

OUTDOOR IP65 GATEWAY WITH EMBEDDED LORAWAN® CONCENTRATOR CHIP

User manual

Versions:

Revision	Note	Date
1.0	Initial public release	09/05/2022

1 SUMMARY

1	Summary	2
2	Product specifications	4
3	Regulations.....	6
3.1	Version 863-870MHz band.....	6
3.1.1	Europe / CE.....	6
3.2	Version 902-915MHz band.....	7
3.2.1	USA – FCC Statement	7
3.2.2	Canada – ISED Statement.....	8
4	General information.....	9
4.1	Online documentation	9
4.1.1	Update information	9
4.1.2	Troubleshooting	9
4.1.3	Open source licenses.....	9
4.2	Connectivity/Interface.....	9
4.3	Start/Reset.....	9
4.3.1	Procedures	10
5	Ethernet/PoE.....	11
5.1	Power through passive PoE	11
6	Service access.....	12
6.1	Access methods.....	12
6.1.1	Overview	12
6.1.2	Network access	12
6.2	USB	13
6.3	Network.....	14
6.3.1	mDNS	14
6.3.2	SSH	14
6.3.3	Web interface.....	14
7	Basic setup	16
7.1	Configure the network	16
7.1.1	Check the current status	16
7.1.2	DHCP	17
7.1.3	Static.....	18
7.1.4	Network verification and troubleshooting.....	19
7.2	Security.....	19
7.2.1	Password	19
7.3	System update	20
7.4	LoRa/LoRaWAN configuration.....	22
7.4.1	LoRa (RF)	22
7.4.2	LoRaWAN	23

8	Electrical	24
8.1	Power consumption	24
9	Mechanical	25
9.1	Wifx L1	25
9.2	Antenna 5dBi (8XX & 9XX versions)	25
10	Setup guide	26
10.1	General recommendations	26
10.2	Standard mounting using a pole	26
10.3	Mounting on wall (indoor)	30
10.3.1	Final control	32
10.4	Mounting on wall (Outdoor)	33
10.4.1	Final control	33

2 PRODUCT SPECIFICATIONS

Version	Wifx L1
Physical specifications	
Dimensions	See 9.1 Wifx L1
Weight	< 240 grams
Connectors	
	1 RJ45 Ethernet 100Mbps port Max 100m. length, use shielded cable (S/UTP or U/FTP minimum)
	1 USB-C service connector (service access only)
	1 N type RF antenna connector
	1 microSD SD Memory Card Specification v2.0 slot
Power specifications	
Input supply PoE	10-48VDC max. 800mA (through passive PoE)
Input supply USB-C	4.5-5.5VDC max. 650mA
Power supply	See 5.1 Power through passive PoE
Consumption	See 8.1 Power consumption
Climatic specifications	
Operating temperature	-30°C to +70°C -5°C to +40°C for the power supply (S-)HNP12-240L6, indoor use only
Storage temperature	-20°C to +50°C
Operating humidity	10% to 90% RH Non-condensing
Storage humidity	5% to 90% RH Non-condensing
System	
CPU	ARM® Cortex®-A5 @ 600MHz
RAM	256MB DDR2 @ 200MHz
Internal memory	1GB NAND FLASH with 8bits hardware ECC
External memory	microSD card slot, SDHC compatible, can be used as boot source

TABLE 1: PRODUCT SPECIFICATIONS

Version	8XX (863-870 MHz)	9XX (902-928 MHz)
RF specification		
LoRa modulation (Chirp spread spectrum modulation)	863-873MHz Following Table 3: Certification compliance version 863-870Mhz for Europe	902-928MHz
FSK Modulation	863-873MHz Following Table 3: Certification compliance version 863-870Mhz for Europe	Not applicable
Power of transmission	Following Table 4: Duty cycles and maximum EIRP version 863-870MHz	Max conducted power of 27dBm
TX frequency tolerance	±4ppm including ageing, temperature compensated	
RX min sensitivity (10% PER)	-136dB (SF12BW125)	
Antenna impedance	50 Ohm	

TABLE 2: PRODUCT RF SPECIFICATIONS

3 REGULATIONS

3.1 VERSION 863-870MHz BAND

3.1.1 EUROPE / CE

The Wifx L1 8XX (863-870MHz) version complies with requirements RED standard requirements:

Certification compliance	
RF	ETSI EN 300 220-1 V3.1.1 (2017-02)
	ETSI EN 300 220-2 V3.2.1 (2018-06)
EMC	ETSI EN 301 489-1 V2.2.3 (2019-11)
	ETSI EN 301 489-3 V2.1.1 (2019-03)
	EN 55032:2015/A11:2020
	EN 55035:2017/A11:2020
	EN IEC 61000-3-2:2019
	EN 61000-3-3: 2013/A1: 2019
Human safety	EN 50665:2017
Electrical safety	EN 62368-1:2014/A11:2017

TABLE 3: CERTIFICATION COMPLIANCE VERSION 863-870MHz FOR EUROPE

For use in Europe, the Wifx L1 must comply with the ERC 70-3 requirements regarding duty cycle and maximum EIRP. These parameters are summarized in the following table:

Duty cycle and maximum EIRP			
ERC 70-3 Band	Frequency (MHz)	Power	Duty cycle
h1.3	863 – 865	14dBm ERP	0.1%
h1.4	865 – 868	14dBm ERP	1%
h1.5	868 – 868.6	14dBm ERP	1%
h1.6	868.7 – 869.2	14dBm ERP	0.1%
h1.7	869.4 – 869.65	27dBm ERP	10%
h1.8	869.7 – 870	7dBm ERP	No requirement
h1.9	869.7 – 870	14dBm ERP	1%

TABLE 4: DUTY CYCLES AND MAXIMUM EIRP VERSION 863-870MHz FOR EUROPE

If the antenna is changed, the output power must be adjusted to take the antenna's gain into account and avoid exceeding the values defined by the ERC 70-3 regulation.

Warning: some countries in Europe may have a specific frequency range, a maximum EIRP and duty cycle regulation. Please check the local regulations before installing and using the Wifx L1 863-870MHz version.

For countries outside Europe, please check that the frequency range, the maximum allowed EIRP and duty cycle are authorized.

3.2 VERSION 902-915MHz BAND

The Wifx L1 9XX (902-928MHz) version complies with both FCC and IC regulation:

Certification compliance	
CFR 47 FCC Part 15	FCC 47 CFR Part 15: 2014 - Part 15- Radio frequency devices
RSS 247	RSS-Gen – Issue 5, Avril 2018 – General requirements and Information for the Certification of radio Apparatus
	RSS-247 Issue 2, February 2017 – Digital Transmission Systems (DTSS), Frequency Hopping Systems (FHSS) and License-Exempt Local Area Network (LE-LAN) Devices

TABLE 5: CERTIFICATION COMPLIANCE VERSION 902-915MHz FOR USA/CANADA

The associated FCC and IC identifiers of the Wifx L1 902-928MHz version are:

FCC ID: 2APAZ-WGW-L02-01

IC: 23715-WGWL02

Model: Wifx L1

Some conditions must be met to maintain the FCC and IC compliance of the devices in the USA and Canada. These conditions are detailed in the following paragraphs. For other countries, please check the specific regulations regarding maximum allowed EIRP and duty cycle.

3.2.1 USA – FCC STATEMENT

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help important announcement.

Important Note:

Radiation Exposure Statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator and your body.

This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

3.2.2 CANADA – ISED STATEMENT

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions:

1. This device may not cause interference, and
2. This device must accept any interference, including interference that may cause undesired operation of the device. The digital apparatus complies with Canadian CAN ICES-3 (B)/NMB-3(B).

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes :

1. l'appareil ne doit pas produire de brouillage, et
2. l'utilisateur de l'appareil doit accepter tout brouillage radio électrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

This radio transmitter (ISED certification number: 23715-WGWL02) has been approved by Industry Canada to operate with external antenna with the maximum permissible gain 5dBi indicated with impedance of 50Ω. Antenna types not included in this list, having greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Le présent émetteur radio (numéro de certification ISED : 23715-WGWL02) a été approuvé par Industrie Canada pour fonctionner avec une antenne externe avec le gain maximal autorisé de 5dBi indiqué avec une impédance de 50Ω. Les types d'antenne non inclus dans cette liste, ayant un gain supérieur au gain maximum indiqué pour ce type, sont strictement interdits pour une utilisation avec cet appareil.

Radiation Exposure Statement

This equipment complies with Canada radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

Déclaration d'exposition aux radiations

Cet équipement est conforme avec les limites d'exposition aux radiations du Canada dans un environnement non contrôlé. Cet équipement doit être installé et utilisé à distance minimum de 20cm entre le radiateur et votre corps.

4 GENERAL INFORMATION

4.1 ONLINE DOCUMENTATION

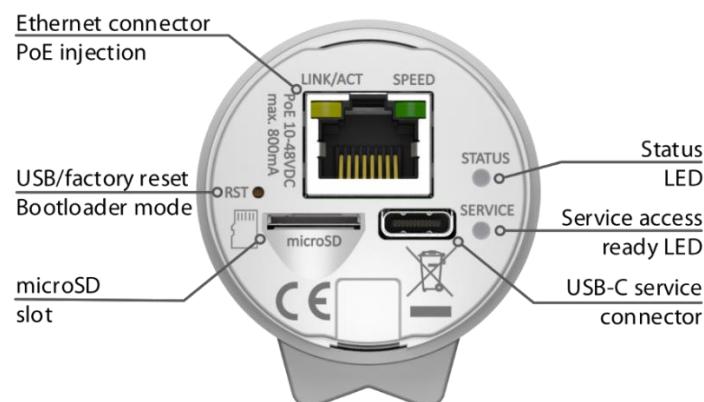
The online documentation is available at iot.wifx.net/docs and contains information about technical use of the product including its operating system, the LORIX OS.

Complete documentation

The documentation in this user manual is minimal and more information, especially regarding LORIX OS, is available online. Please consult it if you can't find the information in this document.

4.1.1 UPDATE INFORMATION

The modifications made between each new release of LORIX OS are described under the online documentation changelog page available at <https://iot.wifx.net/docs/go/lorix-os/release-notes>.


4.1.2 TROUBLESHOOTING

Frequent encountered problems are summarized under the online documentation troubleshooting page, with suggested solutions available at <https://iot.wifx.net/docs/go/lorix-os/troubleshooting>.

4.1.3 OPEN SOURCE LICENSES

All the licenses of the open source softwares used or available in the package repository of the LORIX OS are available at <https://download.wifx.net/lorix-os/<LORIX OS release version>/licenses/>, for example for the version 1.3.4, the licenses are available at <https://download.wifx.net/lorix-os/1.3.4/licenses/>.

4.2 CONNECTIVITY/INTERFACE

4.3 START/RESET

The gateway automatically boots when connected to a power supply through passive PoE on the Ethernet cable or through USB-C. After start-up, the status LED should blink briefly and turn off. Once the Linux OS starts, the status LED (blue) will start blinking in "heartbeat" mode.

As soon as the service terminal can be used through the service USB-C connector, the service access LED (white) turns on.

The reset button can be used to:

- reset normally the gateway and start in normal operating mode
- restore the gateway close to its original factory settings
- enter in programming mode.

To press the button, use a thin tool such as a paper clip. Upon release, the status LED will briefly flash and then stop to signal the reset action.

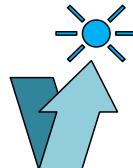
4.3.1 PROCEDURES

Short-press

Press briefly, for less than 1 second. The blue LED will briefly blink upon release

Long-press

Press and hold for several seconds. The blue LED will briefly blink after the delay specified below



Status LED

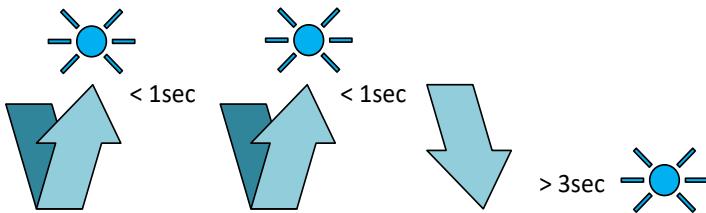
A short flash of the blue LED

Normal reset procedure

1. Short-press
2. The status LED will flash upon release and the gateway will reboot

Factory reset procedure

The factory reset procedure can be used to reset the initial default configuration and thus restore the device to its original settings. This procedure is useful to solve a network misconfiguration or to recover a forgotten password.


1. Wait at least 1 second after another reset pressure.
2. Long-press for at least 10 seconds
3. After the LED starts blinking, release the reset button.
4. The gateway will boot in factory reset mode. When Linux has started, a script will copy the default files.

Programming mode procedure

This procedure is used to enter in programming mode. It enables the possibility to reprogram the gateway using the Atmel SAM-BA programming tool through the USB port as summarized on the [NAND Programming](#) page of the wiki.

1. Remove the microSD card from the device
2. Wait at least 1 second for another reset pressure
3. Perform 2 short presses with less than 1 second between each press
4. Perform a third long press for more than 3 seconds (but less than 5 seconds)

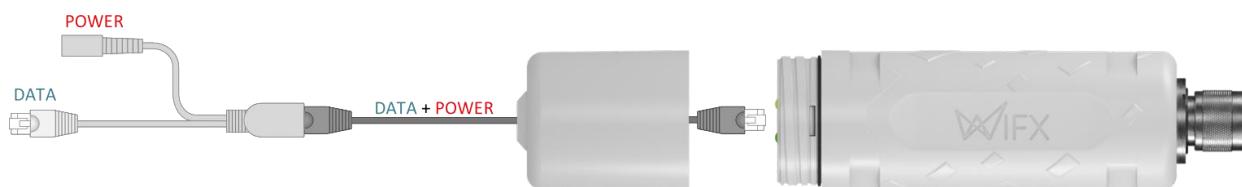
5 ETHERNET/POE

Connector details:

RJ45 Pin number	Wire color	Function	
1	Green	TX+	
2	Green/white	TX-	
3	Orange	RX+	
4	Blue	VPOE1	Voltage 1 for PoE powering (must be connected with pin 5)
5	Blue/white	VPOE1	Voltage 1 for PoE powering (must be connected with pin 4)
6	Orange/white	RX-	
7	Brown	VPOE2	Voltage 2 for PoE powering (must be connected with pin 8)
8	Brown/white	VPOE2	Voltage 2 for PoE powering (must be connected with pin 7)

TABLE 6 ETHERNET/POE CONNECTION

The yellow LED shows the LINK and the ACTIVITY on the Ethernet connection:


- OFF** No link
- ON** Link
- Blink** Link and activity

The green LED shows the actual SPEED of the Ethernet connection:

- OFF** 10Base-T
- ON** 100Base-TX

5.1 POWER THROUGH PASSIVE POE

The Wifx L1 gateway is mainly powered through passive PoE using the Ethernet connector. The power is injected through a PoE injector as shown below:

V_{POE1} and V_{POE2} (in Table 6) represent both power lines of the gateway. Power must be injected in the power input connector using the switching power supply provided with the LORIX One only:

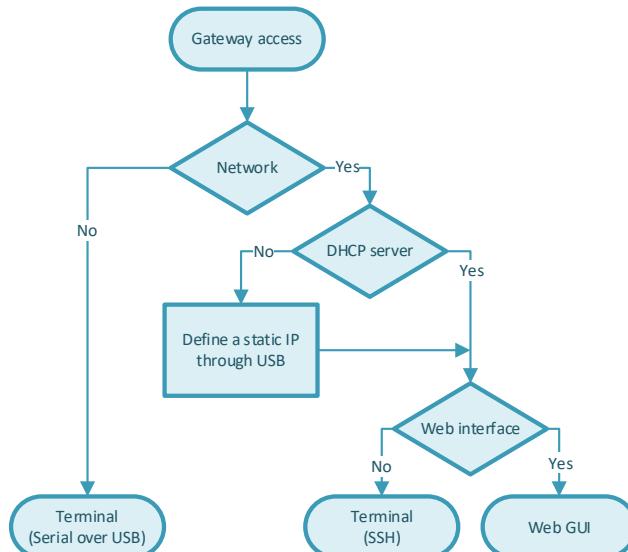
- Reference** HNP12-240L6
- Output voltage** 24VDC
- Output courant** 500mA

6 SERVICE ACCESS

The embedded Linux can be accessed and configured either through the service USB Type-C connector or through SSH or web interface with a working Ethernet connection.

Default user and password

The default user is **admin** and the password is **lorix4u**. This is useful and easy to remember during the initial configuration time but we strongly advise changing the password as soon as possible as explained in [7.2.1 Password](#).

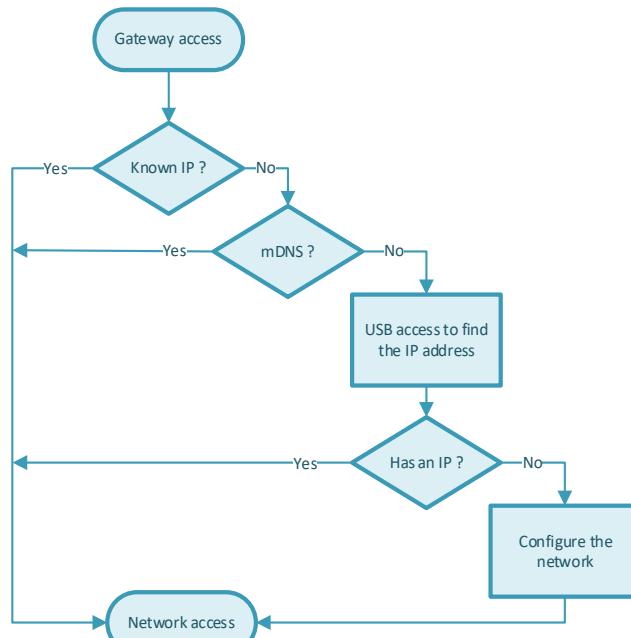

6.1 ACCESS METHODS

6.1.1 OVERVIEW

This diagram gives an overview of the methods you can use to access the gateway. If you have only USB or if network is not configured (or IP is not known), you have always terminal access through the USB service connector.

As soon as the network is configured and working, you can decide either to use terminal through network (SSH) or the more user-friendly web interface through your favourite web browser.

If your network doesn't have a DHCP server, you need to configure a static IP address using the USB access.


6.1.2 NETWORK ACCESS

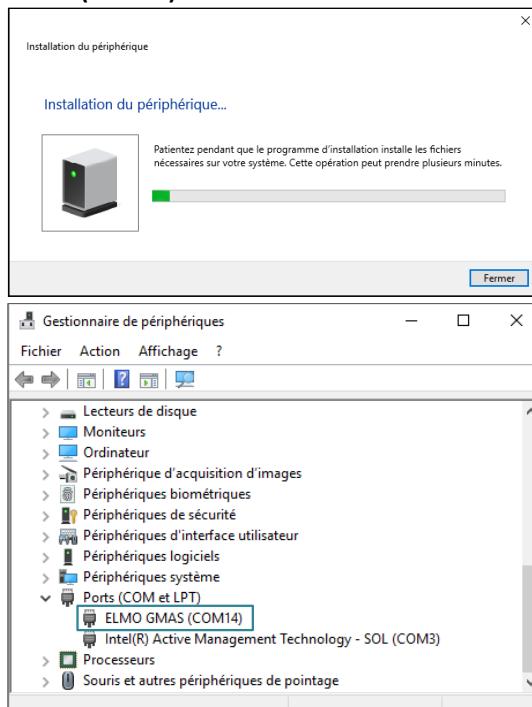
To reach the gateway through the web interface or through SSH if you prefer using a terminal, you need a working network with a DHCP server (which will provide a dynamic IP address) or define a static IP address for your gateway.

If your gateway has an IP and you know it, you can simply reach it as explained at [6.3 Network](#).

If you don't know the IP but probably have a DHCP server, you can't try to reach it using mDNS as explained at [6.3.1 mDNS](#) or find the IP from the router's admin interface.

Finally, you can find the IP or configure it as static through the USB interface.

6.2 USB


The gateway has a USB Type-C connector which provides a virtual COM port as soon as the service LED (white) turns on. Accessing the gateway this way allows you to debug and configure the system. This is also the only way to reach the service terminal when the network is not accessible or not yet configured.

USB Connection consideration

The USB connection should be used exclusively for service administration/configuration and should not be left connected during normal use. The IP65 level is also not guaranteed during USB service connector use.

To access the gateway through USB:

1. Power up the gateway with passive PoE through the Ethernet connector or through the USB directly
2. Connect a PC to the gateway with a A ⇔ C cable
3. The virtual COM port is automatically detected by the PC
 - a. On Windows a new virtual COM port will appear in the device manager under the name **ELMO GMAS (COMxx)**

- b. On Linux a new virtual COM port will appear in the folder **/dev/ttyACMxx**
4. A terminal program like PuTTY or minicom can be used with the following parameters:

baudrate	921600
data bits	8
stop bits	1
parity	none
flow control	none

6.3 NETWORK

6.3.1 mDNS

The gateway will announce itself through the mDNS protocol (aka Zeroconf, Bonjour) with its default hostname on the ‘.local’ domain. The default hostname is composed of the prefix [11-](#) and the last 6 characters of the MAC address as lowercase: [11-xxxxxx](#).

This means that you can reach your gateway with the following address: [11-xxxxxx.local](#).

Example

The gateway MAC address show on the sticker is FC:C2:3D:AA:BB:CC

This hostname is therefore l1-aabbcc

You can reach the gateway at l1-aabbcc.local

To contact the gateway through mDNS, your network must support this feature (with IGMP snooping disabled) and you must be on the same subnetwork than the gateway to contact.

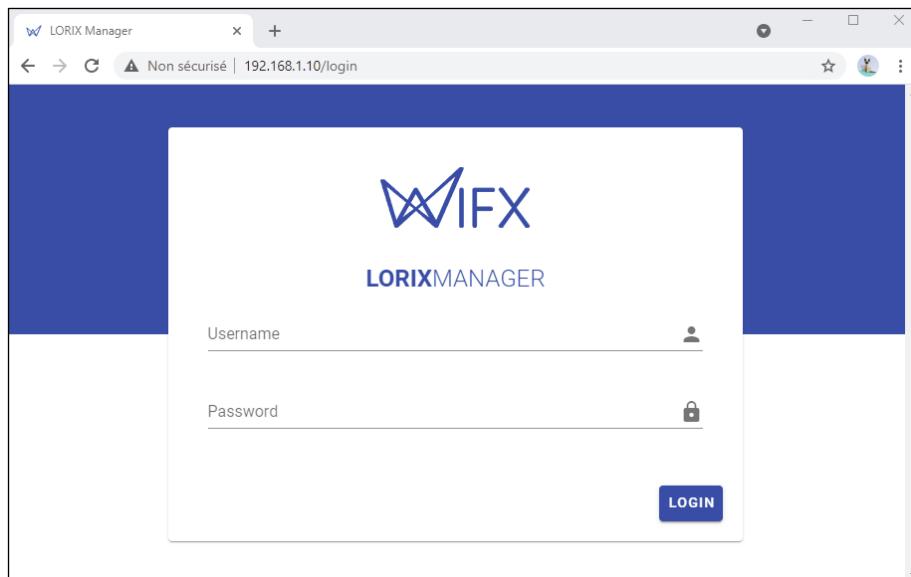
6.3.2 SSH

The gateway provides an SSH server and be accessed through SSH as soon as configured and connected to a working network using an SSH client program like PuTTY or ssh on Linux.

To access the gateway with SSH:

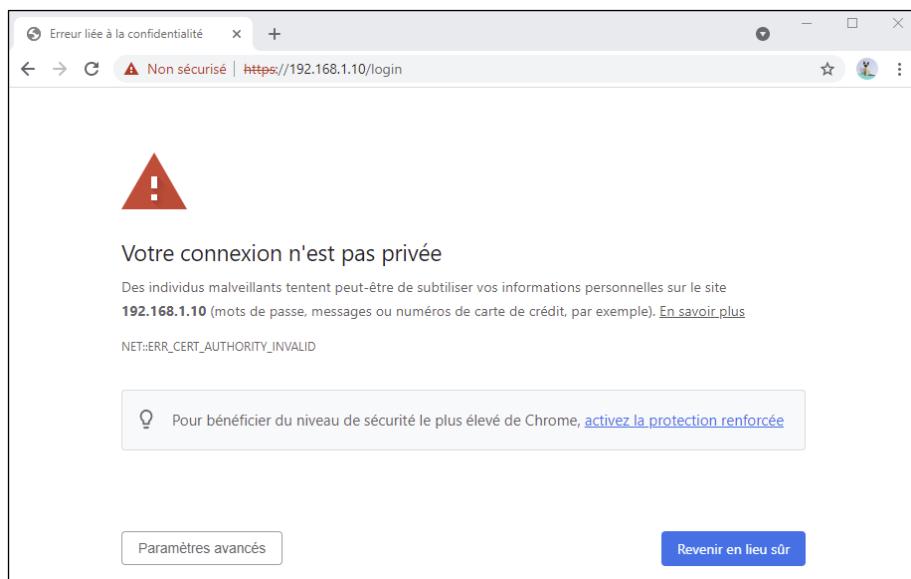
1. Power up the gateway
2. A terminal program like PuTTY or ssh can be used with the following parameters:

address	IP address or mDNS hostname
port	22
3. Accept the RSA key fingerprint if asked


6.3.3 WEB INTERFACE

The gateway provides a web graphical interface and can be accessed through your favorite web explorer.

As explained previously, you can reach the gateway through its IP address or through mDNS. Also, you can choose between HTTP (not secure) and HTTPS (SSL secured) by prefixing the address with <http://> respectively <https://>.


Example

For the IP address 192.168.1.148, you can reach the gateway using <http://192.168.1.148> or <https://192.168.1.148>. This is also correct with mDNS as you could reach the gateway with <http://l1-aabbcc.local> or <https://l1-aabbcc.local>.

6.3.3.1 SECURITY WARNING

If you access the gateway with SSL support (HTTPs), you will get a security warning. The form can differ from one web browser to another but the concept stays the same. You receive this error because the SSL certificate of the gateway is self-signed as we don't know the address at the certificate creation time.

You can always accept this security warning but it depends on your browser so please consult its documentation to know how to accept the risk and move forward.

Security consideration

This security warning is important to let you know that the certificate is not trust by a global certification issuer. If you know the IP address is correct as long as it is in your local network, it still secures your connection and avoid anyone to see data exchange (like user/password) between your computer and the gateway.

We suggest then to use HTTPs when possible.

7 BASIC SETUP

This chapter is made to help you to easily configure your gateway during the initial configuration process. It follows chronological configuration when possible so you should read it like a step by step configuration procedure and pass some steps when they are not required for your setup.

7.1 CONFIGURE THE NETWORK

The USB access is made for service only usage since the gateway is primarily made to be reached through an IP network. The first step is then to configure the network aspects through the USB service access.

7.1.1 CHECK THE CURRENT STATUS

7.1.1.1 IP ADDRESS

You can see the current IP address (v4 and v6) by using the command ifconfig:

```
$ ifconfig eth0
eth0      Link encap:Ethernet HWaddr fc:c2:3d:aa:bb:cc
          inet addr:192.168.1.10 Bcast:192.168.1.255 Mask:255.255.255.0
          inet6 addr: fe80::fec2:3dff:fe2d:56f1/64 Scope:Link
          inet6 addr: aaaa:bbbb:1:0:bbbb:3dff:fe2d:56f1/64 Scope:Global
          inet6 addr: aaaa:bbbb:1:0:dddd:ca08:6889:a36b/64 Scope:Global
          UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
          RX packets:10219756 errors:3 dropped:30251 overruns:0 frame:3
          TX packets:58541 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:493144710 (470.2 MiB) TX bytes:14043284 (13.3 MiB)
          Interrupt:27
```

The field `inet addr` returns the IPv4 addresses, `inet6 addr` fields return the IPv6 addresses.

7.1.1.2 CONNECTIVITY

You can test the current connectivity to see if the gateway has access to local, global or no access at all:

```
$ nmcli networking connectivity check
full
```

The possible result values are:

- **none**
the host is not connected to any network.
- **portal**
the host is behind a captive portal and cannot reach the full Internet.
- **limited**
the host is connected to a network, but it has no access to the Internet.
- **full**
the host is connected to a network and has full access to the Internet.
- **unknown**
the connectivity status cannot be found out.

7.1.1.3 CONNECTION INFORMATION

The main connection provided by the system is called **backhaul** in LORIX OS and represents the connection established on the eth0 device (main and only Ethernet connector of the product).

You can display its various parameters using the nmcli utils as follow:

```
$ nmcli connection show backhaul
connection.id:                                backhaul
connection.uuid:                               390e5c2b-7312-415e-80e6-7b94a5c24fc3
connection.stable-id:                           --
connection.type:                               802-3-ethernet
connection.interface-name:                      eth0
connection.autoconnect:                         yes
connection.autoconnect-priority:                1
connection.autoconnect-retries:                 0 (forever)
connection.multi-connect:                       0 (default)
connection.auth-retries:                        -1
connection.timestamp:                          1637144771
connection.read-only:                           no
connection.permissions:                        --
connection.zone:                               --
connection.master:                            --
connection.slave-type:                         --
connection.autoconnect-slaves:                 -1 (default)
connection.secondaries:                         --
connection.gateway-ping-timeout:               0
connection.metered:                            unknown
connection.lldp:                               default
connection.mdns:                               -1 (default)
connection.llmnr:                               -1 (default)
connection.wait-device-timeout:                 -1
802-3-ethernet.port:                           --
802-3-ethernet.speed:                          0
802-3-ethernet.duplex:                         --
802-3-ethernet.auto-negotiate:                no
802-3-ethernet.mac-address:                   --
802-3-ethernet.cloned-mac-address:            --
802-3-ethernet.generate-mac-address-mask:     --
802-3-ethernet.mac-address-blacklist:          --
802-3-ethernet.mtu:                            auto
802-3-ethernet.s390-subchannels:              --
802-3-ethernet.s390-nettype:                  --
802-3-ethernet.s390-options:                  --
802-3-ethernet.wake-on-lan:                   default
802-3-ethernet.wake-on-lan-password:           --
lines 1-38
```

There is a lot more parameters which are not displayed here and that you can display using the up/down keyboard keys to move through the parameters list.

Lower case parameters are configuration, upper case ones are related to the resulting situation (connection) and give you information about the current status.

For example, the value IP4.ADDRESS[1] is interesting and returns in this case 192.168.1.10/24. Note the /24 at the end which represent the netmask.

7.1.2 DHCP

By default, the gateway has a DHCP client waiting for an IP address and other configuration from a DHCP server. This is the most standard and simple way to manage it. If you have found an IP address at the previous step, it means you have a DHCP server which is configured correctly.

You can then either use the IP address or the mDNS hostname if you are in the same sub-network.

Additional configuration

Additional DHCP configuration is often not required but if you need to modify parameters or add route for example, you can either use the web interface (Network → Ethernet → Settings) or consult nmcli's documentation¹ if you prefer the terminal access (USB or SSH).

7.1.3 STATIC

Following connection display described at [7.1.1.3 Connection information](#), you can modify connection parameters like setting the method to manual and the IP address, netmask, etc.

7.1.3.1 DEFINE A STATIC IPv4 ADDRESS WITH CUSTOM DNS

The following commands will define a fixe IPv4 address, the gateway and DNS addresses and finally set the method to manual (use auto to come back to DHCP):

```
$ nmcli connection modify backhaul ipv4.address 192.168.1.11/24
$ nmcli connection modify backhaul ipv4.gateway 192.168.1.1
$ nmcli connection modify backhaul ipv4.dns 8.8.8.8
$ nmcli connection modify backhaul ipv4.method manual
```

Apply the new parameters with the following command:

```
$ nmcli connection up backhaul
```

The nmcli show connection command returns now the following:

```
$ nmcli connection show backhaul
[...]
ipv4.method:           manual
ipv4.dns:              8.8.8.8
[...]
ipv4.addresses:        192.168.1.11/24
ipv4.gateway:          192.168.1.1
[...]
IP4.ADDRESS[1]:        192.168.1.11/24
IP4.GATEWAY:           192.168.1.1
IP4.ROUTE[1]:          dst = 192.168.1.0/24, nh = 0.0.0.0, mt = 100
IP4.ROUTE[2]:          dst = 0.0.0.0/0, nh = 192.168.1.1, mt = 100
IP4.DNS[1]:             8.8.8.8
[...]
```

From the web interface, you can observe the graphical equivalent:

Connection status			
STATUS	Activated		
IPV4	ADDRESS 192.168.1.11 /24	GATEWAY 192.168.1.1	DNS 8.8.8.8
IP Address	192.168.1.11 /24		
Gateway	192.168.1.1		
DNS	8.8.8.8		
Routes	192.168.1.0 /24 0.0.0.0 /0	mt 100	

¹ nmcli — command-line tool for controlling NetworkManager
<https://developer.gnome.org/NetworkManager/stable/nmcli.html>

7.1.4 NETWORK VERIFICATION AND TROUBLESHOOTING

You should have a working network configuration at this time and the following chapter will help you to verify it.

The first things to do is to test again the network connectivity as described in chapter [7.1.1.2 Connectivity](#), you should get the result “full”.

If not, your configuration is not right or your network block outgoing connection. In all case, you must be able to reach your main gateway, this can be verified using the command ping (with our example gateway):

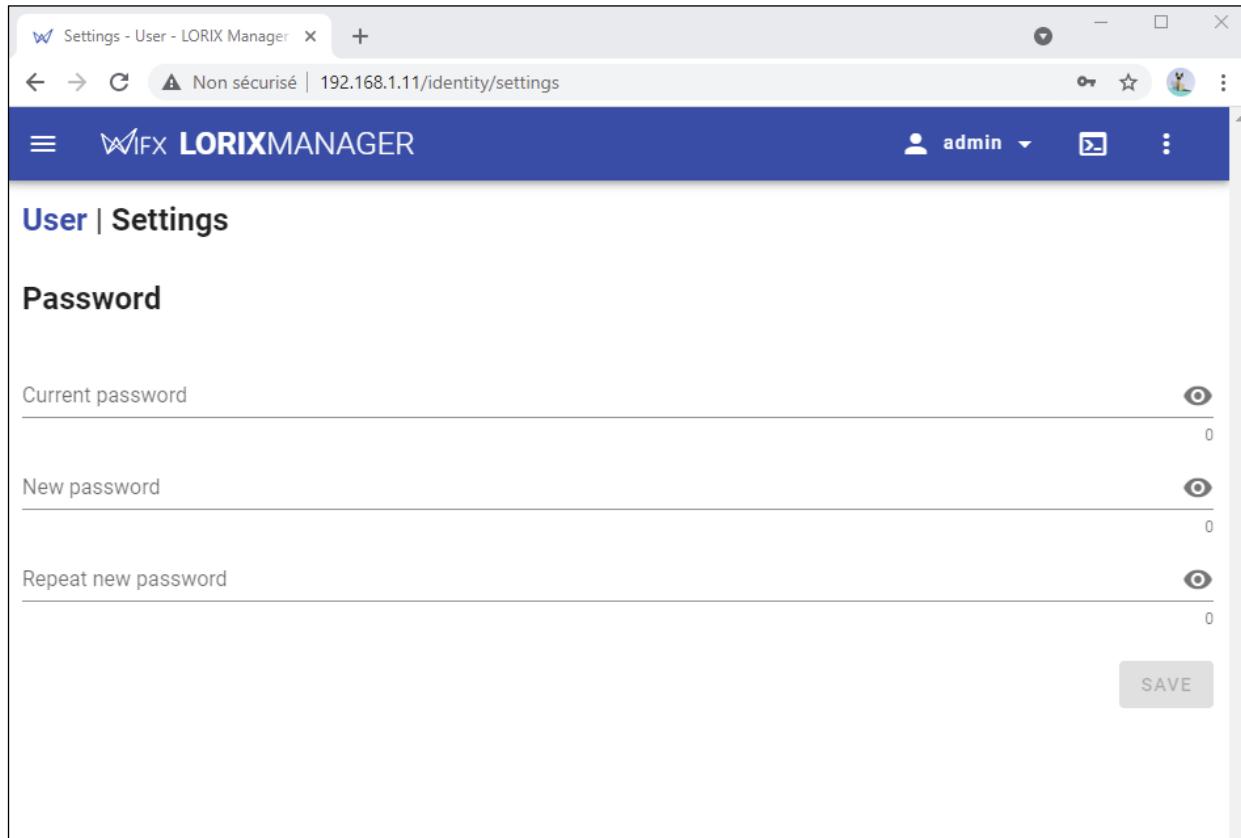
```
$ ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=6.43 ms
64 bytes from 192.168.1.1: icmp_seq=2 ttl=64 time=6.43 ms
64 bytes from 192.168.1.1: icmp_seq=3 ttl=64 time=6.45 ms
^C
--- 192.168.1.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 6.425/6.434/6.453/0.013 ms
```

Or traceroute:

```
traceroute 192.168.1.1
traceroute to 192.168.1.1 (192.168.1.1), 30 hops max, 38 byte packets
 1  192.168.1.1 (192.168.1.1)  6.357 ms  6.380 ms  6.324 ms
```

If you don't have access to the gateway, verify your network parameters and be sure you have reloaded your connection.

If you have access to the gateway, contact your IT support to verify for example outgoing connection are authorized for your device.

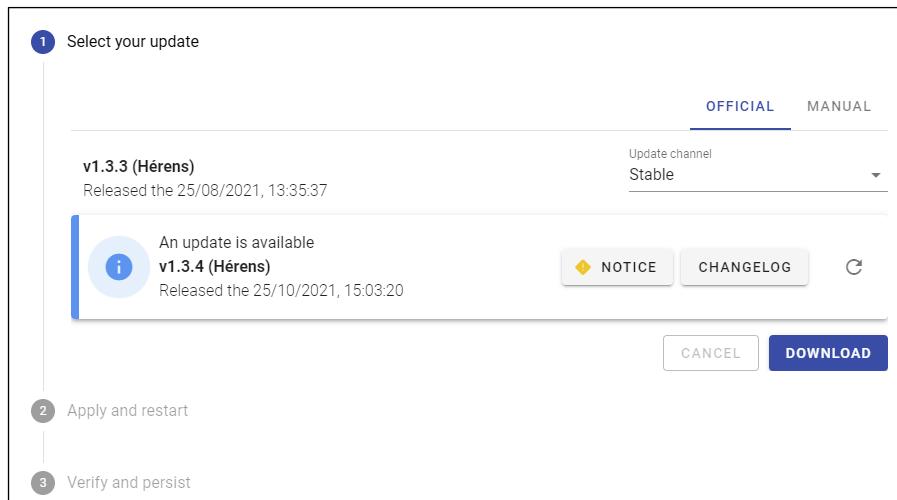

If all is working, you can now reach your gateway using SSH and the web interface which will be used by default for the next chapters.

7.2 SECURITY

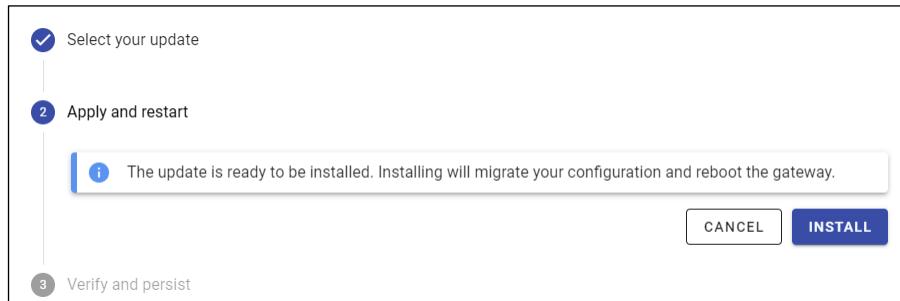
7.2.1 PASSWORD

One of the first step to do once logged in the web interface is to change the admin password. Unless you use your gateway for development in a controlled network, this is a basic security advice which can prevents obviously easy attack to be done.

To change it, click on the user (Top right corner of the web interface) → Settings:



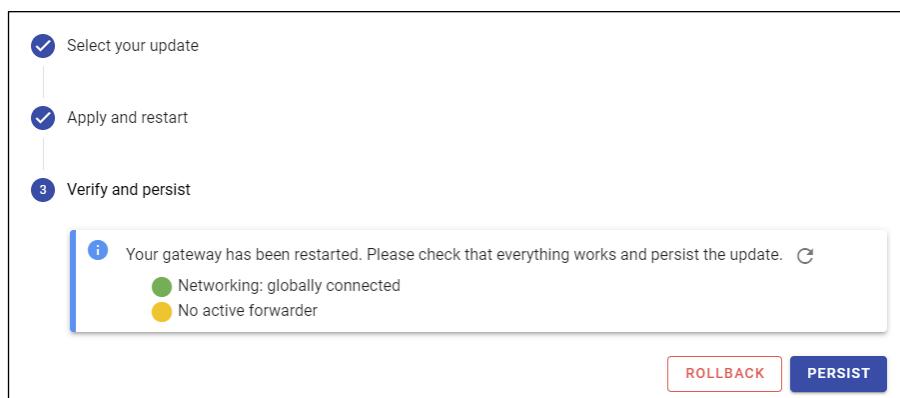
Enter the current password and the new one twice and click on Save button. You then get a notification which confirms the password has been changed.


7.3 SYSTEM UPDATE

The network and security aspects have been defined. Prior to concrete usage of the product, we advise to update it to the latest available system version.


For that, go into System → Update and verify if a new version is available:

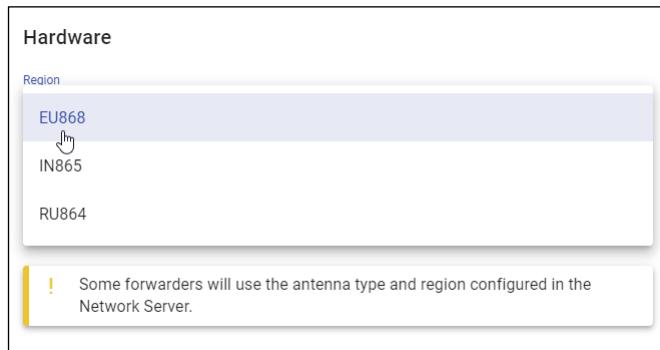
Downloaded image screen:


The image is ready to be flash into the gateway. Click on install then wait for the update to be complete:

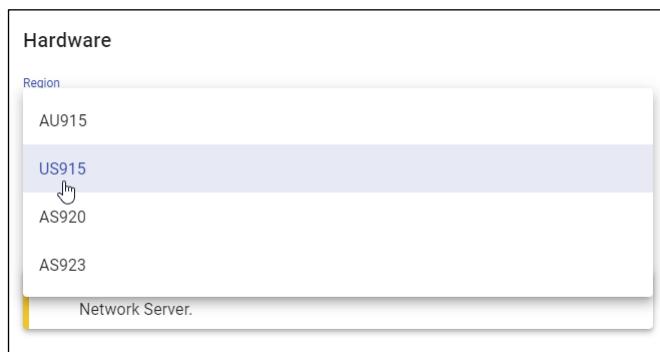
During the reboot, you will be disconnected.

Interface reconnection

The connection should be enabled again automatically after 3-4 minutes. If it's not the case, you can try to refresh the page and removing the cache using the command CTRL+F5.


You are done and the system has successfully been updated. To confirm this new version, click on Persist button.

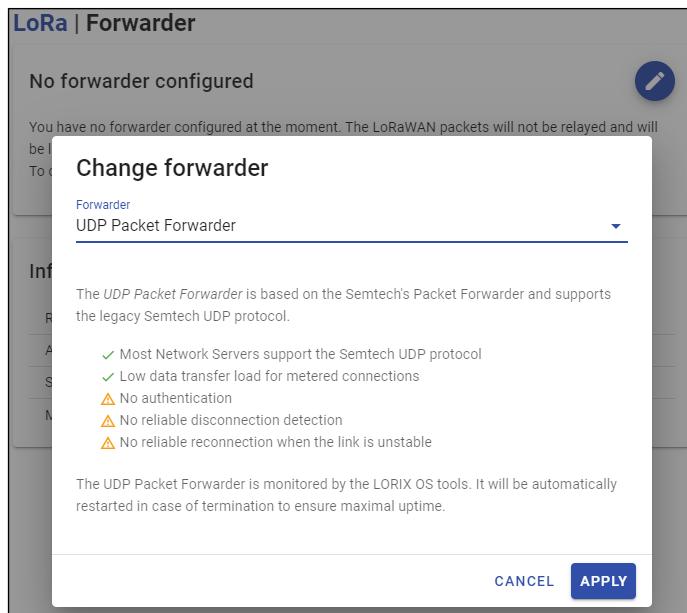
7.4 LORA/LORAWAN CONFIGURATION


7.4.1 LORA (RF)

Prior to any usage of LoRaWAN forwarder, you need to configure the region and the antenna. To do so, go into LoRa → Settings and define the region and antenna.

7.4.1.1 8XX REGION

7.4.1.2 9XX REGION



7.4.1.3 ANTENNA

7.4.2 LoRaWAN

Once the RF base is correctly configured, you can select your favourite forwarder under LoRa → Forwarder:

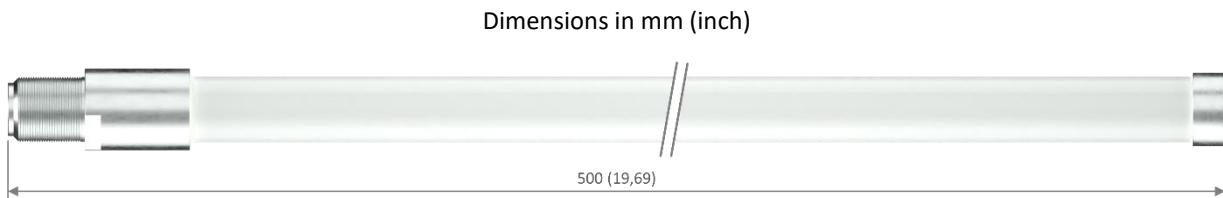
Clicking on the right blue button opens a modal window which displays the various forwarders and describes briefly the pros and cons of each solution.

Configuration of each forwarder will not be described here but can be found at
<https://iot.wifx.net/docs/go/forwarding>.

8 ELECTRICAL

8.1 POWER CONSUMPTION

All measures are done at 20°C, without USB Type-C cable connected.


Task (@ 20°C ambient)	Voltage [V]	Current [mA]	Power [mW]
Input voltage: 10VDC			
Linux only running RF part disabled	10,0	84	840
LoRa gateway with UDP Packet Forwarder 8 channels for RX	10,0	116	1160
LoRa gateway with TX tool 1 channel for continuous TX @ SF7	10,0	120	1200
Input voltage: 24VDC			
Linux only running RF part disabled	24,0	36	864
LoRa gateway with UDP Packet Forwarder 8 channels for RX	24,0	49	1176
LoRa gateway with TX tool 1 channel for continuous TX @ SF7	24,0	51	1224
LoRa gateway with TX tool 1 channel for continuous TX @ SF12	24,0	51	1224
Input voltage: 48VDC			
Linux only running RF part disabled	48,0	19,5	936
LoRa gateway with UDP Packet Forwarder 8 channels for RX	48,0	26,5	1272
LoRa gateway with TX tool 1 channel for continuous TX @ SF7	48,0	27,7	1330

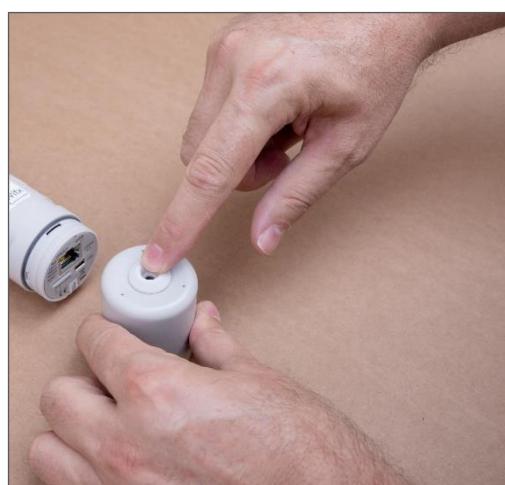
9 MECHANICAL

9.1 WIFX L1

9.2 ANTENNA 5dBi (8XX & 9XX VERSIONS)

10 SETUP GUIDE

10.1 GENERAL RECOMMENDATIONS



The Wifx L1 gateway is designed to be placed **vertically** with the antenna pointing **upwards**.

If you wish to attach it to a pole, it is strongly recommended to use the plastic mounting loops provided with the gateway which are UV-resistant or use compatible accessories with eventually metal zip tie. Guide the loops around the Wifx L1 through the edge markings, and attach it around the pole where it will be mounted.

It is strongly recommended to not connect a loose Ethernet cable to the Ethernet port while attaching the gateway to a pole, to avoid adding weight to the port. Ideally, the Ethernet cable should be attached within 2 meters from the gateway device.

10.2 STANDARD MOUNTING USING A POLE

The following install guide has been made for the LORIX One and stays valid for the Wifx L1.

Remove the wire grommet from the cap.

Once the Ethernet cable passed through the cap hole, open the silicon grommet and put it around the cable as showed on the picture.

Be careful with the orientation of the grommet

Press the grommet with your finger from inside the cap (left picture) until take it final position (right picture).

Connect the Ethernet cable.

Move the cap in direction of the body while maintaining the cable with the other hand to keep the cable as straight as possible.

Screw the cap on the body to guarantee as good as possible water and dust protection.

Once fixed, be sure the cable is well placed and verify that the grommet is correctly positioned.

Use only appropriate antenna provided as accessory for the Wifx L1.

Engage the antenna connector into the gateway RF connector as showed on the picture.

While maintaining the antenna into the gateway, start screwing with the other hand the gateway RF connector tightening ring.

Never turn or use directly the antenna body to screw it on the gateway, it could damage or break the antenna.

Once the cable and the antenna correctly connected and the gateway correctly closed, you can install it on a pole using the 2 provided cable tie.

The provided cable ties are black because they are specifically made to support UV.

You should use always the provided one or UV protected specifically.

10.3 MOUNTING ON WALL (INDOOR)

Using the accessory WHR-L01-W01, you can mount the Wifx L1 on a wall in indoor condition. The following instructions describe how to proceed.

The WHR-L01-W01 is intended to be fixed on the Wifx L1 before any installation on the wall.

The first step is to install the support on the back of the Wifx L1.

Use a **torx T10** screwdriver to screw the two flat head screws at the back of the Wifx L1.

Be careful to fix correctly the two screws ensuring the support is not moving. Strength of screwing should be correctly adapted to avoid on the contrary any pull-out of the metal inserts from the plastic body.

The WHR-L01-W01 has space for the screw on one side, make sure that the screws are in place when fully tightened and that the head surface matches the support's surface as shown in the picture.

The mounting of the bracket in the wall is done in two steps. You first need to drill the first (upper) hole, put the plastic wall plug and screw the first 4x30 wood doom head screw using **torx T20** screwdriver.

You must keep space for the support thickness. The support must fit as showed below (without any product fixed on it for a better illustration).

Once this first screw in place, it's time to mark the place of the second hole in the wall

With the Wifx L1 fixed on the support

Once the second hole completed, you can place the plastic wall plug and screw the second screw as showed.

10.3.1 FINAL CONTROL

As this installation is meant to be kept indoors, there is no special aspect to be taken care of. However, it is important to avoid overloading the cable gland and the internal Ethernet connector by securing the cable correctly.

10.4 MOUNTING ON WALL (OUTDOOR)

Using the accessory WHR-L01-W02, you can mount the Wifx L1 on a wall in outdoor conditions. The following instructions describe how to proceed.

The WHR-L01-W02 is intended to be mounted on the wall first, then the LORIX One to be mounted on it.

Following that, the first step is to drill one of the two holes, put the plastic wall plug and screw the first screw using the **torx T20** screwdriver. Do not forget to add the flat washer between the head screw and the surface of support.

Once the first screw in place, mark the position of the second hole and repeat the operation for the second screw. The final result is showed as follow.

VERTICAL ALIGNMENT

Thanks to the oblique holes of the support, you can easily adjust the vertical orientation of the support.

You can now screw the two screws using a **torx T10** screwdriver as showed (compatible model including the nut inserts)

10.4.1 FINAL CONTROL

As with any installation, be sure to properly manage the installation of the Ethernet cable to ensure that the entire system is waterproof.

A common method is to create a loop of cable under the Wifx L1 and secure it properly to the mast to ensure that any water stagnation remains below the cable grommet and that there is no mechanical stress on it.