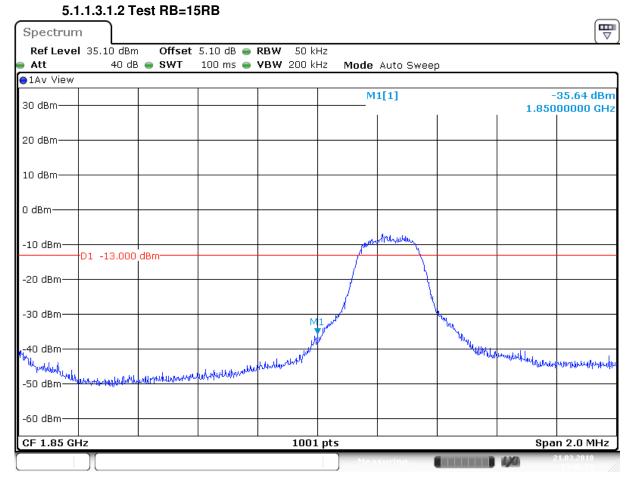
Date:21 MAR.2018 05:35:00




Report No.: SZEM180400306503 Page: 52 of 101

#### 5.1.1.3 Test Mode = LTE/TM1 3MHz

#### 5.1.1.3.1 Test Channel = LCH


#### 5.1.1.3.1.1 Test RB=1RB



Date: 21 MAR.2018 05:48:51



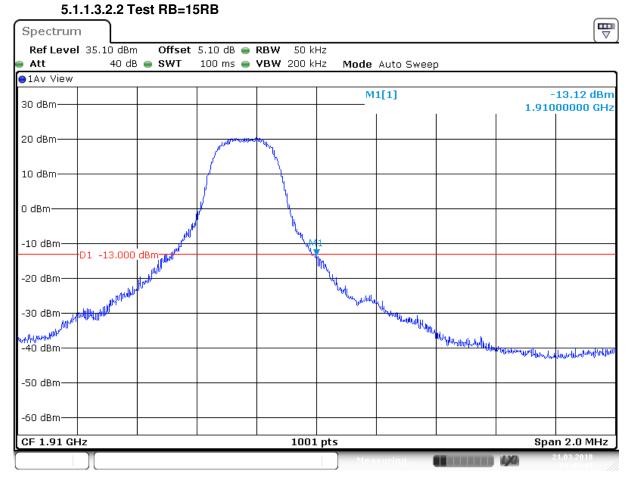
Report No.: SZEM180400306503 Page: 53 of 101



Date:21 MAR.2018 05:48:32



Report No.: SZEM180400306503 Page: 54 of 101


Spectrum									[₩
Ref Level	35.10 dBm	Offset	5.10 dB 🔵	<b>RBW</b> 50 k	Hz				
Att 🛛	40 dB	SWT	100 ms 👄	<b>VBW</b> 200 k	Hz Mode	Auto Sweep	)		
●1Av View									
30 dBm					M	1[1]	1		39.30 dBm 99000 GHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm	D1 -13.000	dBm							
-20 dBm			John Merrow	muy .					
-30 dBm			/						
-40 dBm աներնդուդներն	المحترية والمحالية	للمعطله والمسلم	N ^{Dr}	Willy Ward	ul., .				M M Maria
-50 dBm	naholiwoo (Las-Dodho	under de la la			Universal approximation	themanulturburing	Nermonalithe	thornanamana	methypaption
-60 dBm									
CF 1.91 GH	z		1	100:	L pts	1	I	Spa	n 2.0 MHz

#### 5.1.1.3.2 Test Channel = HCH

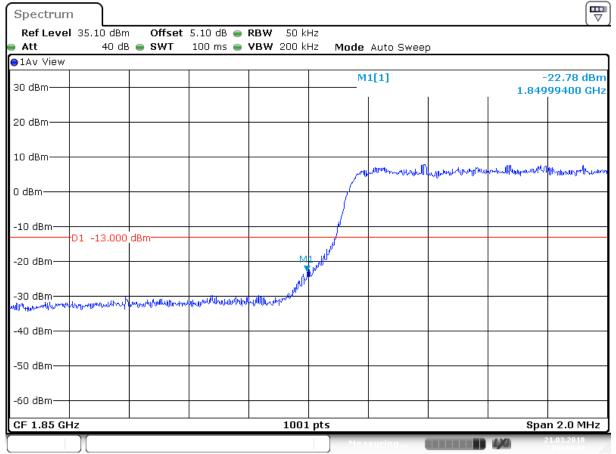
Date:21 MAR.2018 05:49:23



Report No.: SZEM180400306503 Page: 55 of 101



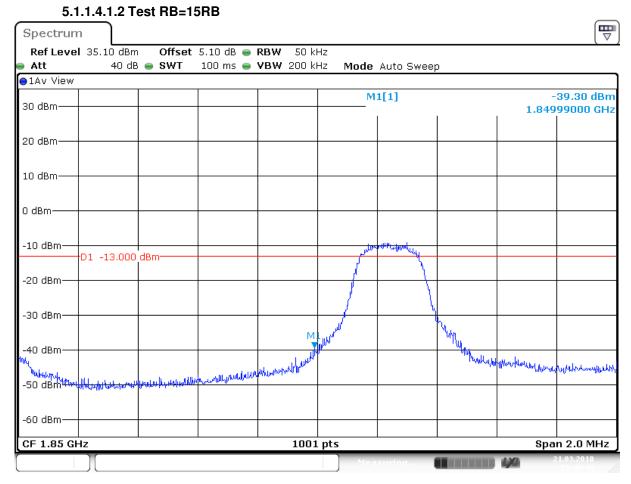
Date: 21 MAR.2018 05:49:42




Report No.: SZEM180400306503 Page: 56 of 101

#### 5.1.1.4 Test Mode = LTE/TM2 3MHz

#### 5.1.1.4.1 Test Channel = LCH


#### 5.1.1.4.1.1 Test RB=1RB



Date:21 MAR.2018 05:49:00



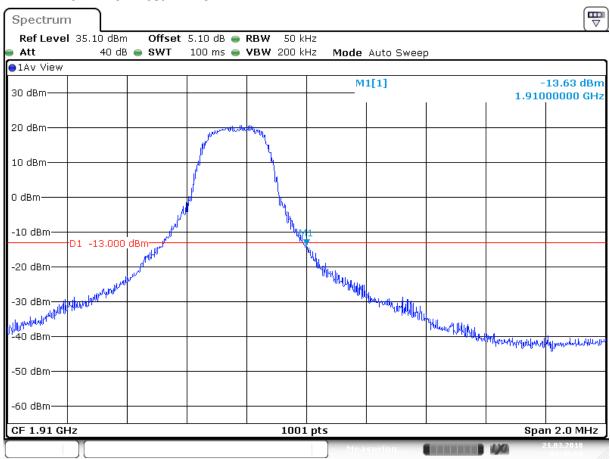
Report No.: SZEM180400306503 Page: 57 of 101



Date:21 MAR.2018 05:48:41



Report No.: SZEM180400306503 Page: 58 of 101


5.1	1.1.4.2.1 T	est RB=1	RB						_
Spectrun	n ]								[₩
Ref Leve	I 35.10 dBm	Offset	5.10 dB 👄	<b>RBW</b> 50 k	Hz				
Att 🗧	40 dB	SWT 😑	100 ms 👄	<b>VBW</b> 200 k	Hz Mode	Auto Sweep	2		
●1Av View									
00 d0					M	1[1]			39.40 dBm
30 dBm						1	I	1.910	99400 GHz 
20 dBm									
20 UBIII									
10 dBm									
10 UBIII									
0 dBm									
-10 dBm									
-10 uBiii—	D1 -13.000	dBm							
-20 dBm—									
-20 ubiii-									
-30 dBm									
-30 UBIII									
-40 dBm			Maphiothicau	I N.					M
-40 ԱՅՈՈ աՒննեստանյաններին	hyputhelight	الاستحداد والمسالية	w	antia and					washingth
	n - Rada - ann an ta	D. M. adol book	]	. numality	alg little where a delow for	herry and the second above	poly domentation	Horrisonthalite	multon
-50 dBm—								IN ALOF MORE	
co In									
-60 dBm									
CF 1.91 G	Hz	·		1001	l pts	•		Spa	n 2.0 MHz
					Mea	suring		1,20	1.03.2018

5.1.1.4.2 Test Channel = HCH

Date:21 MAR.2018 05:49:33

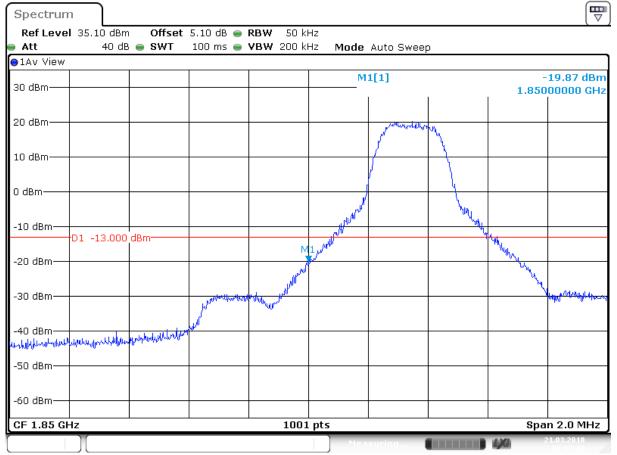


Report No.: SZEM180400306503 Page: 59 of 101



5.1.1.4.3 Test RB=15RB

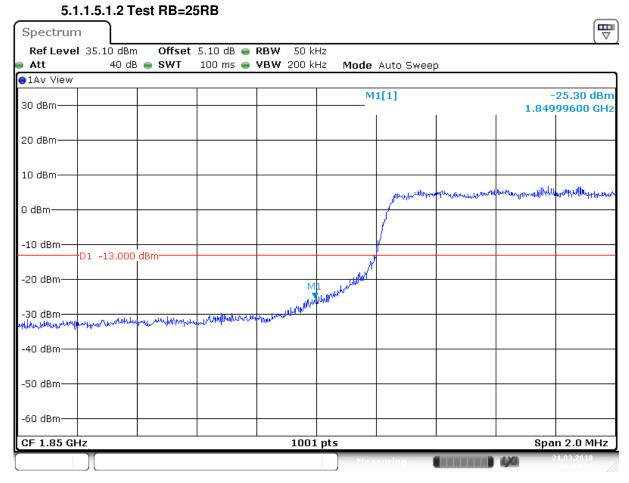
Date:21 MAR.2018 05:49:51




Report No.: SZEM180400306503 Page: 60 of 101

#### 5.1.1.5 Test Mode = LTE/TM1 5MHz

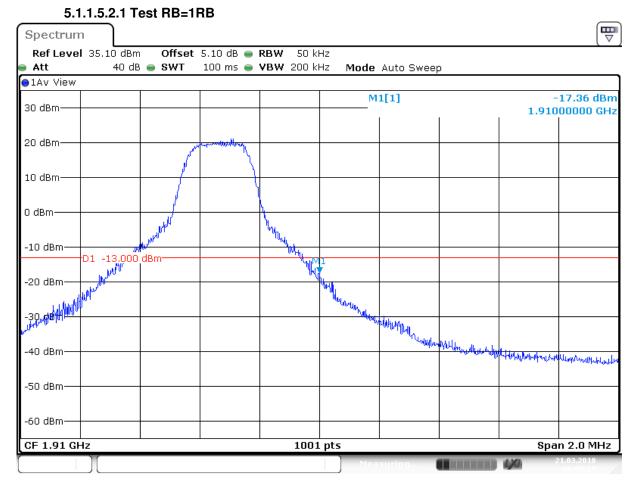
#### 5.1.1.5.1 Test Channel = LCH


#### 5.1.1.5.1.1 Test RB=1RB



Date:21 MAR.2018 06:03:49



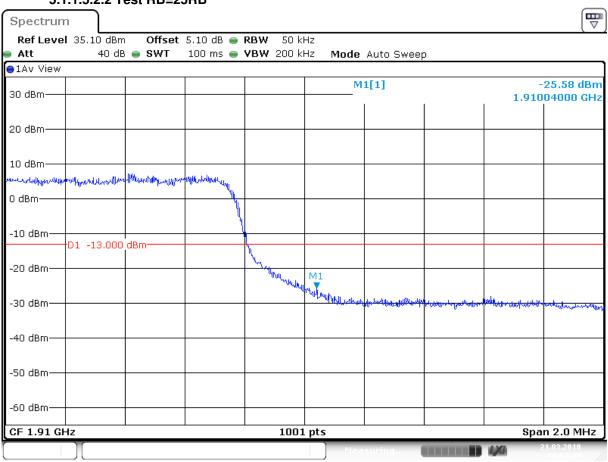

Report No.: SZEM180400306503 Page: 61 of 101



Date:21 MAR.2018 06:04:27



Report No.: SZEM180400306503 Page: 62 of 101




#### 5.1.1.5.2 Test Channel = HCH

Date:21 MAR.2018 06:05:19



Report No.: SZEM180400306503 Page: 63 of 101



5.1.1.5.2.2 Test RB=25RB

Date: 21 MAR 2018 06:05:39



Report No.: SZEM180400306503 Page: 64 of 101

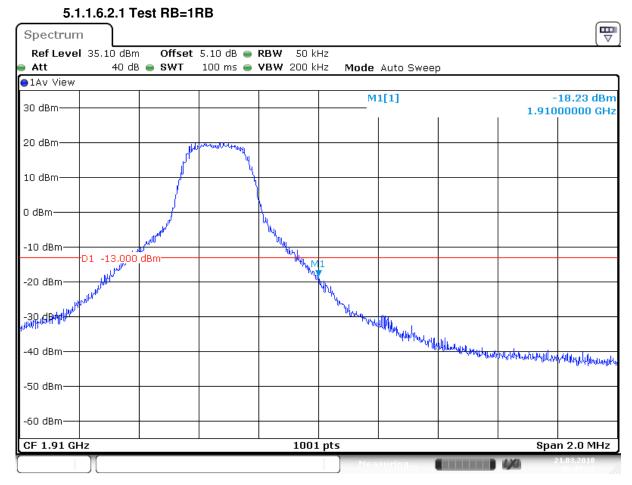
#### 5.1.1.6 Test Mode = LTE/TM2 5MHz 5.1.1.6.1 Test Channel = LCH

#### 5.1.1.6.1.1 Test RB=1RB

Spectrum	ı )								
Ref Level	35.10 dBm	offset	: 5.10 dB 👄	<b>RBW</b> 50 k	Hz				
Att 🛛	40 dB	8 👄 SWT	100 ms 👄	<b>VBW</b> 200 k	Hz Mode	Auto Sweep	o		
∋1Av View									
30 dBm					M	1[1]	I		21.99 dBr 00000 GH 
20 dBm						ulowninter	ur _{lh}		
10 dBm						ľ	<u>}</u>		
0 dBm									
-10 dBm	D1 -13.000	dBm			ath Charles		hunn the	1.	
-20 dBm				M	1 All and a start			Mary Mary	
-30 dBm			In Manual And	Provident all all of the second				"Whythe	Helle Helle Herensen
-40 dBm ոսեղերություն	แนะการประเทศไป	Lluk keeloofuululu	HUNDER						
-50 dBm	order of the state of the second s	a mana dan series							
-60 dBm									
CF 1.85 GH	lz	1		1001	l pts	1	1	Spa	n 2.0 MHz
	][]				Mea	suring		1,70	21.03.2018

Date:21 MAR.2018 06:03:59



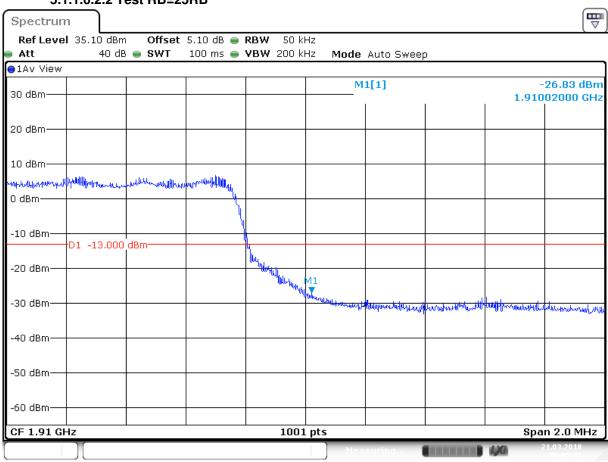

Report No.: SZEM180400306503 Page: 65 of 101

5.	1.1.6.1.2 T	est RB=	25RB						
Spectru	m								l □
Ref Leve	el 35.10 dBm	o Offse	t 5.10 dB 👄	<b>RBW</b> 50 k	Hz				
🖷 Att	40 dE	8 👄 SWT	100 ms 👄	<b>VBW</b> 200 k	Hz Mode	Auto Swee	р		
⊖1Av View	,								
00 JD					M	1[1]			-26.97 dBm
30 dBm—						I	1	1.849	99600 GHz 
20 dBm—				-					
10 dBm									
						مناطب ومحد		Jurmanulary	and Mourants Bh
0 dBm						hannorth		free a construction	he with 01 in a 01 lich 4 i
						1			
-10 dBm—						/			
	D1 -13.000	1			ll.				
-20 dBm—									
				M	1 AND				
-30 dBm—	ha A.A		Astraction	what produced to and the	1				
nuppertraction	and water strand	le mandre de de	would a dec. a						
-40 dBm—									
-50 dBm—									
-60 dBm—									
CF 1.85 G	 .U.a			1001	nte				n 2.0 MHz
UCF 1.03 G				1001	. prs			əpə	
					Mea	suring			06:04:37

Date: 21 MAR .2018 06:04:37



Report No.: SZEM180400306503 Page: 66 of 101




#### 5.1.1.6.2 Test Channel = HCH

Date:21 MAR.2018 06:05:29



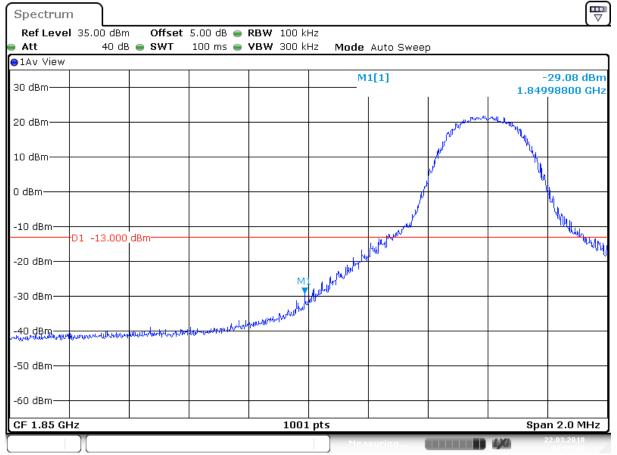
Report No.: SZEM180400306503 Page: 67 of 101



5.1.1.6.2.2 Test RB=25RB

Date:21 MAR.2018 06:05:48

"This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, In socument is issued by the Company subject to the content Conditions for Electronic Documents, available on request or accessible at <u>http://www.sqs.com/en/lems-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sqs.com/en/lems-and-Conditions/aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sqs.com/en/lems-and-Conditions/aspx</u> and, for electronic format documents, subject to Terms and Conditions accessible at the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unalwful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.




Report No.: SZEM180400306503 Page: 68 of 101

### 5.1.1.7 Test Mode = LTE/TM1 10MHz

#### 5.1.1.7.1 Test Channel = LCH

#### 5.1.1.7.1.1 Test RB=1RB



Date: 22 MAR.2018 10:06:47



Report No.: SZEM180400306503 Page: 69 of 101

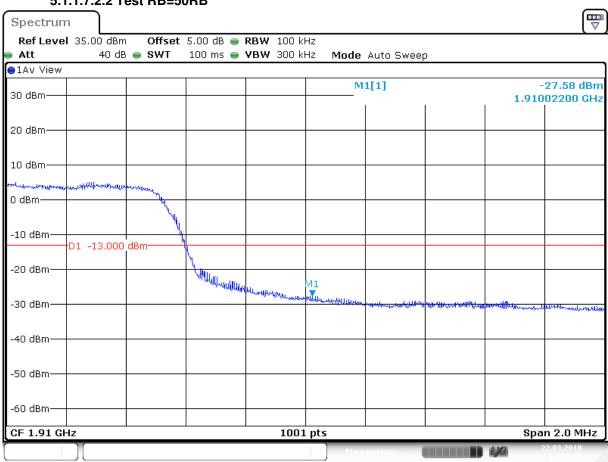
	st RB=50RB				Ē
Spectrum					₩
Ref Level 35.00 dBm	Offset 5.00 dB 🖷 R				
● Att 40 dB ●	🖲 SWT 100 ms 👄 V	BW 300 kHz Mode	Auto Sweep		
●1Av View					
30 dBm		M	1[1]		6.77 dBm 6200 GHz
20 dBm					
10 dBm					
				Mary work and when the strength and the other	
0 dBm				Mun	
			^م ليل		
-10 dBm					
D1 -13.000 dB	Sm				
-20 dBm			. willing		
		MII	Willoumby		
-20 dBm -30 dBm 	work Harler get other war where the	way water all all and a second			
-40 dBm					
-50 dBm					
-60 dBm					
CF 1.85 GHz		1001 pts	I	Span	2.0 MHz
1 T		Mea	isuring 💷	100 IA	03.2018

5.1.1.7.1.2 Test RB=50RB

Date: 22 MAR .2018 10:07:06



Report No.: SZEM180400306503 Page: 70 of 101




#### 5.1.1.7.2 Test Channel = HCH

Date:22 MAR.2018 10:07:39



Report No.: SZEM180400306503 Page: 71 of 101



Date: 22 MAR.2018 10:07:48

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx">http://www.sgs.com/en/Terms-en-Document.aspx</a>. Attention is for a who the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is enpotudeed except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

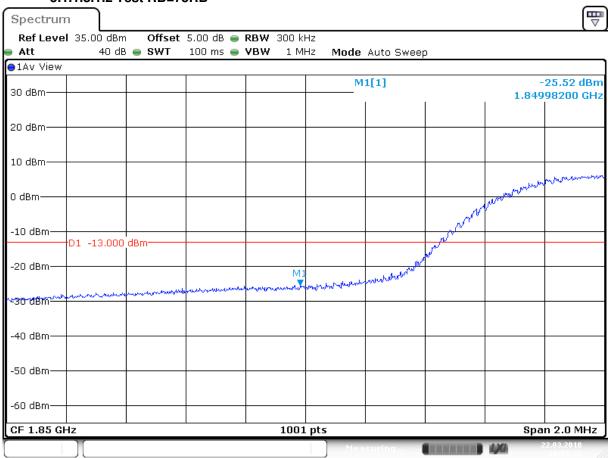
5.1.1.7.2.2 Test RB=50RB



Report No.: SZEM180400306503 Page: 72 of 101

### 5.1.1.8 Test Mode = LTE/TM1 15MHz

#### 5.1.1.8.1 Test Channel = LCH

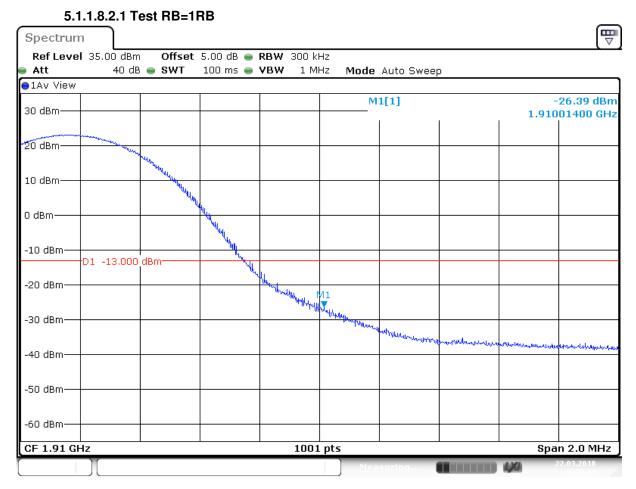

#### 5.1.1.8.1.1 Test RB=1RB



Date: 22 MAR .2018 10:19:16



Report No.: SZEM180400306503 Page: 73 of 101




5.1.1.8.1.2 Test RB=75RB

Date:22 MAR.2018 10:19:35



Report No.: SZEM180400306503 Page: 74 of 101




#### 5.1.1.8.2 Test Channel = HCH

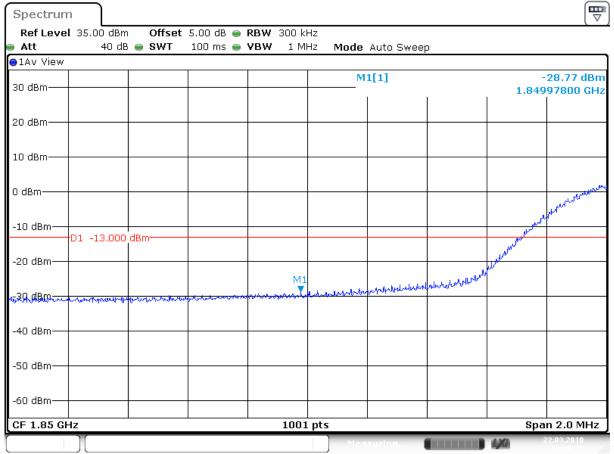
Date: 22 MAR.2018 10:20:02



Report No.: SZEM180400306503 Page: 75 of 101



Date: 22 MAR.2018 10:20:12




Report No.: SZEM180400306503 Page: 76 of 101

#### 5.1.1.9 Test Mode = LTE/TM1 20MHz

#### 5.1.1.9.1 Test Channel = LCH

#### 5.1.1.9.1.1 Test RB=1RB



Date: 22 MAR 2018 10:30:23

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms



Report No.: SZEM180400306503 Page: 77 of 101

5.	1.1.9.1.2 T	est RB=1	00RB						_
Spectrur	n								
	el 35.00 dBn			<b>RBW</b> 300 k					
Att		B 😑 SWT	100 ms 👄	VBW 1 M	Hz Mode	Auto Sweej	0		
●1Av View	1	1			1				
30 dBm					M	1[1]			48.05 dBm 92000 GHz
							I	1.049	
20 dBm									
20 00111									
10 dBm									
10 UBIII									
0 dBm									
-10 dBm—	D1 -13.000	l dBm							
	10.000								and the second second
-20 dBm—								/	Martin
-30 dBm—									
								1 and the second s	
-40 dBm—								1	
				M1		- Low Martin Martin Martin Martin Martin Martin Martin Martin Martin Martin Martin Martin Martin	ad mondation of the		
450LdBram	www.www.www.	******************************	and the second second	a summer and war	www.www.white	and a share and a share a shar	-		
-60 dBm—									
05 1 05 0				100	 				
CF 1.85 G	HZ			1001	l pts				n 2.0 MHz
	Л				Mea	suring		1,70	10:30:12

Date: 22 MAR 2018 10:30:13



Report No.: SZEM180400306503 Page: 78 of 101

Spectrum									
Ref Level	35.00 dBm	Offset	5.00 dB 👄	<b>RBW</b> 300 kH:	z				`
Att 🗧	40 dB	SWT	100 ms 👄	VBW 1 MH	z Mode	Auto Sweep			
●1Av View			1						
30 dBm					M	1[1]	1		-48.83 dBm 201000 GHz 
20 dBm									
10 dBm									
0 dBm									
-10 dBm	D1 -13.000	dBm							
-20 dBm									
-30 dBm	Mar Andrew								
-40 dBm	No.	A work							
-50 dBm		an survey and a first of	Herbergermannelinesseries	N1:	L have been all and the second			1 <b></b>	an a
-60 dBm									
-60 dBm	z			1001	ots			Spa	an 2.0 MH:

#### 5.1.1.9.2 Test Channel = HCH

Date:22 MAR.2018 10:30:39



Report No.: SZEM180400306503 Page: 79 of 101



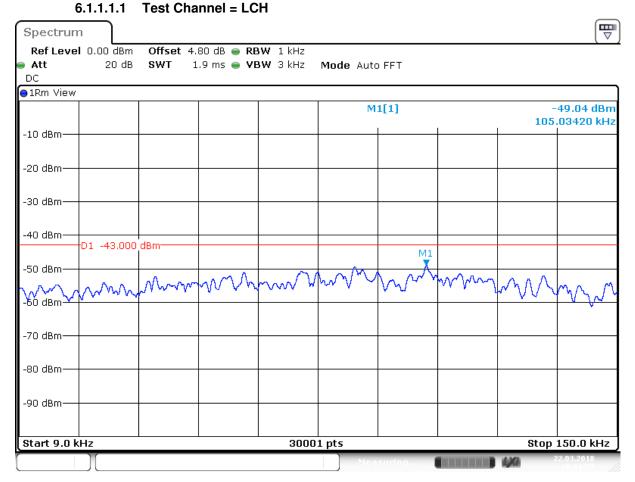
5.1.1.9.2.2 Test RB=100RB

Date:22 MAR.2018 10:30:49



Report No.: SZEM180400306503 Page: 80 of 101

### 6 Spurious Emission at Antenna Terminal


NOTE: For the averaged unwanted emissions measurements, the measurement points in each sweep is greater than twice the Span/RBW in order to ensure bin-to-bin spacing of < RBW/2 so that narrowband signals are not lost between frequency bins. As to the present test item, the "Measurement Points = k * (Span / RBW)" with k between 4 and 5, which results in an acceptable level error of less than 0.5 dB.

Part I - Test Plots

#### 6.1 For LTE

#### 6.1.1 Test Band = LTE band2

#### 6.1.1.1 Test Mode = LTE / TM1 20MHz RB1#0



Date:22 MAR.2018 10:31:57



Report No.: SZEM180400306503 Page: 81 of 101

Spectrum	1								
Ref Level Att DC	20.00 dBm 30 dB		4.80 dB 👄 R 37.9 µs 👄 V			Auto FFT			
●1Rm View									
					М	1[1]			54.22 dBm 91630 MHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm—	D1 -23.000	dBm							
-30 dBm									
-40 dBm									
-50 dBm						MI			
-60 dBm-44	A Proposition	nter martine	almore the topology	A	pala MANAN	mm	Murria	manytomation	mmhundre
-70 dBm									
Start 150.0	) kHz			3000:	1 pts			Stop	30.0 MHz
					Mela	suring		4/0	2.03.2018

Date:22 MAR 2018 10:32:03



Report No.: SZEM180400306503 Page: 82 of 101

Spectrum									
Ref Level			4.80 dB 👄						
Att	30 dB	SWT	131.3 µs 😑	VBW 3 MHz	Mode A	uto FFT			
●1Rm View			1	1					
					M	1[1]			44.68 dBm
10 dBm								889	.7630 MHz
0 dBm									
-10 dBm									
	)1 -13.000	dBm							
-20 dBm									
-30 dBm									
-40 dBm								M1	
the second second	L. D. L.	aller av s		a subset of the			հետես է է	L. Marine	a finale au
		AND THE PARTY				MANY MANY	Anthe Antherit	<b>Mithelia</b>	
-60 dBm				'					
-70 dBm									
Start 30.0 M	/IHz		1	3000	1 pts	1	1	Sto	p 1.0 GHz
					Mea	suring		100	2.03.2018

Date:22 MAR 2018 10:32:08



Report No.: SZEM180400306503 Page: 83 of 101

Spectrum	1							
Ref Level e Att	20.00 dBm 30 dB 👄	<b>Offset</b> 5.00 (	dB 👄 <b>RBW</b> 5 s 👄 <b>VBW</b>		Mode Au	ito Sweep		
●1Rm View								
	Mī					[1]	1.8	22.92 dBm 51100 GHz
10 dBm					M2	[1]		45.21 dBm 02000 GHz
0 dBm								
-10 dBm	D1 -13.000 dBn	Ŋ						
-20 dBm								
-30 dBm								
-40 dBm						M2		
-50 dBm		u						
-60 dBm—								
-70 dBm								
Start 1.0 G	Hz			30001	ots		 Sto	p 5.0 GHz
	)[				Meas	uring	1,01	22.03.2018

Date:22MAR.2018 10:32:30

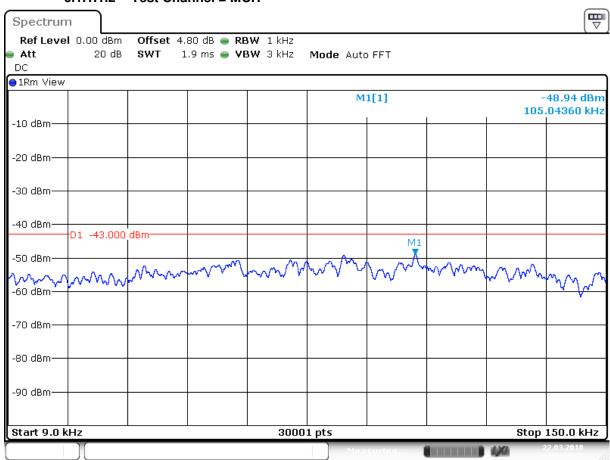


Report No.: SZEM180400306503 Page: 84 of 101

Spectrum	ι								
	l 20.00 dBm			RBW 1 MHz					
Att	30 dE	B 👄 SWT	5 s 👄	VBW 3 MHz	Mode A	uto Sweep			
⊖1Rm View		1		,					
					M	1[1]			47.06 dBm
10 dBm								a.a	53330 GHz
0 dBm									
-10 dBm—									
	D1 -13.000	dBm							
-20 dBm—									
-30 dBm									
40.40									
-40 dBm M1									
-50 dBm									
So abiii									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-60 dBm									
-70 dBm									
Start 5.0 G	Hz			30001	pts			Stop	12.0 GHz
	)[					suring			22.03.2018

Date:22 MAR.2018 10:32:52




Report No.: SZEM180400306503 Page: 85 of 101

Spectrun	ι								
Ref Leve Att	1 20.00 dBr			RBW 1 MHz	<b>11</b> -1-1				``
● 1Rm View	30 U	B 👄 SWT	55 🖶	VBW 3 MHz	MOGE A	uto Sweep			
					M	l[1]			49.37 dBm 54950 GHz
10 dBm									
0 dBm									
-10 dBm	D1 -13.000	) dBm							
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm					The second s		M1		
-60 dBm									
-70 dBm									
Start 12.0	GHz			30001	pts			Stop	) 18.0 GHz
	Π				Mea	suring		1/1	22.03.2018

Date:22 MAR.2018 10:33:14



Report No.: SZEM180400306503 Page: 86 of 101



#### 6.1.1.1.2 Test Channel = MCH

Date:22 MAR.2018 10:33:20



Report No.: SZEM180400306503 Page: 87 of 101

Spectrum	ı								
Ref Level	20.00 dBm	Offset	4.80 dB 👄 🖡	<b>RBW</b> 100 kH	z				
👄 Att	30 dB	SWT	37.9 µs 👄 <b>\</b>	<b>/BW</b> 300 kH	z Mode	Auto FFT			
DC									
●1Rm View									
					М	1[1]			54.19 dBm 94440 MHz
10 dBm									
0 dBm									
-10 dBm—									
-20 dBm	D1 -23.000	dBm							
00 d0									
-30 dBm									
-40 dBm									
-50 dBm							MI		
<b>N</b> .					And March	Municha		wala your and	
-60 08 hr 44	Mary and a state	Munhandra	War Mar Mary	An property and the second	JUNE V CONTRACT	AN AAWAAA C	and a low Child	Mary Mary and	"YN"WWWW
-70 dBm—									
Start 150.0	) kHz			3000:	1 pts			Stop	30.0 MHz
						suring		LX0	2.03.2018

Date:22 MAR 2018 10:33:26



Report No.: SZEM180400306503 Page: 88 of 101

Ref Level 20.00 dBm         Offset         4.80 dB         RBW 1 MHz           Att         30 dB         SWT         131.3 µs         VBW 3 MHz         Mode         Auto FFT           IRm View         M1[1]         -43.48 dBr         891.3150 MH           10 dBm         0 dBm	Spectrun	n								
● 1Rm View										
10 dBm     M1[1]     -43.48 dBr       0 dBm     -43.48 dBr     891.3150 MH			SWT	131.3 µs 👄	VBW 3 MHz	Mode A	uto FFT			
10 dBm	⊜1Rm View	I	1		, ,					
10 dBm						M	1[1]			
-10 dBm	10 dBm								891	3150 MHZ
-10 dBm										
	0 dBm									
D1 -13.000 dBin	-10 dBm—	D1 12 000	dDes							
-20 dBm	-20 dBm	-13.000	ивш							
	-20 abiii									
-30 dBm	-30 dBm—									
-40 dBm M1	-40 dBm—								M1	
an ante a ten a constructiones en la construction de la construction de la construction de la construction de l						kana tasa	له يعبر		. In calls . To	an anti-
and the form of the form of the second of th		A WANTER AND			WAY AN WAY WAY	Minimum		ANY ANY ANY ANY		WIN WIND AND
-60 dBm	-60 dBm—									
-70 dBm	-70 dBm—									
Start 30.0 MHz 30001 pts Stop 1.0 GHz	Start 30.0	MHz	I		3000:	L pts	1	1	Sta	p 1.0 GHz
Me asuring 22.03.2018		2.6				-				-

Date:22 MAR.2018 10:33:31



Report No.: SZEM180400306503 Page: 89 of 101

Spectrum	п								
	l 20.00 dBm			RBW 1 MHz					
e Att	30 dB	8 👄 SWT	5 s 👄	VBW 3 MHz	Mode A	uto Sweep			
⊖1Rm View			_						
		M1			M	l[1]			23.17 dBm
									71100 GHz
10 dBm					M2	2[1]			41.79 dBm 42133 GHz
					1		I	3.7	42133 GHZ
0 dBm				<u> </u>					
-10 dBm—									
	D1 -13.000	dBm							
-20 dBm—									
-20 aBm									
-30 dBm									
-40 dBm						M2			
-50 dBm									
00 0.0		Π.						-	
-60 dBm—									
-70 dBm									
Start 1.0 G	Hz			30001	pts			Sto	p 5.0 GHz
	)(			00001			Concernance of the		22.03.2018
					mea:	suring		a de la compañía de la	

Date:22 MAR.2018 10:33:54



Report No.: SZEM180400306503 Page: 90 of 101

Spectrum	ι								
Ref Level Att	l 20.00 dBn	n Offset 3 e SWT		RBW 1 MHz VBW 3 MHz					
●1Rm View	30 ut	5 <b>- 5</b> WI	25 🖷		MODE A	uto Sweep			
					М	1[1]	1		45.81 dBm 13300 GHz
10 dBm									
0 dBm									
-10 dBm	D1 -13.000	dBm							
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm	and the second division of the second divisio								
-60 dBm									
-70 dBm									
Start 5.0 G	iHz			30001	pts			Stop	) 12.0 GHz
					Mea	suring		1,X1	22.03.2018

Date:22 MAR.2018 10:34:16



Report No.: SZEM180400306503 Page: 91 of 101

Spectrun	n								
	l 20.00 dBm			RBW 1 MHz					
🗕 Att		s 👄 SWT	5 s 👄	VBW 3 MHz	Mode A	uto Sweep			
●1Rm View									
					M	1[1]			49.45 dBm
10 dBm								16.4	41750 GHz
0 dBm									
-10 dBm—									
-20 dBm—	-D1 -13.000	dBm							
-30 dBm									
-40 dBm									
-50 dBm							M1		
-60 dBm—									
-70 dBm									
, o dom									
Start 12.0	GHz			30001	pts			Stop	18.0 GHz
					Mea	suring		1/0	2.03.2018

Date:22 MAR.2018 10:34:38



Report No.: SZEM180400306503 Page: 92 of 101



#### 6.1.1.1.3 Test Channel = HCH

Date:22 MAR.2018 10:34:43



Report No.: SZEM180400306503 Page: 93 of 101

Spectrum									
Ref Level	20.00 dBm	Offset	4.80 dB 😑 R	<b>BW</b> 100 kH:	2				
👄 Att	30 dB	SWT	37.9 µs 👄 🖌	<b>'BW</b> 300 kH:	Mode /	Auto FFT			
DC									
●1Rm View									
					М	1[1]			54.07 dBm
10 dBm						L	L	22.9	45190 MHz
10 dbiii									
0 dBm									
-10 dBm									
-10 ubiii									
-20 dBm									
	01 -23.000	dBm							
00 40-									
-30 dBm									
10 10-1									
-40 dBm									
-50 dBm							M1		
Marry end	والم مراد	n)		No.	when the	an manager	May Marker & Again	mounder	Munn
-90.9844444	MA A A A A A A A A A A A A A	والمراهك والمحمد والمحمد	and when a set of the	an Alaka a har the					
-70 dBm									
Start 150.0	kHz			30001	pts	I	I	Stop	30.0 MHz
	Π				Mela	suring		1/1	22.03.2018

Date:22 MAR.2018 10:34:49



Report No.: SZEM180400306503 Page: 94 of 101

Spectrun	n							
	l 20.00 dBm			RBW 1 MHz				
Att	30 dB	SWT	131.3 µs 😑	VBW 3 MHz	Mode A	uto FFT		
⊖1Rm View								
					M	1[1]		43.88 dBm
10 dBm							509	.1480 MHz
0 dBm								
-10 dBm	D1 -13.000	dBm						
-20 dBm								
-30 dBm								
-40 dBm				M	-			
-	-			WANN WA	Harlind Marthadd	H-WHANNINN	washing the way the	-
-60 dBm			u pre		1 1 1 1 1			
-70 dBm								
Start 30.0	MHz			3000	1 pts		Sto	p 1.0 GHz
	)[				Mea	suring	1/0	2.03.2018

Date:22 MAR 2018 10:34:54



Report No.: SZEM180400306503 Page: 95 of 101

Spectrum							
	20.00 dBm			RBW 1 MHz			\
Att	30 dB	SWT	5 s 👄	VBW 3 MHz	Mode Auto Sweep		
●1Rm View							
		M1			M1[1]		22.85 dBm
							1.891100 GHz
10 dBm				+ +	M2[1]		-42.75 dBm
					I.	1 1	3.782133 GHz
0 dBm						+	
-10 dBm——				+		+	
	D1 -13.000	dBm					
-20 dBm							
-30 dBm							
-30 dbm							
					м		
-40 dBm——							
-50 dBm——				+			
		وسيباك الأر					
-60 dBm						<u> </u>	
-70 dBm							
-70 0011							
Start 1.0 G	Hz		•	30001	pts	<u> </u>	Stop 5.0 GHz
					Measuring		22.03.2018

Date:22 MAR.2018 10:35:17



Report No.: SZEM180400306503 Page: 96 of 101

Spectrum				
	5.00 dB 👄 RBW 1 MHz			
e Att 30 dB e SWT	5 s 👄 <b>VBW</b> 3 MHz	Mode Auto Sweep		
●1Rm View				
		M1[1]	F	-45.52 dBm .673260 GHz
10 dBm				.073200 GH2
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
-70 dBm				
Start 5.0 GHz	30001	nts	Str	op 12.0 GHz
	00001	Measuring		22.03.2018

Date:22 MAR.2018 10:35:39



Report No.: SZEM180400306503 Page: 97 of 101

Ref Level         20.00         dBm         Offset         5.00         dB         RBW         1 MHz           Att         30         dB         SWT         5 s         VBW         3 MHz         Mode         Auto Sweep           Image: Sweet state         M1[1]         -49.28 d         16.447750 d
●1Rm View  10 dBm  10
10 dBm
10 dBm 10 dBm
10 dBm
0 dBm
-10 dBm
-20 dBm
-30 dBm
-40 dBm
-50 dBm
-60 dBm
-70 dBm
Start 12.0 GHz         30001 pts         Stop 18.0 G
Measuring  22.03.2018 22.03.2018

Date:22 MAR 2018 10:36:01



Report No.: SZEM180400306503 Page: 98 of 101

### 7 Field Strength of Spurious Radiation

#### 7.1 For LTE

#### 7.1.1 Test Band = LTE band2

#### 7.1.1.1 Test Mode =LTE/TM1 20MHz RB1#0

7.1.1.1.1	Test Channel = LC	Н		
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
89.150000	-73.17	-13.00	60.17	Vertical
345.600000	-73.60	-13.00	60.60	Vertical
1271.000000	-66.48	-13.00	53.48	Vertical
3702.000000	-50.16	-13.00	37.16	Vertical
5553.200000	-48.82	-13.00	35.82	Vertical
7404.400000	-60.55	-13.00	47.55	Vertical
90.150000	-72.14	-13.00	59.14	Horizontal
304.950000	-67.91	-13.00	54.91	Horizontal
1456.500000	-61.12	-13.00	48.12	Horizontal
3702.325000	-49.06	-13.00	36.06	Horizontal
5552.875000	-56.03	-13.00	43.03	Horizontal
7404.400000	-60.78	-13.00	47.78	Horizontal

7.1.1.1.2 Test Channel = MCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
88.100000	-73.81	-13.00	60.81	Vertical
345.600000	-73.59	-13.00	60.59	Vertical
1271.000000	-66.48	-13.00	53.48	Vertical
3741.975000	-45.31	-13.00	32.31	Vertical
5613.325000	-56.22	-13.00	43.22	Vertical
7484.025000	-62.24	-13.00	49.24	Vertical
63.300000	-77.67	-13.00	64.67	Horizontal
89.600000	-72.95	-13.00	59.95	Horizontal
309.950000	-68.47	-13.00	55.47	Horizontal
3741.975000	-47.86	-13.00	34.86	Horizontal
5613.000000	-55.31	-13.00	42.31	Horizontal
7484.350000	-62.81	-13.00	49.81	Horizontal



Report No.: SZEM180400306503 Page: 99 of 101

7.1.1.1.3	Test Channel = HC	ЭН		
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
89.650000	-73.04	-13.00	60.04	Vertical
345.600000	-73.22	-13.00	60.22	Vertical
2200.000000	-59.27	-13.00	46.27	Vertical
3781.950000	-51.05	-13.00	38.05	Vertical
5673.125000	-54.32	-13.00	41.32	Vertical
7564.300000	-61.71	-13.00	48.71	Vertical
88.150000	-72.26	-13.00	59.26	Horizontal
303.950000	-68.11	-13.00	55.11	Horizontal
2711.500000	-57.57	-13.00	44.57	Horizontal
3781.950000	-50.80	-13.00	37.80	Horizontal
5673.125000	-54.71	-13.00	41.71	Horizontal
7564.300000	-63.50	-13.00	50.50	Horizontal

NOTE:

- 1) The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
- 2) We have tested all modulation, but only the worst case data presented in this report.



Report No.: SZEM180400306503 Page: 100 of 101

### 8 Frequency Stability

#### 8.1 Frequency Error VS. Voltage

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
LTEband2				VL	-4.03	-0.00217	PASS
		LCH	ΤN	VN	0.46	0.00025	PASS
				VH	-7.73	-0.00416	PASS
	LTE/TM1 20MHz	MCH	TN	VL	1.49	0.00079	PASS
				VN	-2.84	-0.00151	PASS
				VH	2.63	0.00140	PASS
				VL	-6.56	-0.00345	PASS
		HCH	ΤN	VN	-5.17	-0.00272	PASS
				VH	-0.79	-0.00042	PASS



Report No.: SZEM180400306503 Page: 101 of 101

#### 8.2 Frequency Error VS. Temperature

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	-0.40	-0.00022	PASS
				-20	-1.34	-0.00072	PASS
				-10	2.38	0.00128	PASS
				0	1.75	0.00094	PASS
		LCH	VN	10	1.65	0.00089	PASS
				20	0.11	0.00006	PASS
				30	-0.31	-0.00017	PASS
				40	-0.14	-0.00008	PASS
				50	0.59	0.00032	PASS
				-30	-7.80	-0.00415	PASS
				-20	-5.95	-0.00316	PASS
				-10	-7.49	-0.00398	PASS
		МСН	VN	0	-5.62	-0.00299	PASS
LTEband2	LTE/TM1 20MHz			10	-4.04	-0.00215	PASS
				20	-9.94	-0.00529	PASS
				30	-5.66	-0.00301	PASS
				40	-4.62	-0.00246	PASS
				50	-6.92	-0.00368	PASS
				-30	0.54	0.00028	PASS
				-20	-1.49	-0.00078	PASS
				-10	1.53	0.00081	PASS
				0	-2.83	-0.00149	PASS
		HCH	VN	10	2.60	0.00137	PASS
				20	-0.57	-0.00030	PASS
				30	-2.66	-0.00140	PASS
				40	-5.43	-0.00286	PASS
				50	-8.90	-0.00468	PASS

The End