

FCC SAR Test Report

APPLICANT	: Whoop International Trading Limited
EQUIPMENT	: WHOOP USB LTE DONGLE
BRAND NAME	: WHOOP
MODEL NAME	: WHT-25LT
FCC ID	: 2AP7L-WHT25LT
STANDARD	: FCC 47 CFR PART 2 (2.1093)

The product was received on May 25, 2020 and testing was started from Sep. 08, 2020 and completed on Sep. 13, 2020. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Kosa Wang

Reviewed by: Rose Wang / Supervisor

Kat Vin

Approved by: Kat Yin / Manager

Sporton International (Kunshan) Inc. No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

Table of Contents

1. Statement of Compliance	4
2. Administration Data	5
3. Guidance Applied	5
4. Equipment Under Test (EUT) Information	6
4.1 General Information	6
4.2 General LTE SAR Test and Reporting Considerations	7
5. RF Exposure Limits	9
5.1 Uncontrolled Environment	
5.2 Controlled Environment	
6. Specific Absorption Rate (SAR)	10
6.1 Introduction	
6.2 SAR Definition	
7. System Description and Setup	11
7.1 E-Field Probe	
7.2 Data Acquisition Electronics (DAE)	
7.3 Phantom	
7.4 Device Holder	
8. Measurement Procedures	
8.1 Spatial Peak SAR Evaluation	
8.2 Power Reference Measurement	16
8.3 Area Scan	
8.4 Zoom Scan	
8.5 Volume Scan Procedures	17
8.6 Power Drift Monitoring	
9. Test Equipment List	
10. System Verification	19
10.1 Tissue Simulating Liquids	19
10.2 Tissue Verification	
10.3 System Performance Check Results	21
11. RF Exposure Positions	
11.1 SAR Testing for USB Dongle	
12. Conducted RF Output Power (Unit: dBm)	
13. Antenna Location	24
14. SAR Test Results	25
14.1 Body SAR	26
14.2 Repeated SAR Measurement	
15. Simultaneous Transmission Analysis	27
16. Uncertainty Assessment	
17. References	29
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	

Appendix E. Conducted RF Output Power Table

Revision History

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA052509	Rev. 01	Initial issue of report	Sep. 22, 2020

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **Whoop International Trading Limited, WHOOP USB LTE DONGLE, WHT-25LT,** are as follows.

Highest 1g SAR Summary					
Equipment Class	Frequency Band		Body (Separation 5mm)		
	Licensed LTE	Band 2	1.15		
Licopood		Band 12	0.95		
Licensed		Band 66/Band 4	1.04		
			0.76		
Date of Testing:			2020/9/8~2020/9/13		

Remark: This device supports LTE B4 and B66. Since the supported frequency span for LTE B4 falls completely within the supports frequency span for LTE B66, both LTE bands have the same target power, and both LTE bands share the same transmission path; therefore, SAR was only assessed for LTE B66.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

2. Administration Data

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Testing Laboratory							
Test Firm	Sporton International (Kunshan) Inc.					
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL : +86-512-57900158 FAX : +86-512-57900958						
	Sporton Site No. FCC Designation No. FCC Test Firm Registration No.						
Test Site No.	SAR01-KS / SAR02-KS CN1257 314309 SAR03-KS /SAR04-KS CN1257 314309						

Applicant					
Company Name Whoop International Trading Limited					
Address Flat-B 8/F chong gming building 72 cheung sha wan road, kowloon, Hong Kong					
	Manufacturer				
Company Name Whoop International Trading Limited					
Address Flat-B 8/F chong gming building 72 cheung sha wan road, kowloon, Hong Kong					

3. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- · FCC 47 CFR Part 2 (2.1093)
- · ANSI/IEEE C95.1-1992
- · IEEE 1528-2013
- · FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- · FCC KDB 447498 D01 General RF Exposure Guidance v06
- · FCC KDB 941225 D05 SAR for LTE Devices v02r05
- FCC KDB 447498 D02 SAR Procedures for Dongle Xmtr v02r01

4. Equipment Under Test (EUT) Information

4.1 General Information

	Product Feature & Specification					
Equipment Name	WHOOP USB LTE DONGLE					
Brand Name	WHOOP					
Model Name	WHT-25LT					
FCC ID	2AP7L-WHT25LT					
IMEI Code	864839041627560					
Wireless Technology and Frequency Range	LTE Band 2: 1850.7 MHz ~ 1909.3 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 12: 699.7 MHz ~ 715.3 MHz LTE Band 66: 1710.7 MHz ~ 1779.3 MHz LTE Band 71: 665.5 MHz ~695.5 MHz					
Mode	LTE: QPSK, 16QAM					
HW Version	WHT-25LT					
SW Version	WHT-25LT-V2.0					
EUT Stage	Production Unit					

4.2 General LTE SAR Test and Reporting Considerations

Summarized r	necessary iter	ns addres	ssed in K	DB 941	225 D05	v02r05		
FCC ID	2AP7L-WHT25LT							
Equipment Name	WHOOP USB L	TE DONGI	E					
Operating Frequency Range of each LTE transmission band	LTE Band 2: 1850.7 MHz ~ 1909.3 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz							
Channel Bandwidth	LTE Band 2:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 4:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 12:1.4MHz, 3MHz, 5MHz, 10MHz LTE Band 66:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 71: 5MHz, 10MHz, 15MHz, 20MHz							
Uplink Modulations used	QPSK / 16QAM							
LTE Voice / Data requirements	Data only							
LTE Release Version	R10, Cat 4							
CA Support	No							
	Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3 Modulation Channel bandwidth / Transmission bandwidth (NRB) MPR (dB)						and 3	
		1.4	3.0	5	10	15	20	
LTE MPR permanently built-in by		MHz	MHz	MHz	MHz	MHz	MHz	
design	QPSK 16 QAM	> 5	> 4	> 8 ≤ 8	> 12	> 16	> 18 ≤ 18	≤ 1
<u></u>	16 QAM 16 QAM	≤ 5 > 5	≤ 4 > 4	> 8	≤ 12 > 12	≤ 16 > 16	> 18	≤ 1 ≤ 2
	64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤2
	64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 3
	256 QAM ≥ 1 ≤ 5							
LTE A-MPR	In the base station simulator configuration, Network Setting value is set to NS_01 to disable A-MPR during SAR testing and the LTE SAR tests was transmitting on all TTI frames (Maximum TTI)							
Spectrum plots for RB configuration	(Maximum 11) A properly configured base station simulator was used for the SAR and power measurement; therefore, spectrum plots for each RB allocation and offset configuration are not included in the SAR report.							

Report No. : FA052509

	Transmission (H, M, L) channel numbers and frequencies in each LTE band													
	LTE Band 2													
	Bandwidth	n 1.4 MHz	Bandwid	th 3 MHz	Bandw	idth 5 MHz	Bandwidt	h 10 l	MHz	Bandwidt	h 15 MHz	Banc	dwidtl	n 20 MHz
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Fre (MI	eq. Hz)	Ch. #	Freq. (MHz)	Ch.	#	Freq. (MHz)
L	18607	1850.7	18615	1851.5	18625	1852.5	18650	18	55	18675	1857.5	187	00	1860
Μ	18900	1880	18900	1880	18900	1880	18900	18	80	18900	1880	189	00	1880
Н	19193	1909.3	19185	1908.5	19175	1907.5	19150	19	05	19125	1902.5	191	00	1900
						LTE Bai	nd 4							
	Bandwidth	n 1.4 MHz	Bandwid	th 3 MHz	Bandw	idth 5 MHz	Bandwidt	h 10 l	MHz	Bandwidt		Banc	dwidtl	n 20 MHz
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Fre (MI	əq. Hz)	Ch. #	Freq. (MHz)	Ch.	#	Freq. (MHz)
L	19957	1710.7	19965	1711.5	19975	1712.5	20000	17	15	20025	1717.5	200	50	1720
Μ	20175	1732.5	20175	1732.5	20175	1732.5	20175	173	32.5	20175	1732.5	201	75	1732.5
Н	20393	1754.3	20385	1753.5	20375	1752.5	20350	17	50	20325	1747.5	203	00	1745
						LTE Ban	ıd 12							
	Ban	dwidth 1.4	MHz	Bai	ndwidth 3	MHz	Bar	ndwid	th 5 N	1Hz	Ban	Idwidth	10 N	ЛНz
	Ch. #	Fre	eq. (MHz)	Ch. #	F	req. (MHz)	Ch. #	1	Freq. (MHz)		Ch. #		Fre	q. (MHz)
L	23017	7	699.7	23025	5	700.5	23035	5		701.5	23060)		704
Μ	23095	5	707.5	23095	5	707.5	23095	5		707.5	23095	5	-	707.5
Н	23173	3	715.3	23165	5	714.5	23155 713.5 2313)		711		
						LTE Ban	id 66							
	Bandwidth		Bandwid	th 3 MHz	Bandw	idth 5 MHz	Bandwidt			Bandwidt		Banc	dwidtl	n 20 MHz
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Fre (MI	∋q. Hz)	Ch. #	Freq. (MHz)	Ch.	#	Freq. (MHz)
L	131979	1710.7	131987	1711.5	131997	-	132022		15	132047	1717.5	1320)72	1720
Μ	132322	1745	132322	1745	132322	1745	132322	17	45	132322	1745	1323	322	1745
Н	132665	1779.3	132657	1778.5	132647	1777.5	132622	17	75	132597	1772.5	1325	572	1770
						LTE Ban	id 71							
	Bar	ndwidth 5 N	/IHz	Ban	dwidth 1) MHz	Ban	idwidt	h 15 l	MHz	Ban	ldwidth	1 20 N	ЛНz
	Ch. #	Fre	eq. (MHz)	Ch. #	F	req. (MHz)	Ch. #		Fre	eq. (MHz)	Ch. #		Fre	q. (MHz)
L	13314	7	665.5	13317	2	668	13319	7		670.5	13322	2		673
Μ	13324	7	675.5	13327	2	678	13329	7		680.5	13332	2		683
Н	13344	7	695.5	13342	2	693	13339	7		690.5	13337	2		688

5. <u>RF Exposure Limits</u>

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

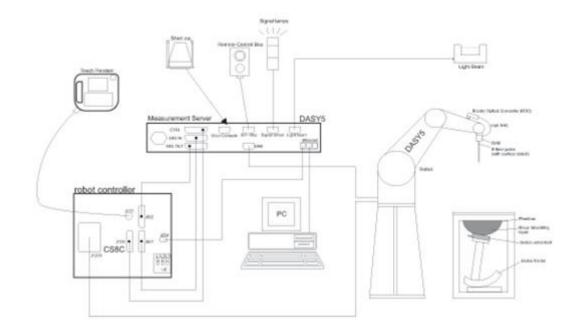
6. Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:


$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

7.1 <u>E-Field Probe</u>

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<EX3DV4 Probe>

Construction	Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	10 MHz – >6 GHz Linearity: ±0.2 dB (30 MHz – 6 GHz)	A Contraction of the second se
Directivity	±0.3 dB in TSL (rotation around probe axis) ±0.5 dB in TSL (rotation normal to probe axis)	
Dynamic Range	10 μW/g – >100 mW/g Linearity: ±0.2 dB (noise: typically <1 μW/g)	
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

7.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Photo of DAE

7.3 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

Report No. : FA052509

7.4 <u>Device Holder</u>

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

8. <u>Measurement Procedures</u>

The measurement procedures are as follows:

<Conducted power measurement>

- (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- (b) Read the WWAN RF power level from the base station simulator.
 (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously
- transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

8.3 <u>Area Scan</u>

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	\leq 3 GHz	> 3 GHz				
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$				
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$				
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm				
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.					

8.4 <u>Zoom Scan</u>

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			\leq 3 GHz	> 3 GHz		
Maximum zoom scan s	spatial reso	lution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$		
	uniform	grid: $\Delta z_{\text{Zoom}}(n)$	\leq 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
	grid	∆z _{Zoom} (n>1): between subsequent points	≤ 1.5·∆z	Zoom(n-1)		
Minimum zoom scan volume	x, y, z	ł	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

9. <u>Test Equipment List</u>

		Tour of Mandal	O a rial Number	Calib	ration	
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	750MHz System Validation Kit	D750V3	1087	2019/3/27	2022/3/26	
SPEAG	1750MHz System Validation Kit	D1750V2	1090	2019/3/27	2022/3/26	
SPEAG	1900MHz System Validation Kit	D1900V2	5d170	2019/3/26	2022/3/25	
SPEAG	Data Acquisition Electronics	DAE4	1358	2020/4/28	2021/4/27	
SPEAG	Dosimetric E-Field Probe	EX3DV4	3935	2020/5/27	2021/5/26	
SPEAG	SAM Twin Phantom	QD 000 P40 CB	TP-1753	NCR	NCR	
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR	
Anritsu	Radio Communication Analyzer	MT8821C	6201432831	2020/4/14	2021/4/13	
Agilent	Wireless Communication Test Set	E5515C	MY52102706	2020/5/19	2021/5/18	
Agilent	ENA Series Network Analyzer	E5071C	MY46106933	2020/8/1	2021/7/31	
SPEAG	Dielectric Probe Kit	DAK-3.5	1138	2020/5/19	2021/5/18	
Anritsu	Vector Signal Generator	MG3710A	6201682672	2020/1/8	2021/1/7	
Rohde & Schwarz	Power Meter	NRVD	102081	2020/8/13	2021/8/12	
Rohde & Schwarz	Power Sensor	NRV-Z5	100538	2020/8/13	2021/8/12	
Rohde & Schwarz	Power Sensor	NRV-Z5	100539	2020/8/13	2021/8/12	
EXA	Spectrum Analyzer	FSV7	101631	2020/1/8	2021/1/7	
Testo	Hygrometer	608-H1	1241332088	2020/1/8	2021/1/7	
FLUKE	DIGITAC THERMOMETER	51II	97240029	2020/8/14	2021/8/13	
BONN	POWER AMPLIFIER	BLMA 0830-3	087193A	Not	ie 1	
BONN	POWER AMPLIFIER	BLMA 2060-2	087193B	Not	ie 1	
ARRA	Power Divider	A3200-2	N/A	Not	e 1	
Agilent	Dual Directional Coupler	778D	20500	Not	ie 1	
Agilent	Dual Directional Coupler	11691D	MY48151020	Not	ie 1	
MCL	Attenuation1	BW-S10W5+	N/A	Not	ie 1	
MCL	Attenuation2	BW-S10W5+	N/A	Note 1		
MCL	Attenuation3	BW-S10W5+	N/A	Not	ie 1	

Note:

1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

The dipole calibration interval can be extended to 3 years with justification according to KDB 865664 D01. The dipoles are also not physically damaged, or repaired during the interval. The justification data in appendix C can be found which the return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration for each dipole.

10. System Verification

10.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.2.

Fig 10.2 Photo of Liquid Height for Body SAR

10.2 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9
835	835 40.3		0.2	1.4	0.2	0	0.90	41.5
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1800, 1900, 2000	55.2	0	0	0 0.3 0 44.5		1.40	40.0	
2450	55.0	0	0	0	0	45.0	1.80	39.2
2600	54.8	0	0	0.1	0	45.1	1.96	39.0

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
750	Head	22.8	0.904	42.287	0.89	41.90	1.57	0.92	±5	2020/9/10
1750	Head	22.9	1.365	40.507	1.37	40.10	-0.36	1.01	±5	2020/9/8
1900	Head	22.9	1.401	40.146	1.40	40.00	0.07	0.37	±5	2020/9/13

10.3 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type Input Power (mW)		Dipole S/N	Probe DAE S/N S/N		Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2020/9/10	750	Head	250	1087	3935	1358	2.19	8.36	8.76	4.78
2020/9/8	1750	Head	250	1090	3935	1358	9.85	36.40	39.4	8.24
2020/9/13	1900	Head	250	5d170	3935	1358	10.10	39.00	40.4	3.59

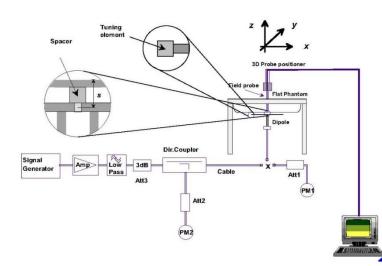


Fig 10.3.1 System Performance Check Setup

Fig 10.3.2 Setup Photo

11. <u>RF Exposure Positions</u>

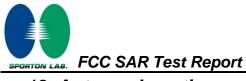
This EUT was tested in four different USB configurations. They are "direct laptop plug-in for configuration 1 and 3", "USB cable plug-in for configuration 2 and 4", and "USB cable plug-in for Tip Mode (the tip of the EUT)" shown as below. Both direct laptop plug-in and USB cable plug-in test configurations are tested with 5 cm separation between the particular dongle orientation and the flat phantom. Please refer to Appendix D for the test setup photos.

11.1 SAR Testing for USB Dongle

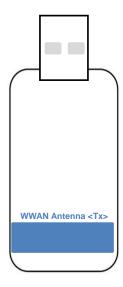
Test all USB orientations [see figure below: (A) Horizontal-Up, (B) Horizontal-Down, (C) Vertical-Front, and (D) Vertical-Back] with a device-to-phantom separation distance of 5 mm or less, according to KDB Publication 447498 D02 requirements. These test orientations are intended for the exposure conditions found in typical laptop/notebook/netbook or tablet computers with either horizontal or vertical USB connector configurations at various locations in the keyboard section of the computer. Current generation portable host computers should be used to establish the required SAR measurement separation distance. The same test separation distance must be used to test all frequency bands and modes in each USB orientation. The typical Horizontal-Up USB connection (A), found in the majority of host computers, must be tested using an appropriate host computer. A host computer with either Vertical-Front (C) or Vertical Back (D) USB connection should be used to test one of the vertical USB orientations. If a suitable host computer is not available for testing the Horizontal-Down (B) or the remaining Vertical USB orientation, a high quality USB cable, 12 inches or less, may be used for testing these other orientations. It must be documented that the USB cable does not influence the radiating characteristics and output power of the transmitter.

Configuration 1	Configuration 2	Configuration 3	Configuration 4
(Horizontal Up)	(Horizontal Down)	(Vertical Front)	(Vertical Back)

SPORTON LAB. FCC SAR Test Report

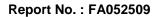

12. Conducted RF Output Power (Unit: dBm)

The detailed conducted power table can refer to Appendix E.


<LTE Conducted Power>

General Note:

- Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing.
- 2. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required.
- 3. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 4. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 5. Per KDB 941225 D05v02r05, for QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.
- 7. Per KDB 941225 D05v02r05, smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- For LTE 4 / B12 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.
- 9. LTE band 4 SAR test was covered by Band 66; according to April 2015 TCB workshop, SAR test for overlapping LTE bands can be reduced if
 - a. the maximum output power, including tolerance, for the smaller band is ≤ the larger band to qualify for the SAR test exclusion
 - b. the channel bandwidth and other operating parameters for the smaller band are fully supported by the larger band



13. Antenna Location

Front View

Antonnoo	DUT Test Position										
Antennas	Horizontal Up	Horizontal Up Horizontal Down Vertical Front Vertica									
WWAN Main Antenna	Yes	Yes	Yes	Yes	Yes						

14. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.

LTE Note:

- 1. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 2. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 3. Per KDB 941225 D05v02r05, for QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.
- 5. Per KDB 941225 D05v02r05, smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- 6. For LTE B4 / B12 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.
- 7. LTE B4 SAR test was covered by LTE B66; according to April 2015 TCB workshop, SAR test for overlapping LTE bands can be reduced if
 - a. the maximum output power, including tolerance, for the smaller band is ≤ the larger band to qualify for the SAR test exclusion
 - b. the channel bandwidth and other operating parameters for the smaller band are fully supported by the larger band

Report No. : FA052509

14.1 Body SAR

<FDD LTE SAR>

No.	Band	BW	Modulation	RB	RB offset	Test	Gap	Ch.	Freq.	Power	Limit	Scaling		Measured 1g SAR	Reported 1g SAR
		(MHz)					(mm)		(MHz)	(abm)	(dBm)	Factor	(dB)	(W/kg)	(W/kg)
	LTE Band 2	20M	QPSK	1	0	Vertical Front	5	18900	1880	22.89	24.00	1.291	0.17	0.397	0.513
	LTE Band 2	20M	QPSK	50	0	Vertical Front	5	18900	1880	21.67	23.00	1.358	0.09	0.412	0.560
	LTE Band 2	20M	QPSK	1	0	Vertical Back	5	18900	1880	22.89	24.00	1.291	0.08	0.119	0.154
	LTE Band 2	20M	QPSK	50	0	Vertical Back	5	18900	1880	21.67	23.00	1.358	0.03	0.223	0.303
	LTE Band 2	20M	QPSK	1	0	Horizontal Up	5	18900	1880	22.89	24.00	1.291	0.02	0.420	0.542
	LTE Band 2	20M	QPSK	50	0	Horizontal Up	5	18900	1880	21.67	23.00	1.358	0.05	0.337	0.458
	LTE Band 2	20M	QPSK	1	0	Horizontal Down	5	18900	1880	22.89	24.00	1.291	-0.01	0.755	0.975
	LTE Band 2	20M	QPSK	1	0	Horizontal Down	5	18700	1860	22.65	24.00	1.365	0.08	0.700	0.955
	LTE Band 2	20M	QPSK	1	0	Horizontal Down	5	19100	1900	22.68	24.00	1.355	-0.19	0.846	1.146
	LTE Band 2	20M	QPSK	50	0	Horizontal Down	5	18900	1880	21.67	23.00	1.358	0.03	0.713	0.968
	LTE Band 2	20M	QPSK	50	0	Horizontal Down	5	18700	1860	21.52	23.00	1.406	0.08	0.698	0.981
	LTE Band 2	20M	QPSK	50	0	Horizontal Down	5	19100	1900	21.58	23.00	1.387	-0.16	0.793	1.100
	LTE Band 2	20M	QPSK	100	0	Horizontal Down	5	18900	1880	21.64	23.00	1.368	-0.04	0.688	0.941
	LTE Band 2	20M	QPSK	1	0	TIP Side	5	18900	1880	22.89	24.00	1.291	0.18	0.149	0.192
	LTE Band 2	20M	QPSK	50	0	TIP Side	5	18900	1880	21.67	23.00	1.358	0.07	0.100	0.136
			QPSK	1	0	Vertical Front	5		707.5	22.78	24.00	1.324	-0.14	0.711	0.942
L	_TE Band 12	10M	QPSK	25	0	Vertical Front	5		707.5	22.00	23.00	1.259	-0.02	0.532	0.670
L	TE Band 12	10M	QPSK	50	0	Vertical Front	5		707.5	21.88	23.00	1.294	0.05	0.478	0.619
L	_TE Band 12	10M	QPSK	1	0	Vertical Back	5		707.5	22.78	24.00	1.324	-0.14	0.524	0.694
	_TE Band 12	10M	QPSK	25	0	Vertical Back	5	23095	707.5	22.00	23.00	1.259	0.05	0.390	0.491
L	_TE Band 12	10M	QPSK	1	0	Horizontal Up	5		707.5	22.78	24.00	1.324	-0.14	0.630	0.834
	_TE Band 12	10M	QPSK	25	0	Horizontal Up	5	23095	707.5	22.00	23.00	1.259	-0.11	0.572	0.720
	_TE Band 12	10M	QPSK	50	0	Horizontal Up	5	23095	707.5	21.88	23.00	1.294	0.08	0.561	0.726
02 L	_TE Band 12	10M	QPSK	1	0	Horizontal Down	5	23095	707.5	22.78	24.00	1.324	-0.05	0.720	0.954
L	_TE Band 12	10M	QPSK	25	0	Horizontal Down	5	23095	707.5	22.00	23.00	1.259	0.16	0.617	0.777
L	_TE Band 12	10M	QPSK	50	0	Horizontal Down	5	23095	707.5	21.88	23.00	1.294	0.04	0.605	0.783
L	_TE Band 12	10M	QPSK	1	0	TIP Side	5	23095		22.78	24.00	1.324	0.17	0.206	0.273
L	_TE Band 12	10M	QPSK	25	0	TIP Side	5	23095	707.5	22.00	23.00	1.259	-0.19	0.154	0.194
Ĺ	TE Band 66	20M	QPSK	1	0	Vertical Front	5	132322	1745	22.61	24.00	1.377	0.03	0.326	0.449
L	TE Band 66	20M	QPSK	50	0	Vertical Front	5	132322	1745	21.50	23.00	1.413	0.01	0.239	0.338
L	_TE Band 66	20M	QPSK	1	0	Vertical Back	5	132322	1745	22.61	24.00	1.377	0.05	0.360	0.496
L	TE Band 66	20M	QPSK	50	0	Vertical Back	5	132322	1745	21.50	23.00	1.413	0.06	0.279	0.394
L	TE Band 66	20M	QPSK	1	0	Horizontal Up	5	132322	1745	22.61	24.00	1.377	0.04	0.351	0.483
L	TE Band 66	20M	QPSK	50	0	Horizontal Up	5	132322	1745	21.50	23.00	1.413	0.06	0.274	0.387
L	TE Band 66	20M	QPSK	1	0	Horizontal Down	5	132322	1745	22.61	24.00	1.377	0.07	0.725	0.998
L	TE Band 66	20M	QPSK	1	0	Horizontal Down	5	132072	1720	22.45	24.00	1.429	0.02	0.716	1.023
03 L	TE Band 66	20M	QPSK	1	0	Horizontal Down	5	132572	1770	22.60	24.00	1.380	-0.04	0.755	1.042
L	TE Band 66	20M	QPSK	50	0	Horizontal Down	5	132322	1745	21.50	23.00	1.413	-0.06	0.561	0.792
L	TE Band 66	20M	QPSK	100	0	Horizontal Down	5	132322	1745	21.37	23.00	1.455	0.03	0.589	0.857
L	_TE Band 66	20M	QPSK	1	0	TIP Side	5	132322	1745	22.61	24.00	1.377	0.04	0.117	0.161
L	TE Band 66	20M	QPSK	50	0	TIP Side	5	132322	1745	21.50	23.00	1.413	-0.01	0.099	0.140
L	TE Band 71	20M	QPSK	1	0	Vertical Front	5	133322	683	22.73	24.00	1.340	0.03	0.386	0.517
L	TE Band 71	20M	QPSK	50	0	Vertical Front	5	133322	683	21.59	23.00	1.384	0.01	0.311	0.430
L	TE Band 71	20M	QPSK	1	0	Vertical Back		133322		22.73	24.00	1.340	0.02	0.245	0.328
L	TE Band 71	20M	QPSK	50	0	Vertical Back		133322	683	21.59	23.00	1.384	0.03	0.241	0.333
	TE Band 71		QPSK	1	0	Horizontal Up		133322		22.73	24.00	1.340	-0.02	0.451	0.604
	TE Band 71		QPSK	50	0	Horizontal Up		133322		21.59	23.00	1.384	0.15	0.414	0.573
	TE Band 71		QPSK	1	0	Horizontal Down		133322		22.73	24.00	1.340	-0.08	0.568	0.761
	TE Band 71		QPSK	50	0	Horizontal Down		133322		21.59	23.00	1.384	0.06	0.509	0.704
	TE Band 71		QPSK	1	0	TIP Side	5	133322	683	22.73	24.00	1.340	0.07	0.108	0.145
Ľ				50	0	TIP Side		133322	683	21.59	23.00	1.384	-0.02	0.099	0.137

14.2 Repeated SAR Measurement

No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Ratio	Reported 1g SAR (W/kg)
1st	LTE Band 2	20M	QPSK	1	0	Horizontal Down	5	19100	1900	22.68	24.00	1.355	-0.19	0.846	1	1.146
2nd	LTE Band 2	20M	QPSK	1	0	Horizontal Down	5	19100	1900	22.68	24.00	1.355	0.11	0.833	1.016	1.129

General Note:

- 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated measured SAR.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

15. Simultaneous Transmission Analysis

No.	Simultaneous Transmission Configurations	WHOOP USB LTE DONGLE Body
1.	N/A	N/A

General Note:

1. The device only supports WWAN function.

Test Engineer : Nick Hu, Tony Zhang, Hank Chang, Yuankai Kong

16. Uncertainty Assessment

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg and highest measured 10-g SAR is less 3.75W/kg. Therefore, the measurement uncertainty table is not required in this report.

SPORTON LAB. FCC SAR Test Report

17. <u>References</u>

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [6] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015
- [7] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [8] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.
- [9] FCC KDB 941225 D07 v01r02, " SAR Evaluation Procedures for UMPC Mini-Tablet Devices", Oct 2015. FCC KDB 447498 D02 v02r01, "SAR Measurement Procedures for USB Dongle Transmitters", Oct 2015.

-----THE END------

Report No. : FA052509

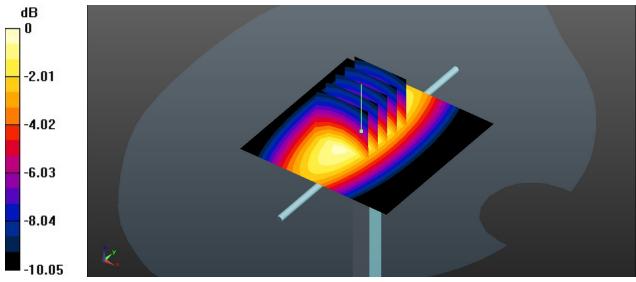
Appendix A. Plots of System Performance Check

The plots are shown as follows.

System Check_Head_750MHz

DUT: D750V2 - SN:1087

Communication System: UID 0, CW (0); Frequency: 750 MHz;Duty Cycle: 1:1 Medium: HSL_750 Medium parameters used: f = 750 MHz; $\sigma = 0.904$ S/m; $\epsilon_r = 42.287$; $\rho = 1000$ kg/m³


Ambient Temperature : 23.3 °C; Liquid Temperature : 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(10.58, 10.58, 10.58); Calibrated: 2020.5.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2020.4.28
- Phantom: SAM1; Type: SAM; Serial: TP-1753
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.73 W/kg

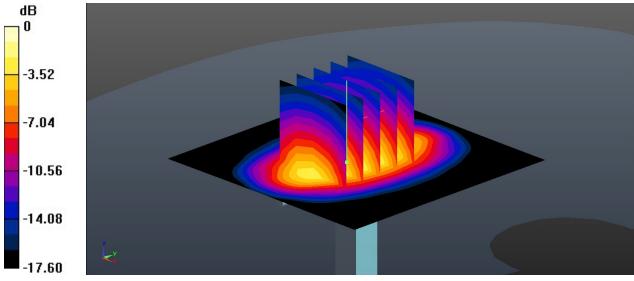
Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 49.41 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.24 W/kg SAR(1 g) = 2.19 W/kg; SAR(10 g) = 1.46 W/kg Maximum value of SAR (measured) = 2.76 W/kg

0 dB = 2.76 W/kg = 4.41 dBW/kg

System Check_Head_1750MHz

DUT: D1750V2 - SN:1090

Communication System: UID 0, CW; Frequency: 1750 MHz;Duty Cycle: 1:1 Medium: HSL_1750 Medium parameters used: f = 1750 MHz; $\sigma = 1.365$ S/m; $\epsilon_r = 40.507$; $\rho = 1000$ kg/m³


Ambient Temperature : 23.3 °C; Liquid Temperature : 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.6, 8.6, 8.6); Calibrated: 2020.5.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2020.4.28
- Phantom: SAM1; Type: SAM; Serial: TP-1753
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 14.1 W/kg

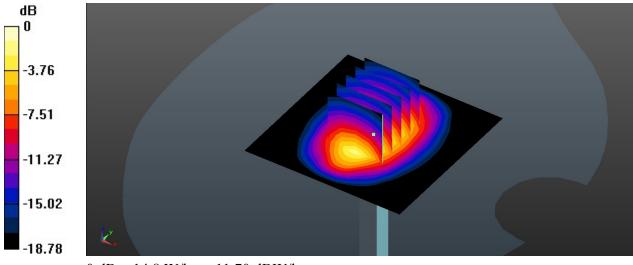
Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 89.96 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.7 W/kg SAR(1 g) = 9.85 W/kg; SAR(10 g) = 5.22 W/kg Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 13.9 W/kg = 11.43 dBW/kg

System Check_Head_1900MHz

DUT: D1900V2 - SN:5d170

Communication System: UID 0, CW (0); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.401$ S/m; $\epsilon_r = 40.146$; $\rho = 1000$ kg/m³


Ambient Temperature : 23.2 °C; Liquid Temperature : 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.35, 8.35, 8.35); Calibrated: 2020.5.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2020.4.28
- Phantom: SAM1; Type: SAM; Serial: TP-1753
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 14.8 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 90.21 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 19.1 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.18 W/kg Maximum value of SAR (measured) = 14.8 W/kg

0 dB = 14.8 W/kg = 11.70 dBW/kg

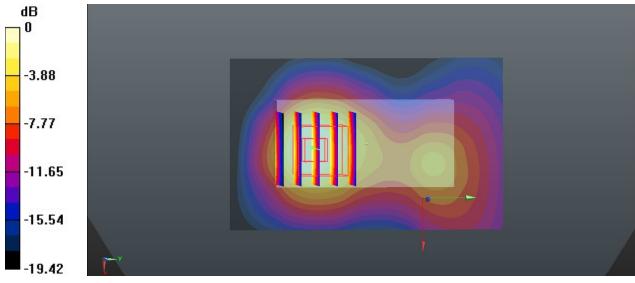
Report No. : FA052509

Appendix B. Plots of High SAR Measurement

The plots are shown as follows.

01_LTE Band 2_20M_QPSK_1RB_0Offset_Horizontal Down_5mm_Ch19100

Communication System: UID 0, LTE FDD (0); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.401$ S/m; $\epsilon_r = 40.146$; $\rho = 1000$ kg/m³


Ambient Temperature : 23.2 °C; Liquid Temperature : 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.35, 8.35, 8.35); Calibrated: 2020.5.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2020.4.28
- Phantom: SAM1; Type: SAM; Serial: TP-1753
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

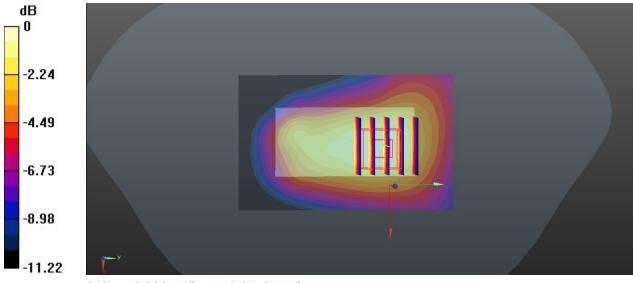
Area Scan (51x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.60 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.98 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 1.61 W/kg SAR(1 g) = 0.846 W/kg; SAR(10 g) = 0.459 W/kg Maximum value of SAR (measured) = 1.30 W/kg

0 dB = 1.30 W/kg = 1.14 dBW/kg

02_LTE Band 12_10M_QPSK_1RB_0Offset_Horizontal Down_5mm_Ch23095

Communication System: UID 0, LTE FDD (0); Frequency: 707.5 MHz;Duty Cycle: 1:1 Medium: HSL_750 Medium parameters used: f = 707.5 MHz; $\sigma = 0.864$ S/m; $\epsilon_r = 42.878$; $\rho = 1000$ kg/m³


Ambient Temperature : 23.3 °C; Liquid Temperature : 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(10.58, 10.58, 10.58); Calibrated: 2020.5.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2020.4.28
- Phantom: SAM1; Type: SAM; Serial: TP-1753
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (51x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.02 W/kg

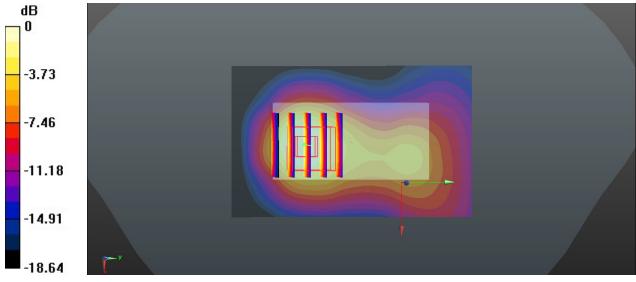
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 32.63 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.16 W/kg SAR(1 g) = 0.720 W/kg; SAR(10 g) = 0.470 W/kg Maximum value of SAR (measured) = 0.998 W/kg

0 dB = 0.998 W/kg = -0.01 dBW/kg

Date: 2020.9.8

03_LTE Band 66_20M_QPSK_1RB_0Offset_Horizontal Down_5mm_Ch132572

Communication System: UID 0, LTE FDD (0); Frequency: 1770 MHz;Duty Cycle: 1:1 Medium: HSL_1750 Medium parameters used: f = 1770 MHz; $\sigma = 1.384$ S/m; $\varepsilon_r = 40.44$; $\rho = 1000$ kg/m³


Ambient Temperature : 23.3 °C; Liquid Temperature : 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.6, 8.6, 8.6); Calibrated: 2020.5.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2020.4.28
- Phantom: SAM1; Type: SAM; Serial: TP-1753
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (51x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.38 W/kg

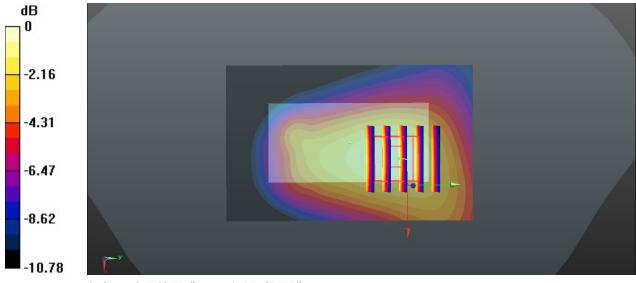
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.20 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.41 W/kg SAR(1 g) = 0.755 W/kg; SAR(10 g) = 0.418 W/kg Maximum value of SAR (measured) = 1.14 W/kg

0 dB = 1.14 W/kg = 0.57 dBW/kg

Date: 2020.9.10

04_LTE Band 71_20M_QPSK_1RB_0Offset_Horizontal Down_5mm_Ch133322

Communication System: UID 0, LTE FDD (0); Frequency: 683 MHz;Duty Cycle: 1:1 Medium: HSL_750 Medium parameters used: f = 683 MHz; $\sigma = 0.842$ S/m; $\epsilon_r = 43.211$; $\rho = 1000$ kg/m³


Ambient Temperature : 23.3 °C; Liquid Temperature : 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(10.58, 10.58, 10.58); Calibrated: 2020.5.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2020.4.28
- Phantom: SAM1; Type: SAM; Serial: TP-1753
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (51x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.765 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.90 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.878 W/kg SAR(1 g) = 0.568 W/kg; SAR(10 g) = 0.377 W/kg Maximum value of SAR (measured) = 0.763 W/kg

0 dB = 0.763 W/kg = -1.17 dBW/kg

Appendix C. DASY Calibration Certificate

The DASY calibration certificates are shown as follows.

Sporton Client

Certificate No:

alahal

Z19-60081

CNAS L0570

CALIBRATION C	ERTIFICA	TE	
Object	D750V	/3 - SN: 1087	
Calibration Procedure(s)		1-003-01 ation Procedures for dipole validation kits	
Calibration date:	March	27, 2019	
measurements(SI). The me pages and are part of the co	asurements and ertificate.	traceability to national standards, which re the uncertainties with confidence probability the closed laboratory facility: environment or calibration)	y are given on the followin
rimary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	20-Aug-18 (CTTL, No.J18X06862)	Aug-19
Powersensor NRP8S	104291	20-Aug-18 (CTTL, No.J18X06862)	Aug-19
Reference Probe EX3DV4	SN 3617	31-Jan-19(SPEAG,No.EX3-3617 Jan19)	Jan-20
DAE4	SN 1331	06-Feb-19(SPEAG,No.DAE4-1331_Feb19	
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
NetworkAnalyzer E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20
	Name	Function	Signature
alibrated by:	Zhao Jing	SAR Test Engineer	13年
eviewed by:	Lin Hao	SAR Test Engineer	林本的
pproved by:	Qi Dianyuari	SAR Project Leader	an
nis calibration certificate sh	ali not be reprod	Issued: Marc uced except in full without written approval o	

except in full without written approval of the laboratory.

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) *C	43.0 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	<1.0 *C	12000	-

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.36 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.65 W/kg ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) *C	56.9 ± 6 %	0.94 mho/m ± 6 %
Body TSL temperature change during test	<1.0 *C	****	

SAR result with Body TSL

Condition	
250 mW input power	2.09 W/kg
normalized to 1W	8.58 W/kg ± 18.8 % (k=2)
Condition	
250 mW input power	1.41 W/kg
normalized to 1W	5.75 W/kg ±18.7 % (k=2)
	250 mW input power normalized to 1W Condition 250 mW input power

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.4Ω- 2.59jΩ		
Return Loss	- 29.3dB	_	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.6Q- 3.86jQ			
Return Loss	- 27.7dB			

General Antenna Parameters and Design

Electrical Delay (one direction)	0.898 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

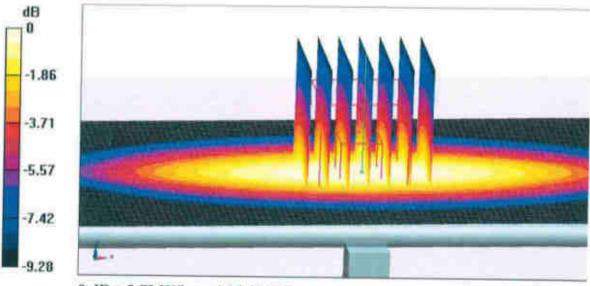
and the second sec	
Manufactured by	SPEAG
	51245

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

Date: 03.26.2019

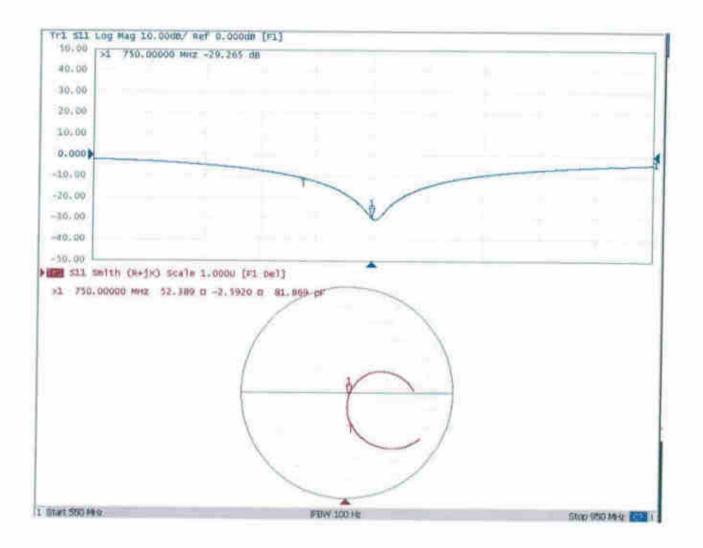
DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1087 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; σ = 0.903 S/m; ε_r = 43.01; p = 1000 kg/m3


Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(10.03, 10.03, 10.03) @ 750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 55.05 V/m; Power Drift = 0.01 dBPeak SAR (extrapolated) = 3.00 W/kgSAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.42 W/kgMaximum value of SAR (measured) = 2.72 W/kg

0 dB = 2.72 W/kg = 4.35 dBW/kg

Impedance Measurement Plot for Head TSL

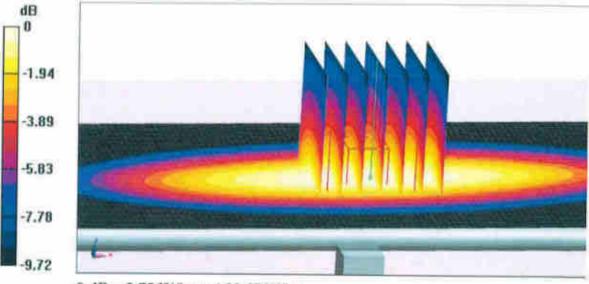
DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

Date: 03.26,2019

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1087

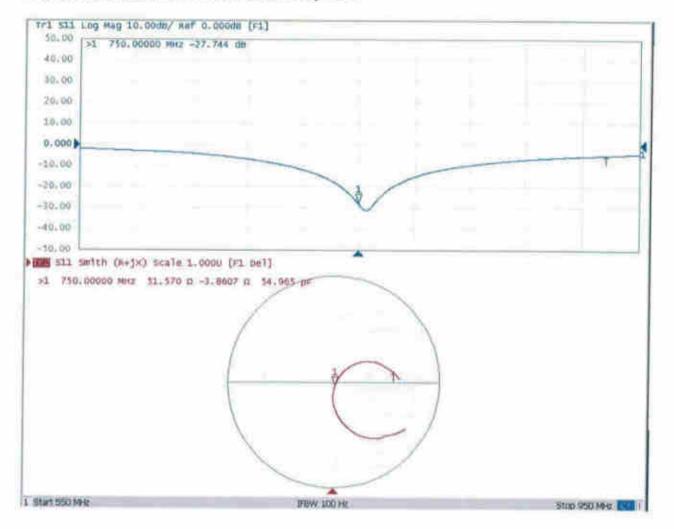
Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.935$ S/m; $e_r = 56.85$; $\rho = 1000$ kg/m3 Phantom section: Center Section


DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(9.85, 9.85, 9.85) @ 750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.71 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.08 W/kg SAR(1 g) = 2.09 W/kg; SAR(10 g) = 1.41 W/kg


Maximum value of SAR (measured) = 2.75 W/kg

0 dB = 2.75 W/kg = 4.39 dBW/kg

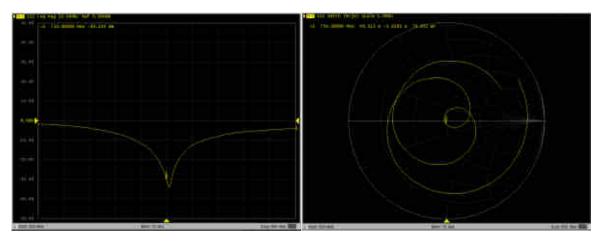
Impedance Measurement Plot for Body TSL

D750V3, Serial No. 1087 Extended Dipole Calibrations

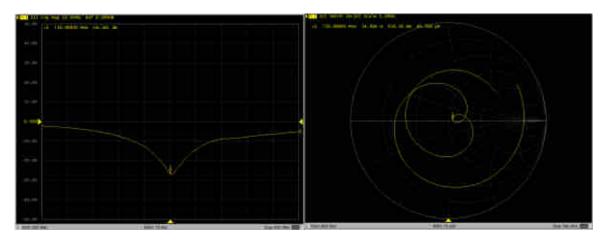
Referring to KDB 865664 D01 v01r02, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

750V3 – serial no. 1087												
	750 Head					750 Body						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2019.3.27	-29.3		52.4		-2.6		-27.7		51.6		-3.9	
2020.3.26	-30.2	-0.03	49.5	2.88	-3.0	0.44	26.6	1.96	54.896	-3.33	0.45	-4.31

<Justification of the extended calibration>


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration.

Therefore the verification result should support extended calibration.



Dipole Verification Data> D750V3, serial no. 1087

750MHz – Head

750MHz – Body

In Collaboration with
S D C A G
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl/gehinattl.com http://www.chinattl.cn

Sporton

CALIBRATION CERTIFICATE

Client

Certificate No: Z19-60084

Object D1750V2 - SN: 1090 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 27, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Power Meter NRP2 106277 20-Aug-18 (CTTL, No.J18X06862) Aug-19 Power sensor NRP8S 104291 20-Aug-18 (CTTL, No.J18X06862) Aug-19 Reference Probe EX3DV4 SN 3617 31-Jan-19(SPEAG,No.EX3-3617_Jan19) Jan-20 DAE4 SN 1331 06-Feb-19(SPEAG,No.DAE4-1331 Feb19) Feb-20 Secondary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Signal Generator E4438C MY49071430 23-Jan-19 (CTTL, No.J19X00336) Jan-20 NetworkAnalyzer E5071C MY46110673 24-Jan-19 (CTTL, No.J19X00547) Jan-20 Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: March 29, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) *C	41.3±6%	1.37 mho/m ±6 %
Head TSL temperature change during test	<1.0 °C	1.000	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.79 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.0 ± 6 %	1.45 mho/m ± 8 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

Condition	
250 mW input power	9.21 W/kg
normalized to 1W	37.7 W/kg ± 18.8 % (k=2)
Condition	
250 mW input power	4.89 W/kg
normalized to 1W	19.9 W/kg ± 18.7 % (k=2)
	250 mW input power normalized to 1W Condition 250 mW input power

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.5Ω- 2.34 jΩ		
Return Loss	- 29,2 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.9Ω- 2.19 jΩ		
Return Loss	- 23.2 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.085 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
and the second	ACTIVITY AND A DECEMBER OF

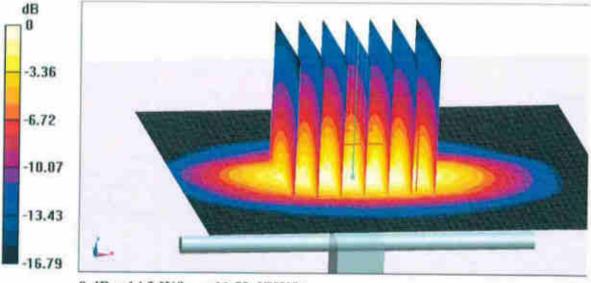
DASY5 Validation Report for Head TSL

Date: 03.26.2019

Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1090 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.37 S/m; ε_r = 41.27; ρ = 1000 kg/m3 Phantom section: Right Section DASVS Configuration:

DASY5 Configuration:

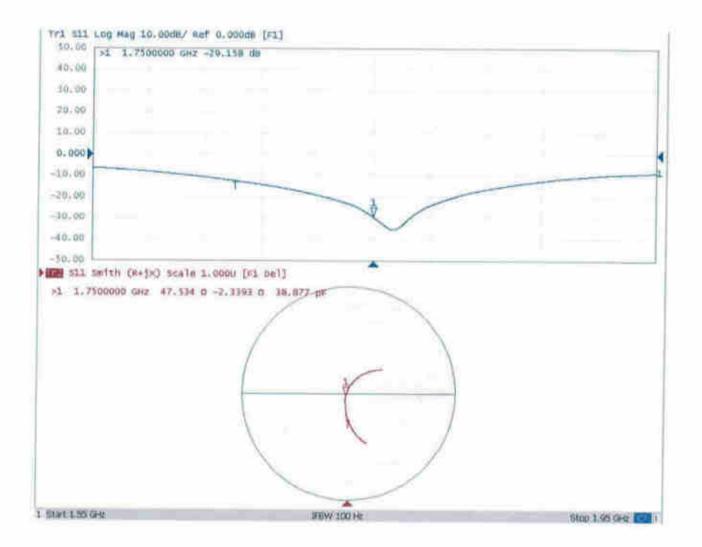
- Probe: EX3DV4 SN3617; ConvF(8.38, 8.38, 8.38) @ 1750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.03 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 17.1 W/kg

SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.79 W/kg


Maximum value of SAR (measured) = 14.2 W/kg

0 dB = 14.2 W/kg = 11.52 dBW/kg

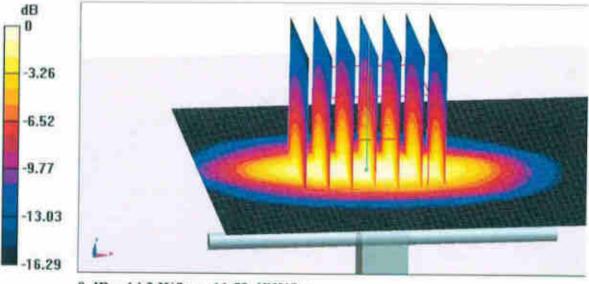
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

Date: 03.26.2019

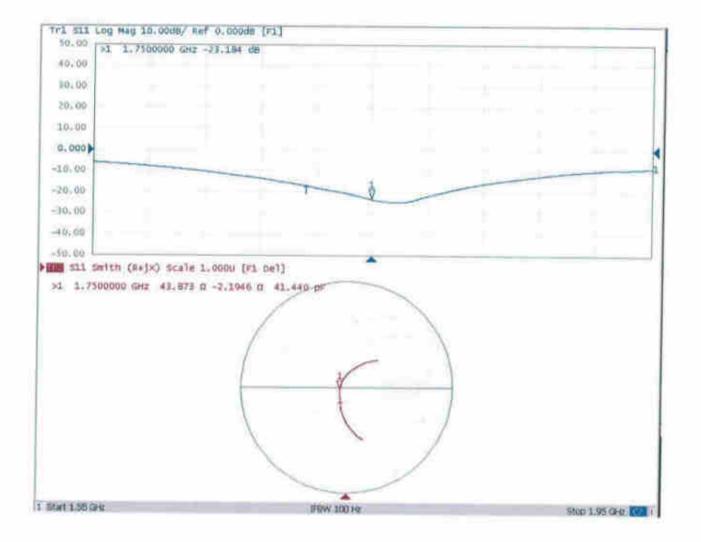
DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1090


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.449$ S/m; $\epsilon_r = 54.97$; $\rho = 1000$ kg/m3 Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(8.03, 8.03, 8.03) @ 1750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm Reference Value = 93.13 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.21 W/kg; SAR(10 g) = 4.89 W/kg


Maximum value of SAR (measured) = 14.2 W/kg

0 dB = 14.2 W/kg = 11.52 dBW/kg

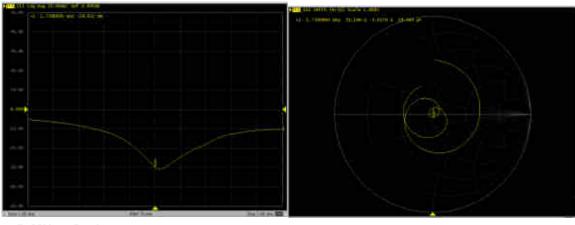
Impedance Measurement Plot for Body TSL

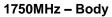
D1750V2, Serial No. 1090 Extended Dipole Calibrations

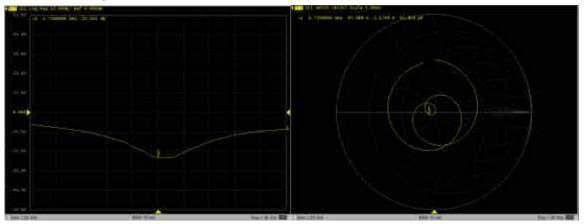
Referring to KDB 865664 D01 v01r02, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

	1750V2 – serial no. 1090											
	1750 Head				1750 Body							
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2019.3.27	-29.2		47.5		-2.3		-23.2		43.9		-2.2	
2020.3.26	-29.8	-0.02	51.2	-3.66	-3.0	0.70	-25.0	-0.08	45.1	-1.22	-2.17	-0.02

<Justification of the extended calibration>


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration.


Therefore the verification result should support extended calibration.



Dipole Verification Data> D1750V2, serial no. 1090

1750MHz – Head

Sporton

Client

Certificate No: Z19-60085

CNAS L0570

CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d170 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 26, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Power Meter NRP2 106277 20-Aug-18 (CTTL, No.J18X06862) Aug-19 Power sensor NRP8S 104291 20-Aug-18 (CTTL, No.J18X06862) Aug-19 Reference Probe EX3DV4 SN 3617 31-Jan-19(SPEAG,No.EX3-3617 Jan19) Jan-20 DAE4 SN 1331 06-Feb-19(SPEAG,No.DAE4-1331 Feb19) Feb-20 Secondary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Signal Generator E4438C MY49071430 23-Jan-19 (CTTL, No.J19X00336) Jan-20 NetworkAnalyzer E5071C MY46110673 24-Jan-19 (CTTL, No.J19X00547) Jan-20 Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: March 29, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

lossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz ≈ 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) *C	40.5±6%	1.44 mho/m ± 6 %
Head TSL temperature change during test	<1.0 *C		(m+++)

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.90 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.0 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.3 W/kg ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53,3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.5±6%	1.56 mho/m ± 6 %
Body TSL temperature change during test	<1.0 "C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.0 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.28 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.0 W/kg ± 18.7 % (k=2)

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.7Ω+ 6.73jΩ	
Return Loss	- 23.3dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.8Ω+ 6.72jΩ	
Return Loss	- 22.8dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.066 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG