

Test Report Serial Number: Test Report Date: Project Number:

45461445R4.0

12 September 2018

1410

EMC Test Report - New Filing

Applicant:

Nestronics Research Inc. Box 1886 Unit 1 - 309 1st Street West Warman, SK S0K 4S0 Canada

FCC ID:

2AP75TXRX

Product Model Number / HVIN

TXRX

Nestronics Research Inc. Box 1886 Warman, SK S0K 4S0 Canada

IC Registration Number

23764-TXRX

Product Name / PMN

TXRX

In Accordance With:

CFR Title 47, Part 15 Subpart C (§15.247), Part 15 Subpart B

Digital Transmission System (DTS)

RSS-Gen, RSS-247 Issue 2

Digital Transmission Systems (DTSs)

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada

Industry Canada

Test Lab Certificate: 2470.01

IC Registration 3874A-1

FCC Registration: CA3874

45461445 R4.0

12 September 2018

Table of Contents

1.0 DOCUMENT CONTROL	5
2.0 CLIENT AND DUT INFORMATION	6
3.0 SCOPE	7
4.0 TEST SUMMARY	8
5.0 NORMATIVE REFERENCES	9
6.0 FACILITIES AND ACCREDITATIONS	10
7.0 CONDUCTED POWER	11
8.0 DTS BANDWIDTH	18
9.0 OCCUPIED BANDWIDTH	25
10.0 POWER SPECTRAL DENSITY	30
11.0 CONDUCTED SPURIOUS EMISSIONS & BAND EDGE	37
12.0 RESTRICTED BAND EMISSIONS	48
13.0 – POWER LINE CONDUCTED EMISSIONS	64
APPENDIX A – TEST SETUP DRAWINGS AND CONDITIONS	69
APPENDIX B – EQUIPMENT LIST AND CALIBRATION	74
APPENDIX C - MEASUREMENT INSTRUMENT UNCERTAINTY	75
APPENDIX D – PHOTOS - EXTERNAL	76
APPENDIX E – PHOTOS - INTERNAL	78
APPENDIX F – PHOTOS - SETUP	80

Table of Figures

Figure A.2 – Test Setup Radiated Measurements 9kHzMHz – 30MHz	71
Figure A.3 – Test Setup Radiated Measurements 30MHz – 1GHz	71
Figure A.4 – Test Setup Radiated Measurements Above 1GHz	71
Figure A.5 – Test Setup Power Line Conducted Measurements	73
Figure D.1 – External Photo – Module Top	76
Figure D.2 – External Photo – Module Bottom	
Figure E.1 – Internal Photo – Module Top	78
Figure E.2 – Internal Photo – Module Bottom	79
Figure F.1 – Setup Photo – OATS Radiated Measurements 9kHz – 30MHz	80
Figure F.2 – Setup Photo – OATS Radiated Measurements 30MHz – 1000MHz	81
Figure F.3 – Setup Photo – OATS Radiated Measurements 1GHz – 18GHz	82
Figure F.4 – Setup Photo – Conducted Measurements	83
Figure F.5 – Setup Photo – Power Line Conducted Measurements	84
Figure F.6 – Setup Photo – Power Line Conducted Measurements	

45461445 R4.0

12 September 2018

Table of Plots

Plot 7.1 – Conducted Power 903MHz	
Plot 7.2 – Conducted Power 915MHz	
Plot 7.3 – Conducted Power 927MHz	
Plot 7.4 – Conducted Power 903MHz, 1.8VDC Supply Voltage	
Plot 7.5 – Conducted Power 903MHz, 4.0VDC Supply Voltage	16
Plot 8.1 – 6dB DTS Bandwidth 903MHz	19
Plot 8.2 – 6dB DTS Bandwidth 915MHz	20
Plot 8.3 – 6dB DTS Bandwidth 927MHz	21
Plot 8.4 – 6dB DTS Bandwidth 903MHz, 1.8VDC Supply Voltage	22
Plot 8.5 – 6dB DTS Bandwidth 903MHz, 4.0VDC Supply Voltage	23
Plot 9.1 – Occupied Bandwidth 903MHz	
Plot 9.2 – Occupied Bandwidth 915MHz	
Plot 9.3 – Occupied Bandwidth 927MHz	28
Plot 10.1 – Power Spectral Density 903 MHz	
Plot 10.2 – Power Spectral Density 915 MHz	
Plot 10.3 – Power Spectral Density 927 MHz	
Plot 10.4 – Power Spectral Density 927 MHz, 1.8VDC Supply Voltage	
Plot 10.5 – Power Spectral Density 927 MHz, 4.0VDC Supply Voltage	35
Plot 11.1 – Reference Level Measurement 903MHz	
Plot 11.2 – Reference Level Measurement 915MHz	
Plot 11.3 – Reference Level Measurement 927MHz	
Plot 11.4 – Emission Level Measurement – Lower Band Edge 903 MHz	
Plot 11.5 – Emission Level Measurement – Upper Band Edge 927 MHz	
Plot 11.6 – Emission Level Measurement – Lower Band Edge - Supply Voltage Comparison	45
Plot 11.6 – Emission Level Measurement – to 10 th Harmonic 927 MHz	46
Plot 12.1 – Restricted Band Emissions 9kHz – 150kHz - Front	
Plot 12.2 – Restricted Band Emissions 9kHz – 150kHz - Side	
Plot 12.3 – Restricted Band Emissions 150kHz – 30MHz – 150kHz - Front	
Plot 12.4 – Restricted Band Emissions 150kHz – 30MHz – 150kHz - Side	
Plot 12.5 – Restricted Band Emissions 30MHz – 88MHz - Horizontal	
Plot 12.6 – Restricted Band Emissions 30MHz – 88MHz - Vertical	
Plot 12.7 – Restricted Band Emissions 88MHz – 216MHz - Horizontal	
Plot 12.8 – Restricted Band Emissions 88MHz – 216MHz - Vertical	
Plot 12.9 – Restricted Band Emissions 216MHz – 1000MHz - Horizontal	57
Plot 12.10 – Restricted Band Emissions 216MHz – 1000MHz - Vertical	
Plot 12.11 – Restricted Band Emissions 1GHz – 3GHz - Horizontal	
Plot 12.12 – Restricted Band Emissions 1GHz – 3GHz - Vertical	
Plot 12.13 – Restricted Band Emissions 3GHz – 10GHz - Horizontal	
Plot 12.14 – Restricted Band Emissions 3GHz – 10GHz - Vertical	62
Plot 13.1 – Power Line Conducted Emissions – L1	
Plot 13.2 – Power Line Conducted Emissions – L2	
Plot 13.3 – Power Line Conducted Emissions – L1 Zoom	67

45461445 R4.0

12 September 2018

Table of Tables

Table 7.1 – Summary of Conducted Power Measurements	17
Table 8.1 – Summary of 6dB DTS Bandwidth Measurements	24
Table 9.1 – Summary of Occupied Bandwidth Measurements	29
Table 10.1 – Summary of Power Spectral Density Measurements	
Table 11.1 – Reference Level Measurements	42
Table 11.2 – Emission Level Measurements Results	47
Table 12.1 – Summary of Restricted Band Emissions	63
Table 13.1 – Summary of Power Line Conducted Emissions Measurements	68
Table A.1 – Conducted Measurement Setup and Environmental	69
Table A.2 – Radiated Emissions Measurement Equipment and Environmental	70
Table A.3 – Power Line Conducted Measurement Equipment and Environmental	72

45461445 R4.0 12 September 2018

1.0 DOCUMENT CONTROL

		Revisi	on Histor	у	
San	nples Tested By:	Art Voss, P.Eng.	Date	e(s) of Evaluation:	26 June - 5 July, 2018
Rep	Report Prepared By: Art Voss, P.Eng. Report Reviewed By: Ben Hev		Ben Hewson		
Report	Burning (B. 191)		Revised	Revised	Revision Date
Revision	Desc	ription of Revision	Section	Ву	Revision Date
1.0		Initial Release	n/a	Art Voss	6 July 2018
2.0	Re	vised Exhibit List	Exh	Art Voss	17 July 2018
	Revised Client Address Revised Conducted Power w/ Voltage Supply Voltage Range		Cover, 2.0		
			7.0		
3.0	Revised DTS Bandwith w/ Supply Voltage Range		8.0	Art Voss	24 July 2018
	Revised Power Spectral Density w/ Supply Voltage Range Revised Band Edge Measurements		10.0		·
			11.0		
	Revised Equ	ipment List and Calibration	App. A		
4.0	Added Power L	ine Conducted Measurement	13	Art Voss	12 September 2018

45461445 R4.0

12 September 2018

2.0 CLIENT AND DUT INFORMATION

Client Information					
Applicant Name	Nestronics Research Inc.				
	(FCC) Box 1886 Unit 1 - 309 1st Street West				
Applicant Address	(ISED) Box 1886				
Applicant Address	Warman, SK, S0K 4S0				
	Canada				
	DUT Information				
Davisa Identificata)	FCC ID: 2AP75TXRX				
Device Identifier(s):	ISED ID: 23764-TXRX				
Device Type:	Digital Transceiver Module				
Type of Equipment:	Digital FSK Transceiver Module				
Device Model(s) / HVIN:	TXRX				
Device Marketing Name / PMN:	TXRX				
Firmware Version ID Number / FVIN:	-				
Host Marketing Name / HMN:	-				
Test Sample Serial No.:	T/A Sample - Identical Prototype				
Transmit Frequency Range:	902 - 928MHz				
Test Channels:	24 Channel Programmable				
Manuf. Max. Rated Output Power:	24 dBm, 0.25W				
Manuf. Max. Rated BW/Data Rate:	250kbps				
Antenna Make and Model:	1/4 Wavelenght Whip				
Antenna Type and Gain:	1.5dBi Nominal, 6dBi Max				
Modulation:	4FSK				
Mode:	Simplex				
Emission Designator:	764KF1D				
DUT Power Source:	3VDC				
DUT Dimensions [HxWxD] (mm)	H x W x D: 8mm x 30mm x 38mm				
Deviation(s) from standard/procedure:	None				
Modification of DUT:	None				

45461445 R4.0 12 September 2018

3.0 SCOPE

This Certification Report was prepared on behalf of:

Nestronics Research Inc.

,(the 'Applicant"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the 'Rules'). The scope of this investigation was limited to only the equipment, devices and accessories (the 'Equipment') supplied by the Applicant. The tests and measurements performed on this Equipment were only those set forth in the applicable Rules and/or the Test and Measurement Standards they reference. The Rules applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable Rules were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the Equipment tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

As per FCC CFR 47 Part §2.1091 and §2.1093 and Health Canada Safety Code 6, an RF Exposure evaluation report is required for this *Equipment* and the results of the RF Exposure evaluation appear in a separate exhibit from this report.

This *Equipment* is subject to FCC Declaration of Conformity (DoC). DoC evaluations were performed on this *Equipment* and the results of the DoC evaluation appear in a separate exhibit from this report.

Application:

This application is for a new certification of a modular transmitter, as per FCC 47 CFR §15.212(a)(1) and ISED RSP-100 (5.3.2), as a **Limited Modular Approval**. The associated modular transmitter checklists accompany this report as a separate exhibit.

45461445 R4.0

12 September 2018

4.0 TEST SUMMARY

	TEST SUMMARY							
Section	Description of Test	Procedure	Applicable Rule	Applicable Rule	Test	Result		
Section	Description of Test	Reference	Part(s) FCC	Part(s) ISED	Date	Nesun		
7.0	Conducted Power (Fundemental)	ANSI C63.10-2013	§2.1046	RSS-Gen	27 June 2018	Dass		
7.0	Conducted Fower (Fundemental)	KDB 558074 D01v04	§15.247(b)(3)	RSS-247 (5.4)(d)		rass		
8.0	6dB Bandwidth	ANSI C63.10-2013	§2.1049	RSS-Gen	26 June 2019	Page		
6.0	oub bandwidth	KDB 558074 D01v04	§15.247(a)(2)	RSS-247 (5.2)(a)	20 Julie 2018	Fa55		
9.0	Occupied Bandwidth	ANSI C63.10-2013	§2.1049	RSS-Gen	26 June 2018	Dace		
9.0	Occupied Baildwidth	KDB 558074 D01v04	§15.247(a)(2)	RSS-247 (5.2)(a)	20 Julie 20 16	1 ass		
10.0	Power Spectral Density	ANSI C63.10-2013	§15.247(e)	RSS-247 (5.2)(b)	27 June 2018	Dace		
10.0	Fower Spectral Delisity	KDB 558074 D01v04	§13.247(e)	133-247 (3.2)(b)	27 June 2018	rass		
11.0	Conducted TX Spurious Emissions	ANSI C63.10-2013	§2.1051	RSS-Gen	27 June 2019	Page		
11.0	Conducted 1x Spanous Emissions	KDB 558074 D01v04	§15.247(d)	RSS-247 (5.5)				
12.0	Radiated TX Spurious Emissions	ANSI C63.10-2013	§15.247(d)	n/a	4 100 2010	Dace		
12.0	Restricted Bands	KDB 558074 D01v04	313.247(d)	11/a	4 July 2010	r ass		
13.0	Power Line Conducted Emissions	ANSI C63.4-2014	§15.207(a)	ICES-003(6.1)	11 Sept 2018	Pass		

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Sullivors

Art Voss, P.Eng. Technical Manager Celltech Labs Inc.

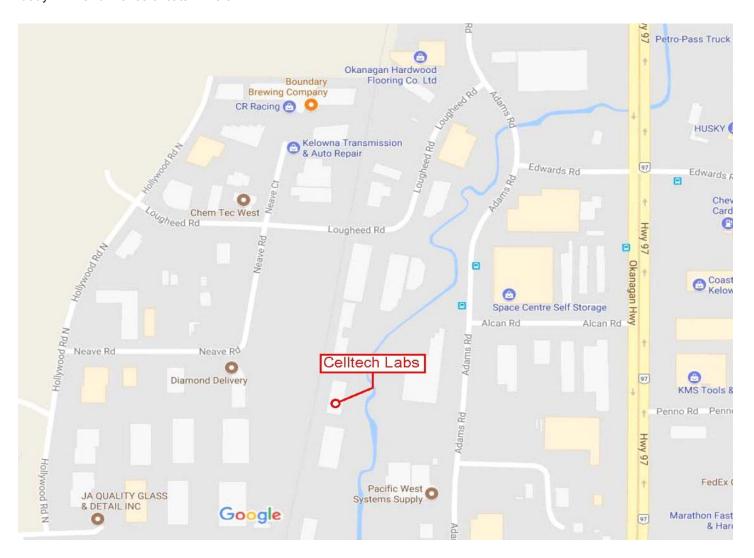
6 July 2018

Date

45461445 R4.0 12 September 2018

5.0 NORMATIVE REFERENCES

		Normative References
ISO/IE	EC 17025:2017	General requirements for the competence of testing and calibration laboratories
ANSI	C63.10-2013	American National Standard of Procedures for Compliance Testing of
		Unlicensed Wireless Devices
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 2:	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 15:	Radio Frequency Devices
	Sub Part C (15.247)	Intentional Radiators
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 15:	Radio Frequency Devices
	Subpart B:	Unintentional Radiators
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
	RSS-Gen Issue 5:	General Requirements and Information for the Certification of Radiocommunication Equipment
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
	RSS-247 Issue 2:	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs)
		and Licensed-Exempt Local Area Network (LE_LAN) Devices
FCC k	(DB	OET Major Guidance Publications, Knowledge Data Base
	558074 D01v04	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under Section 15.247


45461445 R4.0

12 September 2018

6.0 FACILITIES AND ACCREDITATIONS

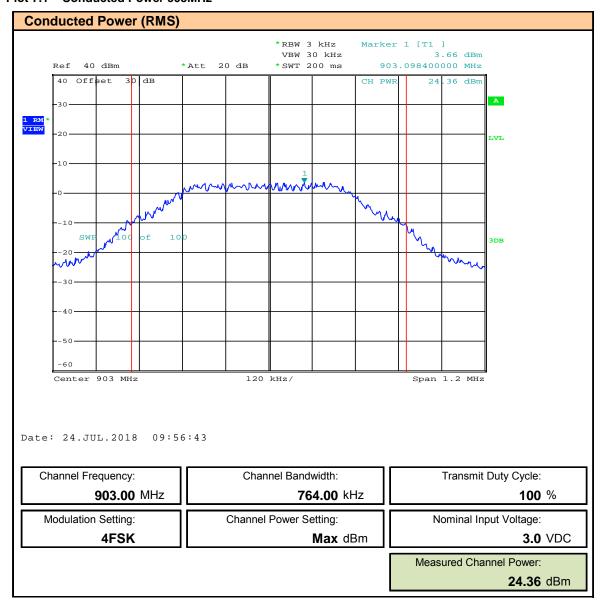
Facility and Accreditation:

The facilities used to evaluate this device outlined in this report are located at 21-364 Lougheed Road, Kelowna, British Columbia, Canada V1X7R8. The radiated emissions site (OATS) conforms to the requirements set forth in ANSI C63.4 and is filed and listed with the FCC under Test Firm Registration Number CA3874 and Innovation, Science and Economic Development Canada under Test Site File Number ISED 3874A-1. Celltech is accredited to ISO 17025, through accrediting body A2LA and with certificate 2470.01.

45461445 R4.0 12 September 2018

7.0 CONDUCTED POWER

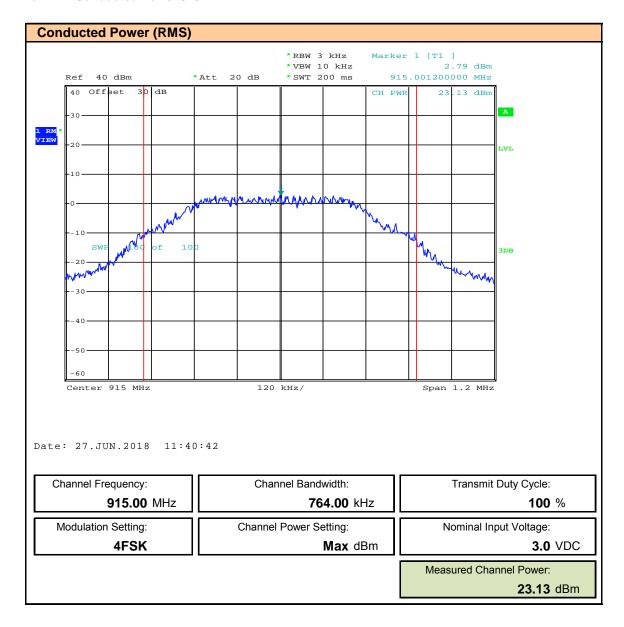
Test Procedure	
Normative Reference	FCC 47 CFR §2.1046, §15.247(b)(3), RSS-Gen (6.1.2), RSS-247 (5.4)(d),
Normative Reference	KDB 558074 (9.2.2.2), ANSI C63.10 (11.9.2.2.2)
Limits	
47 CFR §15.247(b)(3)	(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
	(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.
RSS-247 (5.4)(d)	5.4 Transmitter output power and equivalent isotropically radiated power (e.i.r.p.) requirements
	Devices shall comply with the following requirements, where applicable:
	d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).
	As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power.
KDB 558074 (9.2.1)	9.2.1 General
	Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth.
KDB 558074 (9.2.2.2)	Method AVGSA-1 (trace averaging with the EUT transmitting at full power throughout each sweep)
C63.10 (11.9.2.2.2)	a) Set span to at least 1.5 X OBW.
	b) Set RBW = 1 % to 5 % of the OBW, not to exceed 1 MHz.
	c) Set VBW ≥ 3 X RBW.
	d) Number of points in sweep ≥ 2 X span / RBW.
	e) Sweep time = auto.
	f) Detector = RMS
	g) If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
	h) Trace average at least 100 traces in power averaging
	i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges.
Test Setup	Appendix A Figure A.1

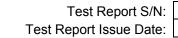

Measurement Procedure

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as described above. Number of Sweep Points \geq 2 X Span / RBW = 2 X (1.2MHz / 3kHz) = 800, the SA was configured for 1001 Points. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at 100% Duty Cycle. The Channel Bandwidth was set to the measured 99% Occupied Bandwidth (See Section 9.0). The Band Channel Power was measured and recorded. Comparative measurements were made at 1.8 and 4.0VDC supply voltage.

45461445 R4.0 12 September 2018

Plot 7.1 - Conducted Power 903MHz

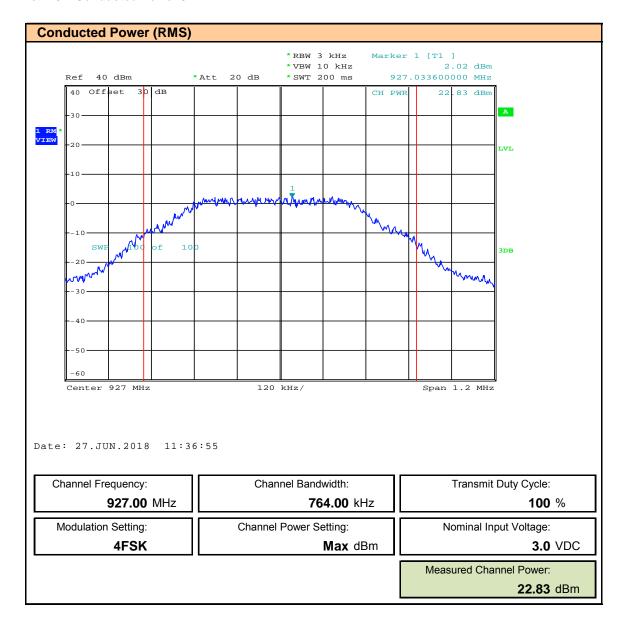




45461445 R4.0

12 September 2018

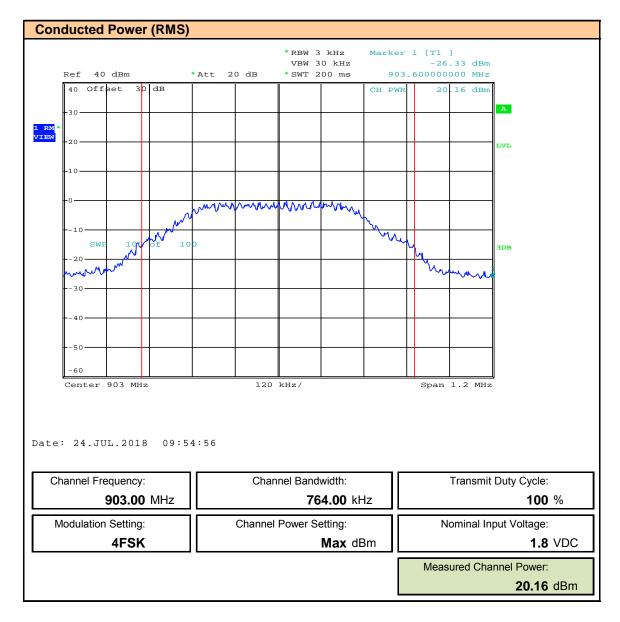
Plot 7.2 - Conducted Power 915MHz



45461445 R4.0

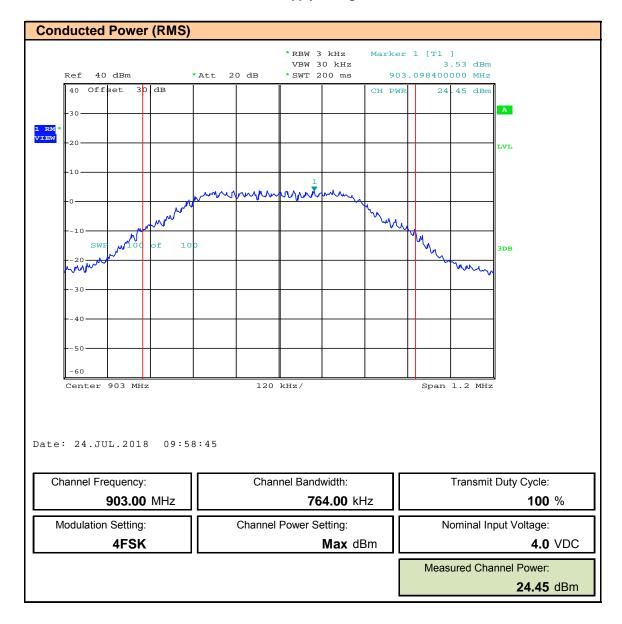
12 September 2018

Plot 7.3 - Conducted Power 927MHz



45461445 R4.0

12 September 2018


Plot 7.4 - Conducted Power 903MHz, 1.8VDC Supply Voltage

45461445 R4.0 12 September 2018

Plot 7.5 - Conducted Power 903MHz, 4.0VDC Supply Voltage

45461445 R4.0

12 September 2018

Table 7.1 – Summary of Conducted Power Measurements

Frequency	BW	Modulation	Power Setting ⁽¹⁾	Supply Voltage	Measured Power [E _{Meas}]	Measured Power [E _{Meas}]	Limit	Margin
(MHz)	(kHz)		(dBm)	(VDC)	(dBm)	(W)	(W)	(dB)
903.0				3.0	24.36	0.27		5.6
915.0				3.0	23.13	0.21		6.9
927.0	764	4FSK	Max	3.0	22.83	0.19	1.0	7.2
903.0				1.8	20.16	0.10		9.8
903.0				4.0	24.45	0.28		5.6

(1) The output power is factory set to maximum Margin = $10*Log(Limit / E_{meas})$

Frequency	BW	Modulation	Power Setting ⁽¹⁾	Supply Voltage	Measured Power [E _{Meas}]	Antenna Gain ⁽²⁾ [G _⊤]	Cable Loss [L _c]	EIRP	EIRP	Limit	Margin
(MHz)	(kHz)		(dBm)	(VDC)	(dBm)	(dBi)	(dB)	(dBm)	(W)	(W)	(dB)
903.0				3.0	24.36			26.36	0.43		9.7
915.0				3.0	23.13			25.13	0.33		10.9
927.0	764	4FSK	Max	3.0	22.83	1.5	0.5	24.83	0.30	4.0	11.2
903.0				1.8	20.16			22.16	0.16		13.9
903.0				4.0	24.45			26.45	0.44		9.6
Results: Complies								plies			

EIRP (dBm) = $E_{Meas} + G_T + L_C$ Margin = Limit - EIRP in dB

(2) Maximum permissible gain

⁽¹⁾ The output power is factory set to maximum

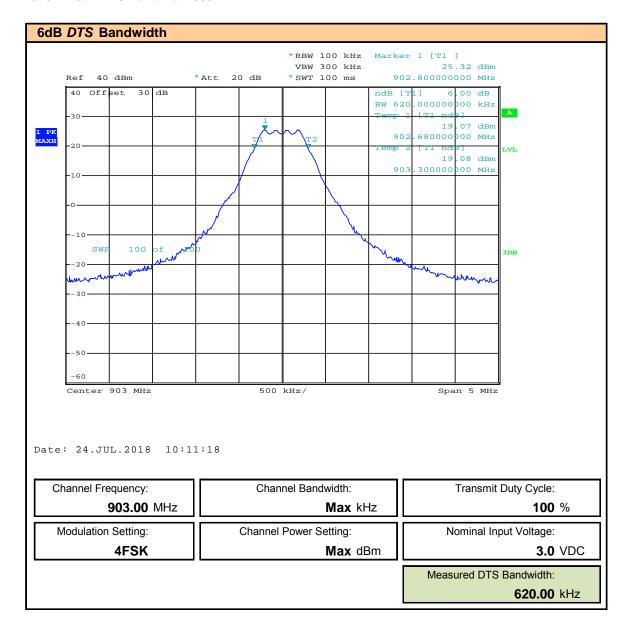
45461445 R4.0

12 September 2018

8.0 DTS BANDWIDTH

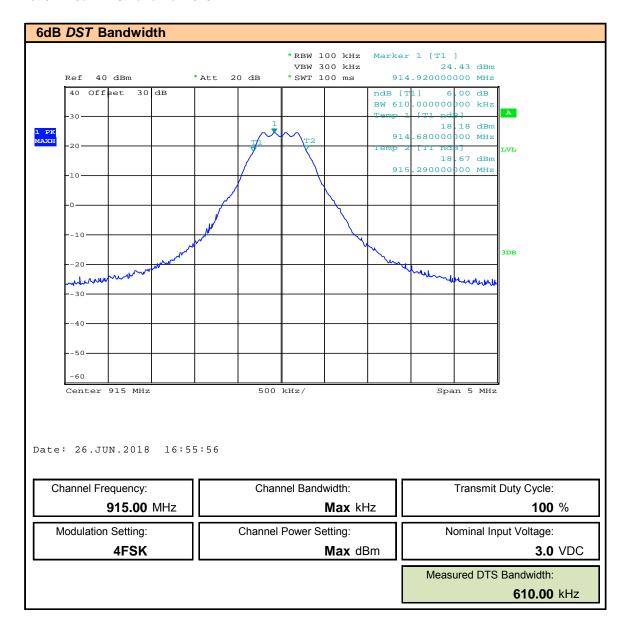
Test Procedure	
Normative Reference	FCC 47 CFR §2.1049, §15.247(a)(2), RSS-Gen (6.7), RSS-247 (5.2)(a),
Normative Reference	KDB 558074 (8.2), ANSI C63.10 (11.8.2)
Limits	
47 CFR §15.247(a)(2)	 (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions: (2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
RSS-247 (5.2)(a)	5.2 Digital transmission systems
	DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400 - 2483.5 MHz: a) The minimum 6 dB bandwidth shall be 500 kHz.
KDB 558074 (8.2)	8.2 Option 2
C63.10 (11.8.2)	The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3 X RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.
Test Setup	Appendix A Figure A.1

Measurement Procedure

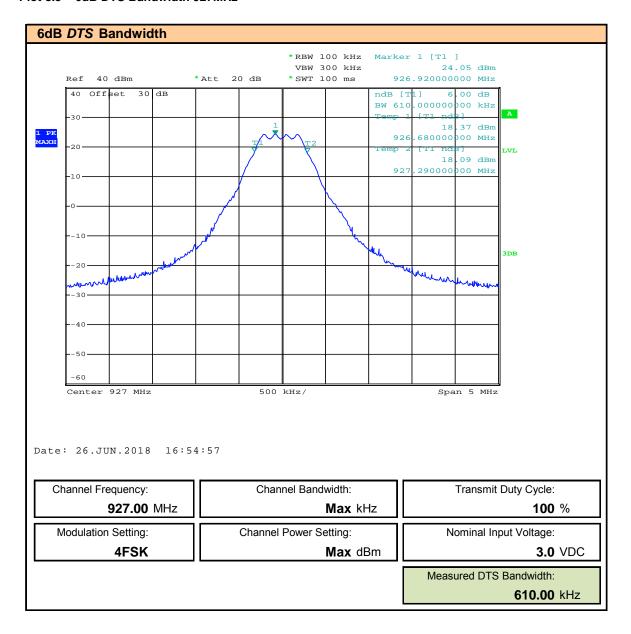

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as above using the Automatic 6dB Cursor Bandwidth measurement. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at 100% Duty Cycle. Comparative measurements were made at 1.8 and 4.0VDC supply voltage.

45461445 R4.0

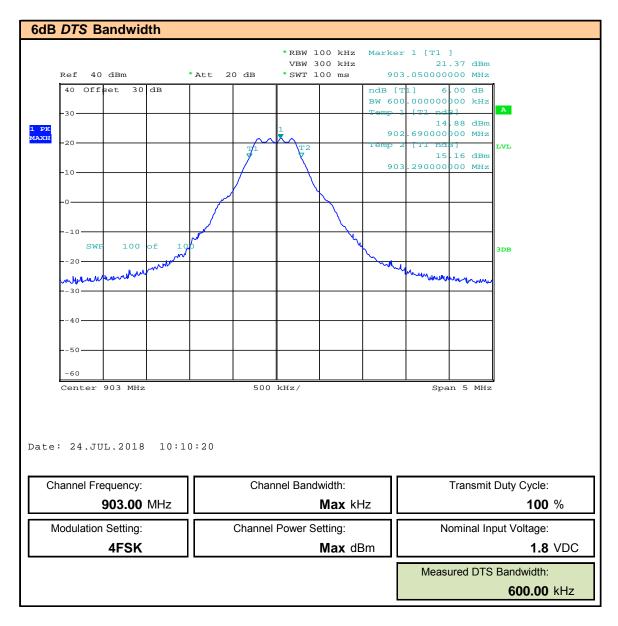
12 September 2018


Plot 8.1 - 6dB DTS Bandwidth 903MHz

45461445 R4.0 12 September 2018

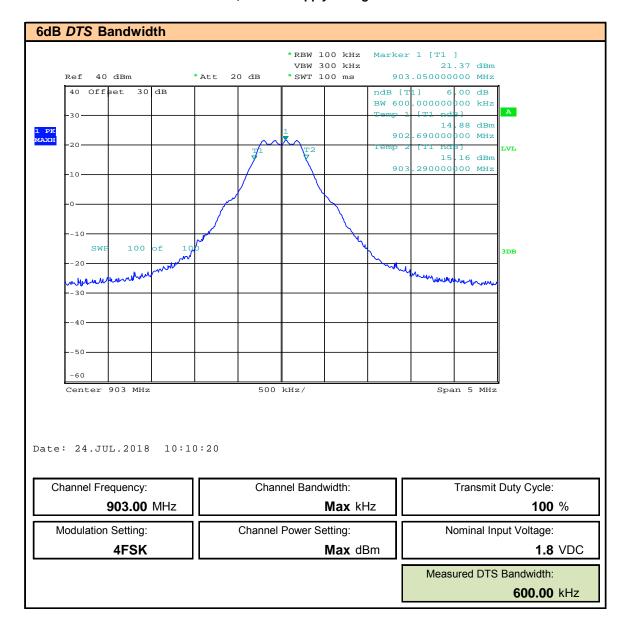

Plot 8.2 - 6dB DTS Bandwidth 915MHz

45461445 R4.0 12 September 2018


Plot 8.3 - 6dB DTS Bandwidth 927MHz

45461445 R4.0 12 September 2018

Plot 8.4 - 6dB DTS Bandwidth 903MHz, 1.8VDC Supply Voltage



45461445 R4.0

12 September 2018

Plot 8.5 - 6dB DTS Bandwidth 903MHz, 4.0VDC Supply Voltage

45461445 R4.0

12 September 2018

Table 8.1 – Summary of 6dB DTS Bandwidth Measurements

6dB DTS Bandwidth Measurement Results						
Freqency	Bandwidth Setting	Modulation	Supply Voltage	Measured 6dB BW [BW]	Minimum 6dB BW [MBW]	Margin
(MHz)	(kHz)		(VDC)	(kHz)	(kHz)	(kHz)
903.00			3.0	620.00	500	120.00
915.00			3.0	610.00		110.00
927.00	Max	4FSK	3.0	610.00		110.00
903.00			1.8	610.00		110.00
903.00			4.0	610.00		110.00
					Result:	Complies

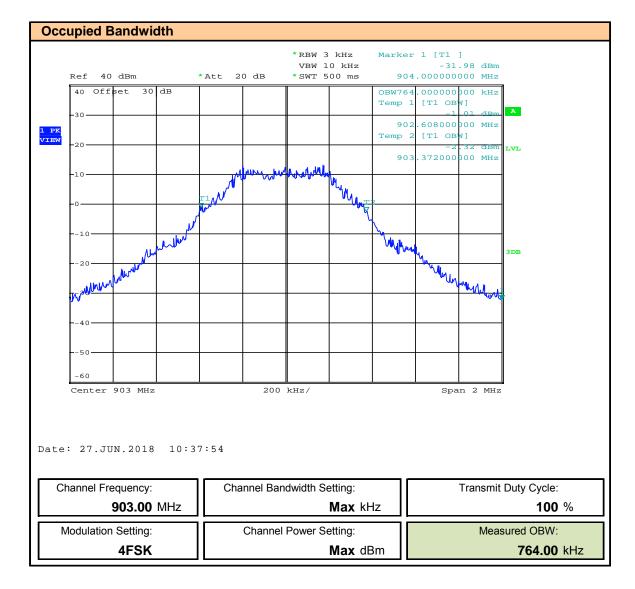
Margin = BW - MBW

45461445 R4.0

12 September 2018

9.0 OCCUPIED BANDWIDTH

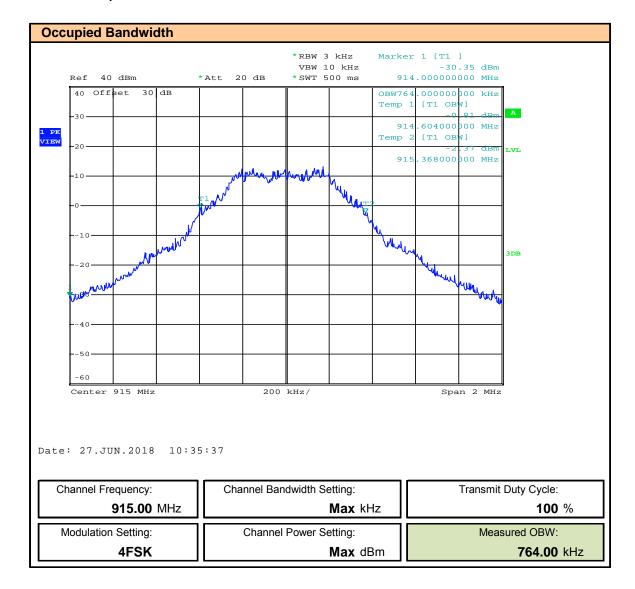
Test Procedure					
Normative Reference	FCC 47 CFR §2.1046, §15.247(b)(3), RSS-Gen (6.1.2), RSS-247 (5.4)(d),				
Normative Reference	KDB 558074 (9.2.1), ANSI C63.10 (6.9.3)				
Limits					
KDB 558074 (9.2.1)	9.2.1 General				
	Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth.				
C63.10 (6.9.3)	6.9.3 Occupied bandwidth—power bandwidth (99%) measurement procedure				
	The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.				
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.				
	c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.				
	d) Step a) through step c) might require iteration to adjust within the specified range.				
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.				
	f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.				
Test Setup	Appendix A Figure A.1				


Measurement Procedure

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as described above using the 99% Occupied Bandwidth function. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at 100% Duty Cycle. The 99% Occupied Bandwidth was measured and recorded and used for the basis for measuring the Conducted Output Power (See Section 7.0) and Power Spectral Density (See Section 10.0).

45461445 R4.0 12 September 2018

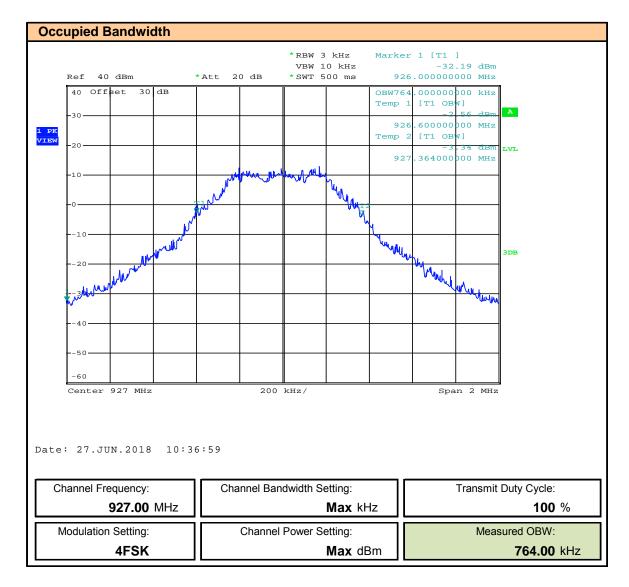
Plot 9.1 - Occupied Bandwidth 903MHz



45461445 R4.0

12 September 2018

Plot 9.2 - Occupied Bandwidth 915MHz



45461445 R4.0

12 September 2018

Plot 9.3 - Occupied Bandwidth 927MHz

45461445 R4.0

12 September 2018

Table 9.1 – Summary of Occupied Bandwidth Measurements

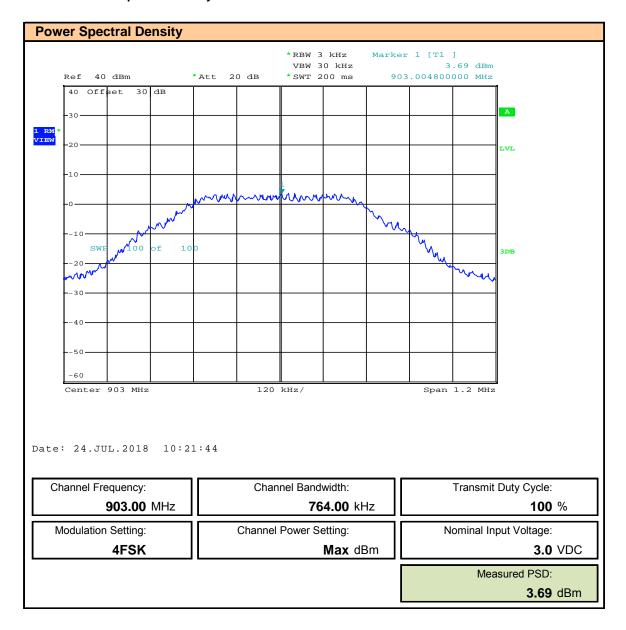
Occupied Bandwidth Measurements					
Freqency	Bandwidth		Measured Occupied		
rrequirey	Setting	Modulation			
(MHz)	(kHz)		(kHz)		
903.00			764.00		
915.00	Max	4FSK	764.00		
927.00			764.00		

45461445 R4.0

12 September 2018

10.0 POWER SPECTRAL DENSITY

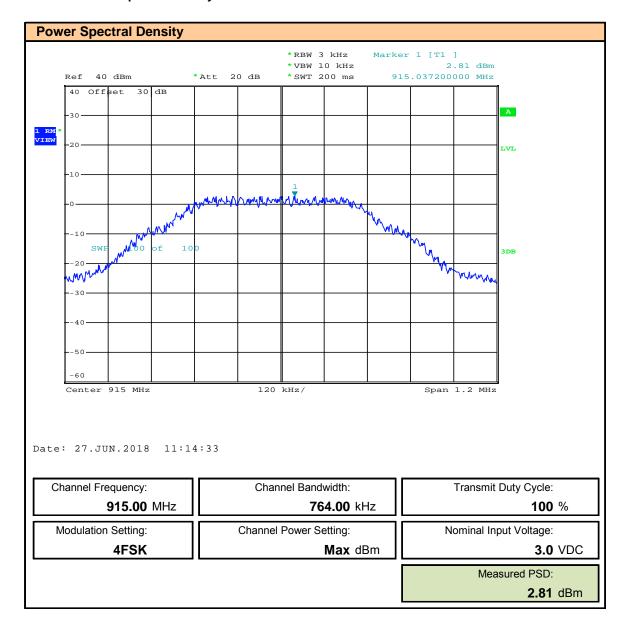
	FCC 47 CFR §15.247(e), RSS-247 (5.2)(b),					
Normative Reference	KDB 558074 (10.3), ANSI C63.10 (11.10.3)					
Limits						
47 CFR §15.247(e)	(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.					
RSS-247 (5.2)(b)	b) The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).					
KDB 558074 (10.3)	Method AVGPSD-1 (trace averaging with EUT transmitting at full power throughout each sweep)					
C63.10 (11.10.3)	This procedure may be used when the maximum (average) conducted output power was used to demonstrate compliance to the output power limit. This is the baseline method for determining the maximum (average) conducted PSD level. If the instrument has an RMS power averaging detector, i must be used; otherwise, use the sample detector. The EUT must be configured to transmit continuously (duty cycle \geq 98 %); otherwise sweep triggering/signal gating must be implemented to ensure that measurements are made only when the EUT is transmitting at its maximum power control level (no transmitter off time is to be considered).					
	a) Set instrument center frequency to DTS channel center frequency.					
	b) Set span to at least 1.5 X OBW.					
	c) Set RBW to: 3 kHz ≤ RBW ≤ 100 kHz					
	d) Set VBW ≥ 3 X RBW.					
	e) Detector = RMS					
	f) Ensure that the number of measurement points in the sweep ≥ 2 X span/RBW.					
	g) Sweep time = auto couple.					
	h) Employ trace averaging (RMS) mode over a minimum of 100 traces.					
	i) Use the peak marker function to determine the maximum amplitude level.					
	j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this marequire zooming in on the emission of interest and reducing the span in order to meet the minimun measurement point requirement as the RBW is reduced).					
Test Setup	Appendix A Figure A.1					


Measurement Procedure

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as described above. Number of Sweep Points ≥ 2 X Span / RBW = 2 X (1.5MHz / 3kHz) = 1000, the SA was configured for 1001 Points. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at 100% Duty Cycle. The Power Spectral Density was measured and recorded. Comparative measurements were made at 1.8 and 4.0VDC supply voltage.

45461445 R4.0 12 September 2018

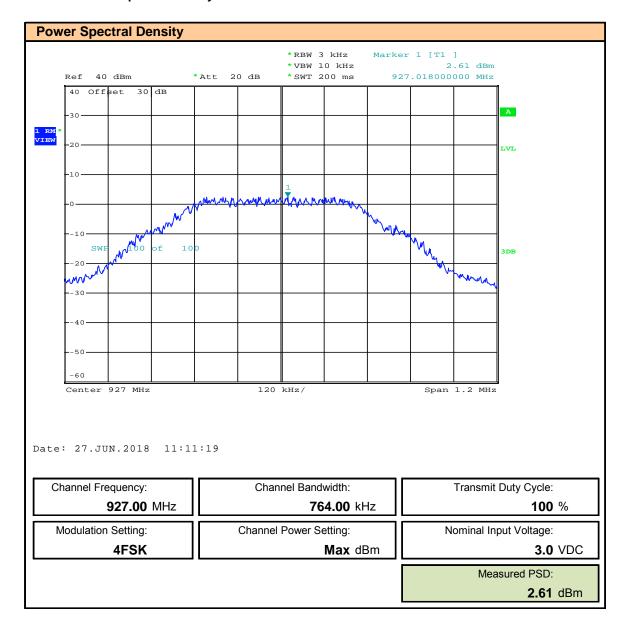
Plot 10.1 - Power Spectral Density 903 MHz



45461445 R4.0

12 September 2018

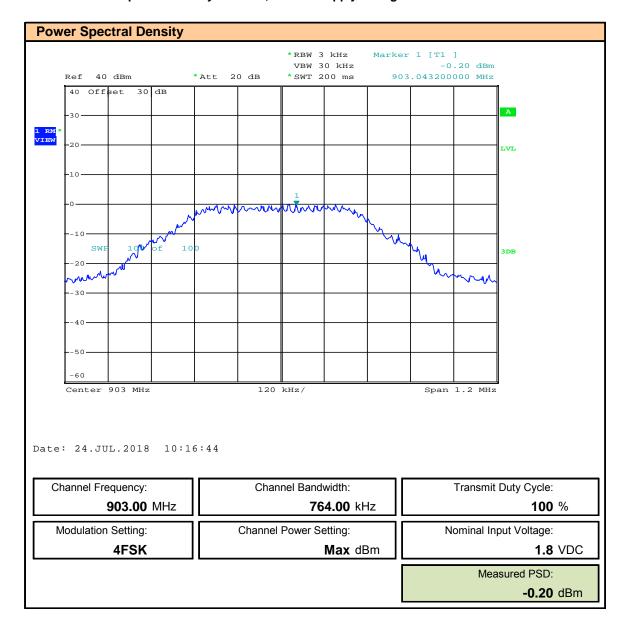
Plot 10.2 - Power Spectral Density 915 MHz



45461445 R4.0

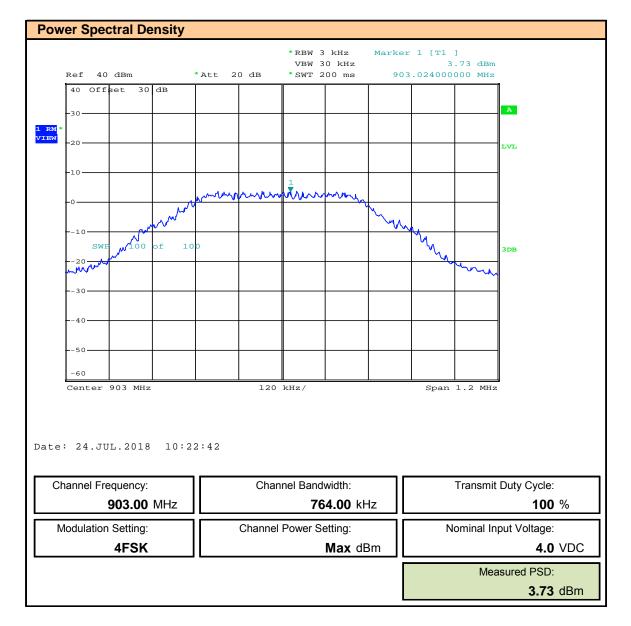
12 September 2018

Plot 10.3 - Power Spectral Density 927 MHz



45461445 R4.0

12 September 2018


Plot 10.4 - Power Spectral Density 927 MHz, 1.8VDC Supply Voltage

45461445 R4.0 12 September 2018

Plot 10.5 - Power Spectral Density 927 MHz, 4.0VDC Supply Voltage

45461445 R4.0

12 September 2018

Table 10.1 – Summary of Power Spectral Density Measurements

Power Spectral Density Measurement Results								
				Supply	Transmit	Measured		
Frequency	BW	W Modulation	Power	Supply	Duty	PSD	Limit	Margin
			Setting ⁽¹⁾	Voltage	Cycle	[PSD _{Meas}]		
(MHz)	(kHz)		(dBm)	(VDC)	(%)	(dBm)	(dBm)	(dB)
903.0				3.0		3.69		4.3
915.0				3.0		2.81		5.2
927.0	764	4FSK	Max	3.0	100	2.61	8.0	5.4
903.0				1.8		-0.20		8.2
903.0				4.0		3.73		4.3
Results:						Com	plies	

(1) The output power is factory set to maximum Margin = Limit - PSD_{meas}

45461445 R4.0

12 September 2018

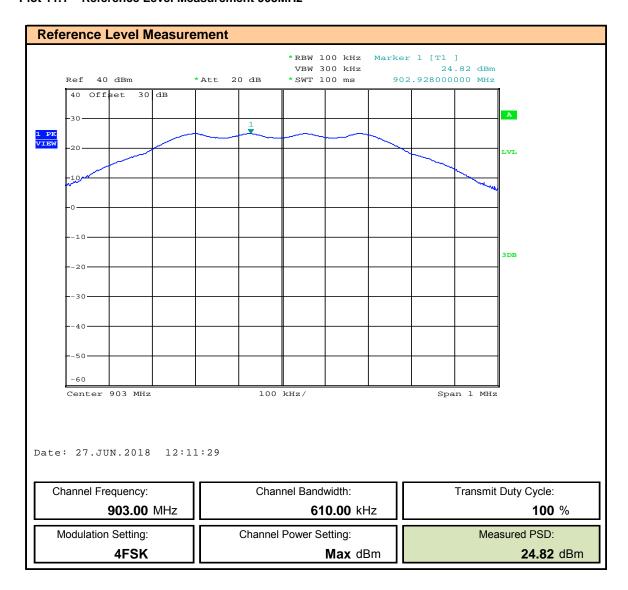
11.0 CONDUCTED SPURIOUS EMISSIONS & BAND EDGE

Test Procedure	
Normative Reference	FCC 47 CFR §2.1051, §15.247(d), RSS-Gen (6.13), RSS-247 (5.5),
Trominative Reference	KDB 558074 (11.3), ANSI C63.10 (11.11.3)
Limits	
47 CFR §15.247(d)	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.
RSS-247 (5.5)	5.5 Unwanted emissions
	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required. d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e). As an alternative to a peak power measurement, compliance can be based on a measurement of
	the maximum conducted output power.
KDB 558074 (11.3)	11.1 General
C63.10 (11.11.3)	The DTS rules specify that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:
	b) If maximum conducted (average) output power was used to demonstrate compliance as described in 9.2, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 30 dBc).
	11.2 Reference level measurement
	a) Set instrument center frequency to DTS channel center frequency.
	b) Set the span to ≥ 1.5 X <i>DTS bandwidth.</i>
	c) Set the RBW = 100 kHz.
	d) Set the VBW ≥ 3 X RBW.
	e) Detector = peak.
	f) Sweep time = auto couple.
	g) Trace mode = max hold.
	h) Allow trace to fully stabilize.
	i) Use the peak marker function to determine the maximum PSD level.
	Note that the channel found to contain the maximum PSD level can be used to establish the reference

45461445 R4.0

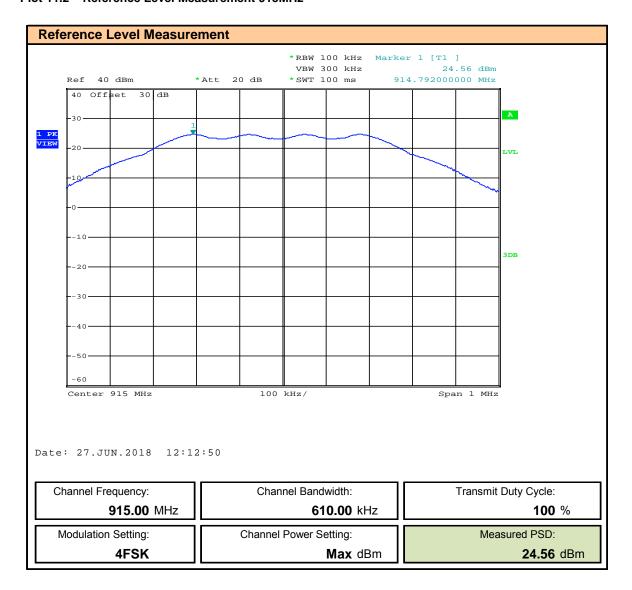
12 September 2018

Test Procedure (Co	nt.)			
Normative Reference	FCC 47 CFR §2.1051, §15.247(d), RSS-Gen (6.13), RSS-247 (5.5),			
KDB 558074 (11.3), ANSI C63.10 (11.11.3)				
Limits				
KDB 558074 (11.3)	11.3 Emission level measurement			
C63.10 (11.11.3)	a) Set the center frequency and span to encompass frequency range to be measured.			
	b) Set the RBW = 100 kHz.			
	c) Set the VBW ≥ 3 X RBW.			
	d) Detector = peak.			
	e) Sweep time = auto couple.			
	f) Trace mode = max hold.			
	g) Allow trace to fully stabilize.			
	h) Use the peak marker function to determine the maximum amplitude level.			
Test Setup	Appendix A Figure A.1			

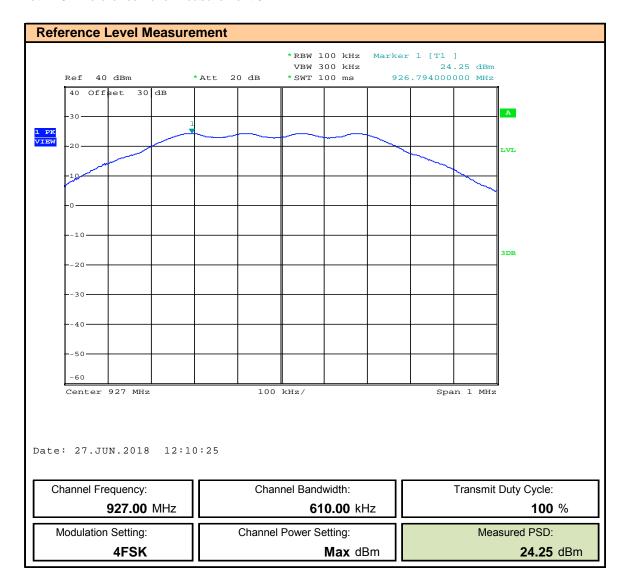

Measurement Procedure

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as described above. The Reference Level Measurement was The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The unwanted emissions were measured and recorded. The highest Reference Level Measurement was to determine the attenuation of the unwanted emissions. Comparative measurements were made at 1.8 and 4.0VDC supply voltage.

45461445 R4.0 12 September 2018


Plot 11.1 - Reference Level Measurement 903MHz

45461445 R4.0 12 September 2018


Plot 11.2 - Reference Level Measurement 915MHz

45461445 R4.0 12 September 2018

Plot 11.3 - Reference Level Measurement 927MHz

45461445 R4.0

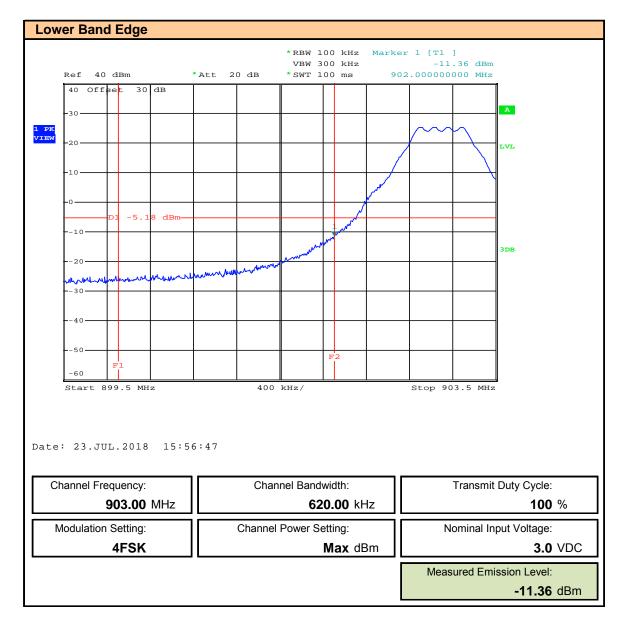
12 September 2018

Table 11.1 - Reference Level Measurements

Reference Level Measurement							
				Transmit	Measured	Required	Limit
Frequency	BW	Modulation	Power	Duty	PSD	Attenuation ⁽²⁾	Line
			Setting ⁽¹⁾	Cycle	[PSD _{Meas}]	[A _A]	[A _L]
(MHz)	(kHz)		(dBm)	(%)	(dBm)	(dBc)	(dBm)
903.0					24.82*		
915.0	610	4FSK	Max	100	24.56	30.00	-5.18
927.0					24.25		

⁽¹⁾ The output power is factory set to maximum

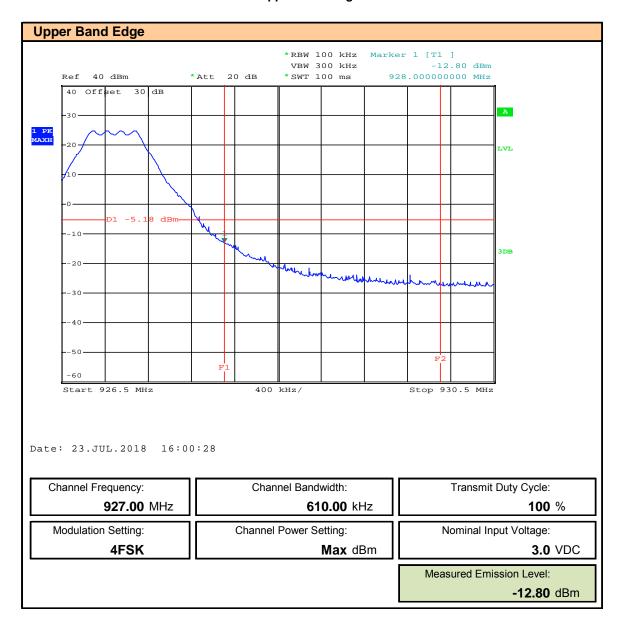
Limit Line $(A_L) = A_A - PSD_{meas}$


⁽²⁾ The Maximum Conducted (average) output power was used for compliance therefore the required attenuation is $30 \, \text{dBc}$.

 $^{^{\}star}$ The highest 100kHz PSD is used to demonstrate compliance.

45461445 R4.0 12 September 2018

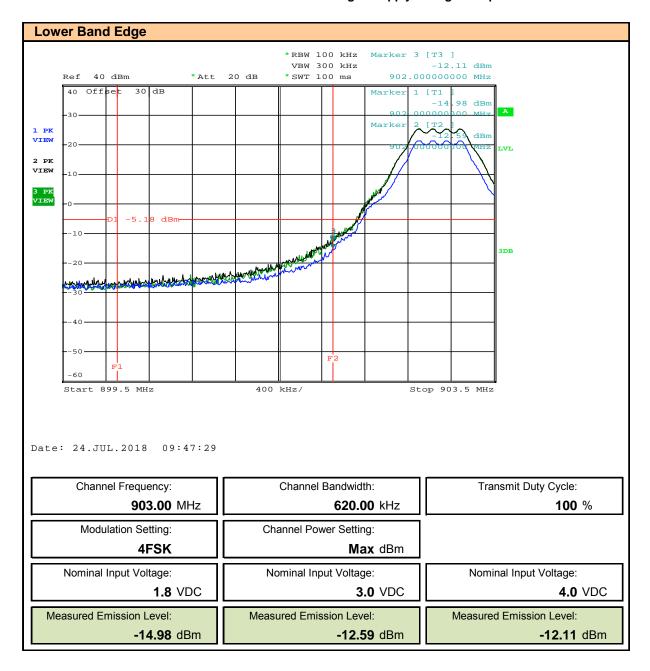
Plot 11.4 - Emission Level Measurement - Lower Band Edge 903 MHz



45461445 R4.0

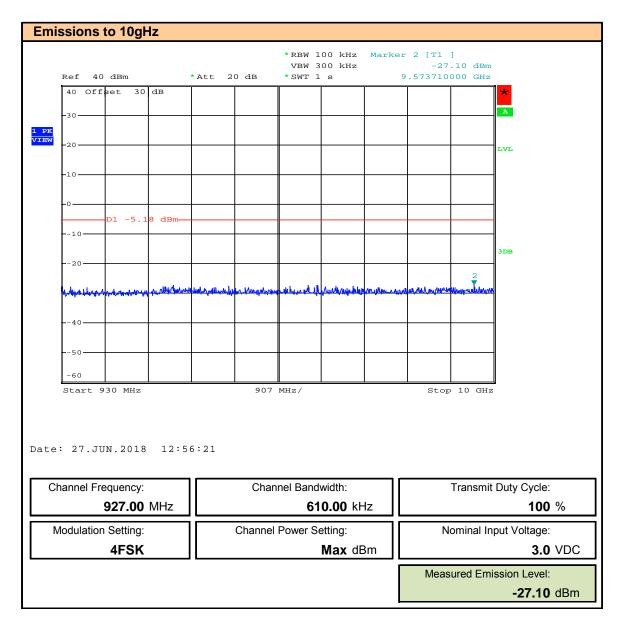
12 September 2018

Plot 11.5 - Emission Level Measurement - Upper Band Edge 927 MHz



45461445 R4.0

12 September 2018


Plot 11.6 - Emission Level Measurement - Lower Band Edge - Supply Voltage Comparison

45461445 R4.0 12 September 2018

Plot 11.6 – Emission Level Measurement – to 10th Harmonic 927 MHz

45461445 R4.0

12 September 2018

Table 11.2 - Emission Level Measurements Results

Emission Level Measurement								
Frequency	BW	Modulation	Power	Supply	Transmit Duty	Measured Emission	Limit Line	Margin
Range			Setting ⁽¹⁾	Voltage	Cycle	[E _{Meas}]	[A _L]	ŭ
(MHz)	(kHz)		(dBm)	(VDC)	(%)	(dBm)	(dBm)	(dB)
900 - 902				3.0		-11.36		6.18
900 - 902				1.8		-14.98		9.80
900 - 902	610	4FSK	Max	4.0	100	-12.11	-5.2	6.93
928 - 930				3.0		-12.80		7.62
930 - 10GHz				3.0		-27.10		21.92
						Results:	Com	plies

(1) The output power is factory set to maximum

Margin = $A_L - E_{MEAS}$

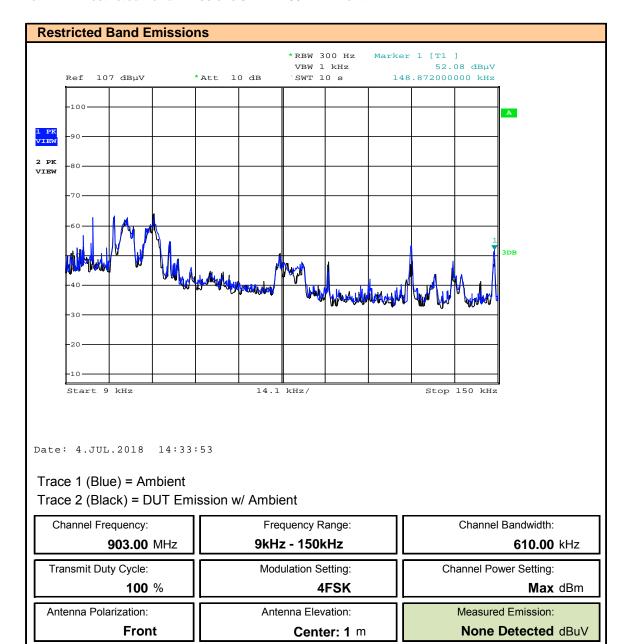
45461445 R4.0

12 September 2018

12.0 RESTRICTED BAND EMISSIONS

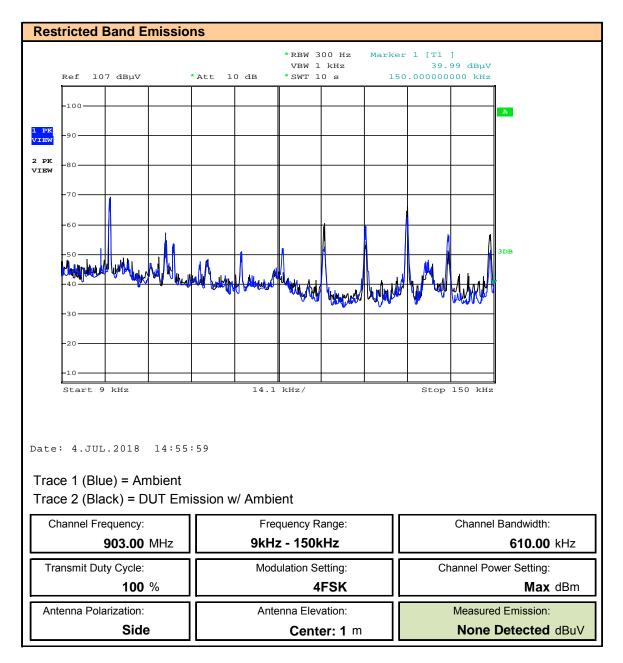
Test Procedure	
Normative Reference	FCC 47 CFR §2.1051, §15.247(d), §15.205(a), §15.205(c), §15.209(a)
Normalive Reference	ANSI C63.10 (5.9)
Limits	
47 CFR §15.247(d)	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).
Test Setup	Appendix A Figure A.2, A.3, A.4

Measurement Procedure


The emissions from the DUT were measured on an OATS while the DUT was transmitting at 100% Duty Cycle. The output power of the DUT was set to the manufacturer's highest output power setting at the Low frequency channel as permitted by the device. The unwanted emissions were measured and recorded between 9kHz and 10GHz. Due to the form factor of this device, the DUT was tested in 3 "XYZ" orientations.

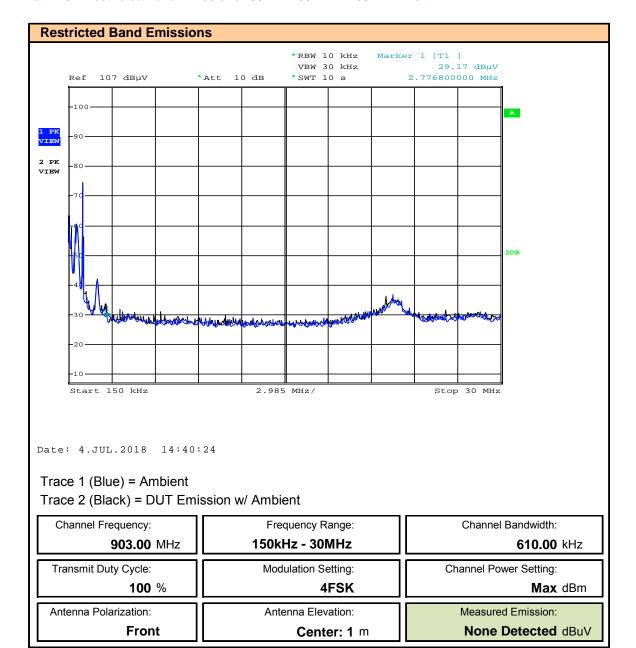
45461445 R4.0

port Issue Date: 12 September 2018


Plot 12.1 - Restricted Band Emissions 9kHz - 150kHz - Front

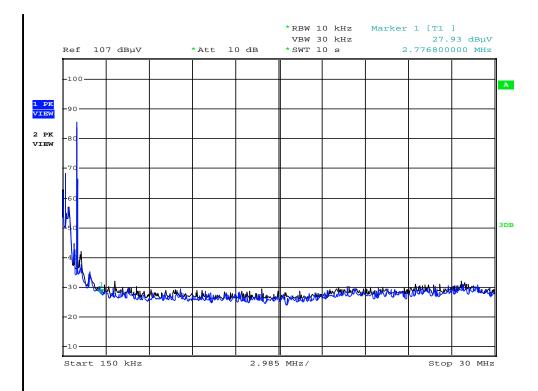
45461445 R4.0 12 September 2018

Plot 12.2 - Restricted Band Emissions 9kHz - 150kHz - Side



45461445 R4.0

12 September 2018

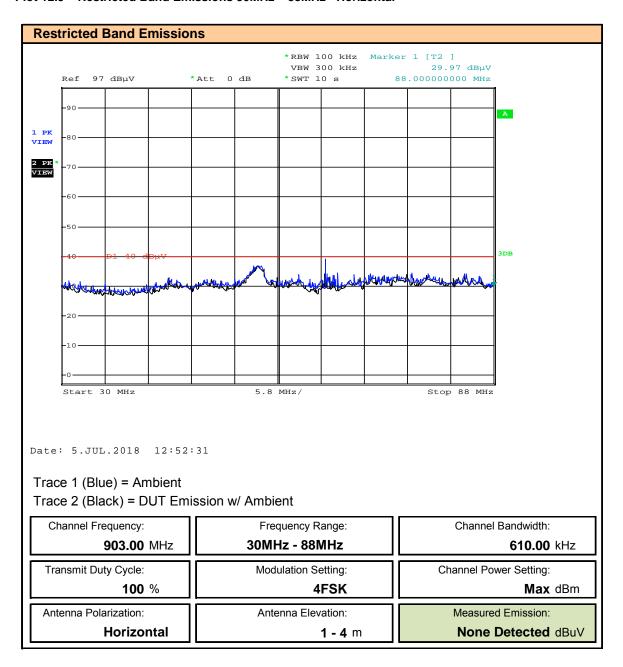

Plot 12.3 - Restricted Band Emissions 150kHz - 30MHz - 150kHz - Front

45461445 R4.0 12 September 2018

Plot 12.4 - Restricted Band Emissions 150kHz - 30MHz - 150kHz - Side

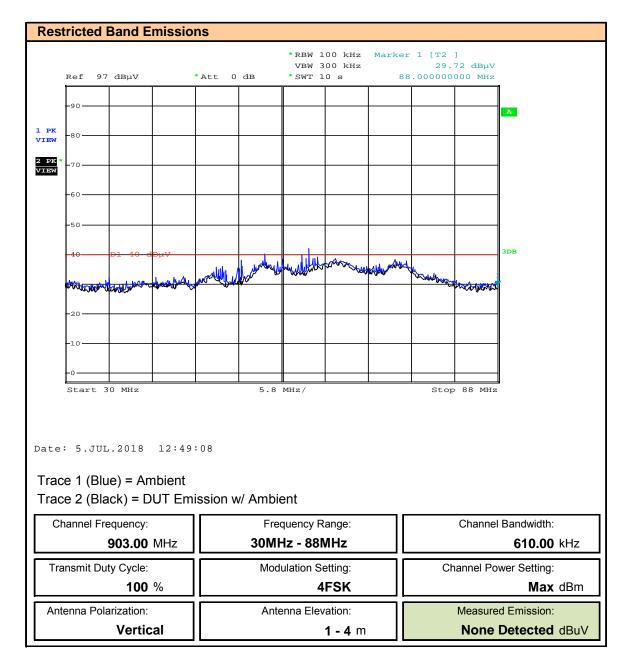
Date: 4.JUL.2018 14:49:16

Trace 1 (Blue) = Ambient

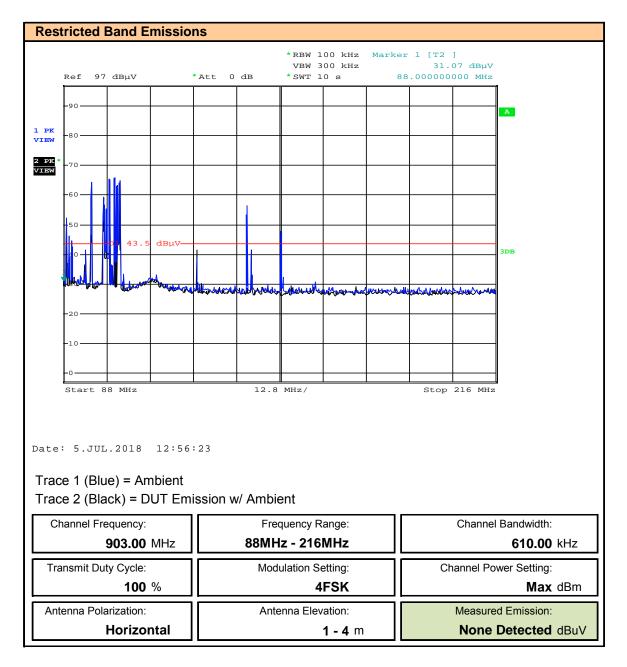

Trace 2 (Black) = DUT Emission w/ Ambient

Channel Frequency:	Frequency Range:	Channel Bandwidth:
903.00 MHz	150kHz - 30MHz	610.00 kHz
Transmit Duty Cycle:	Modulation Setting:	Channel Power Setting:
100 %	4FSK	Max dBm
Antenna Polarization:	Antenna Elevation:	Measured Emission:
Side	Center: 1 m	None Detected dBuV

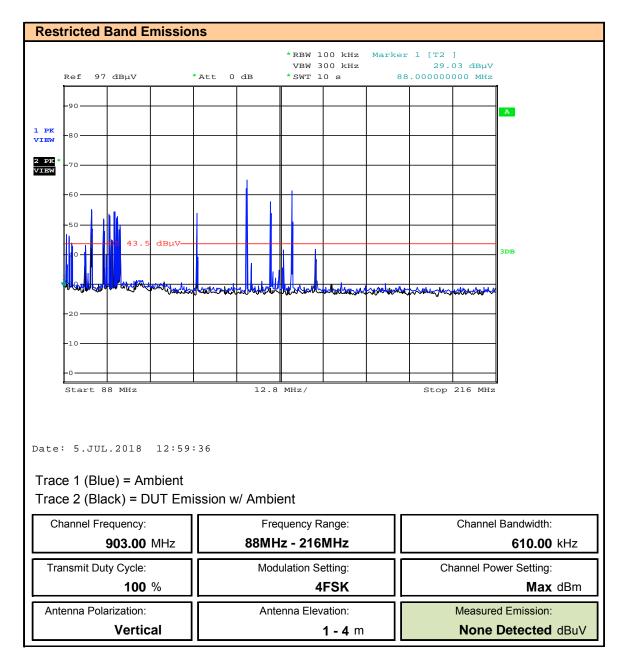
45461445 R4.0 12 September 2018


Plot 12.5 - Restricted Band Emissions 30MHz - 88MHz - Horizontal

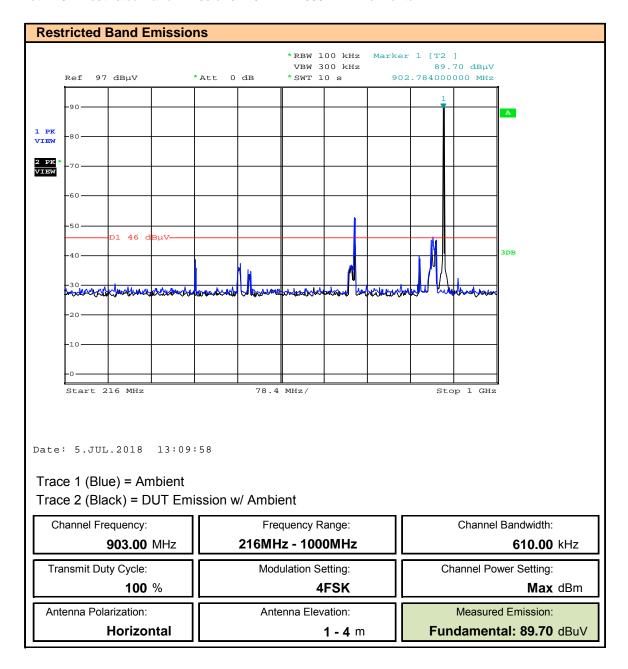
45461445 R4.0 12 September 2018


Plot 12.6 - Restricted Band Emissions 30MHz - 88MHz - Vertical

45461445 R4.0 12 September 2018

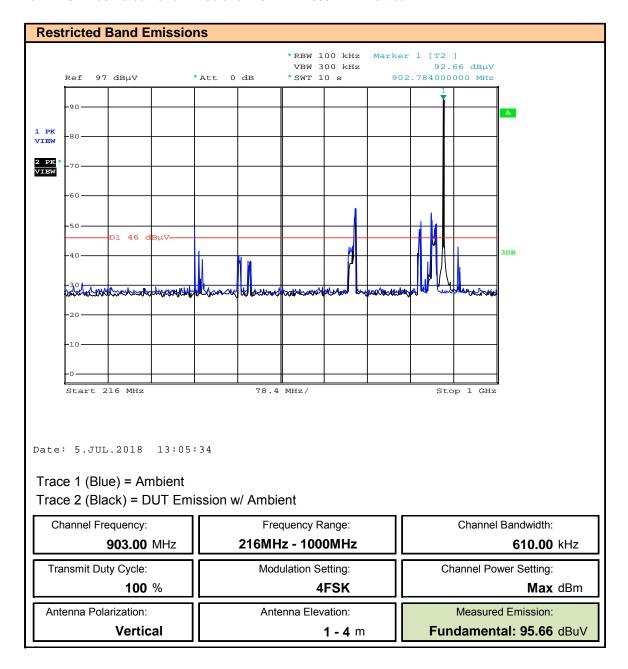

Plot 12.7 - Restricted Band Emissions 88MHz - 216MHz - Horizontal

45461445 R4.0 12 September 2018


Plot 12.8 - Restricted Band Emissions 88MHz - 216MHz - Vertical

45461445 R4.0 12 September 2018

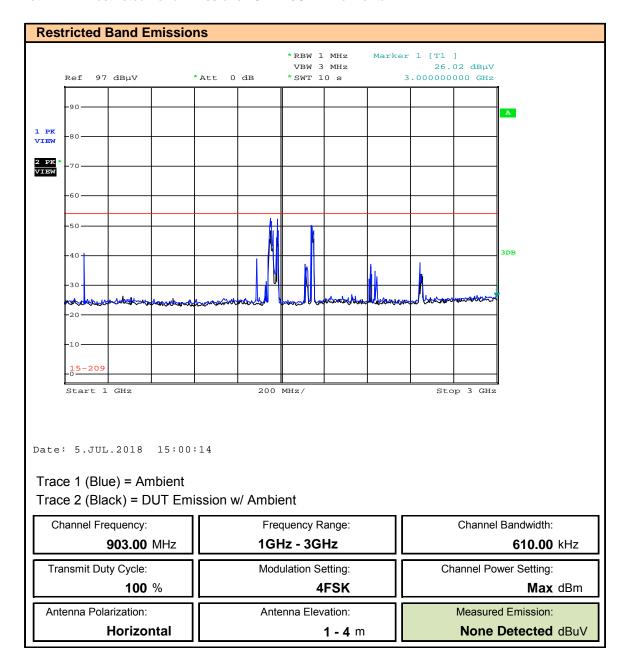
Plot 12.9 - Restricted Band Emissions 216MHz - 1000MHz - Horizontal



45461445 R4.0

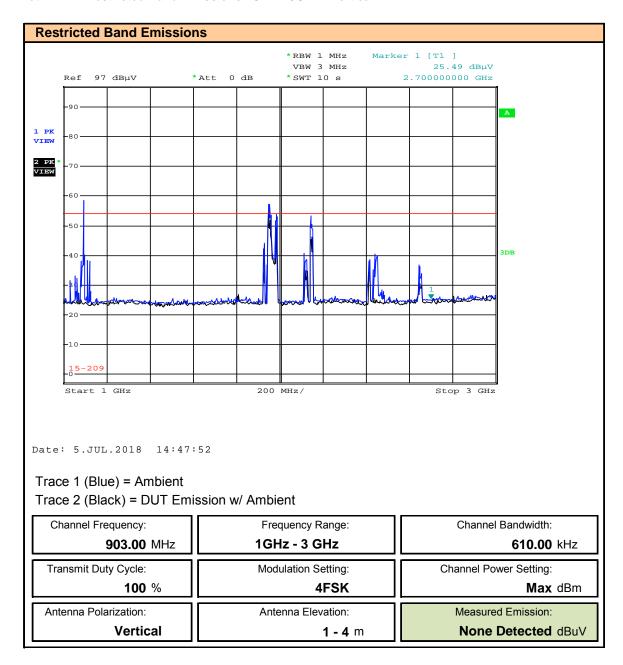
12 September 2018

Plot 12.10 - Restricted Band Emissions 216MHz - 1000MHz - Vertical



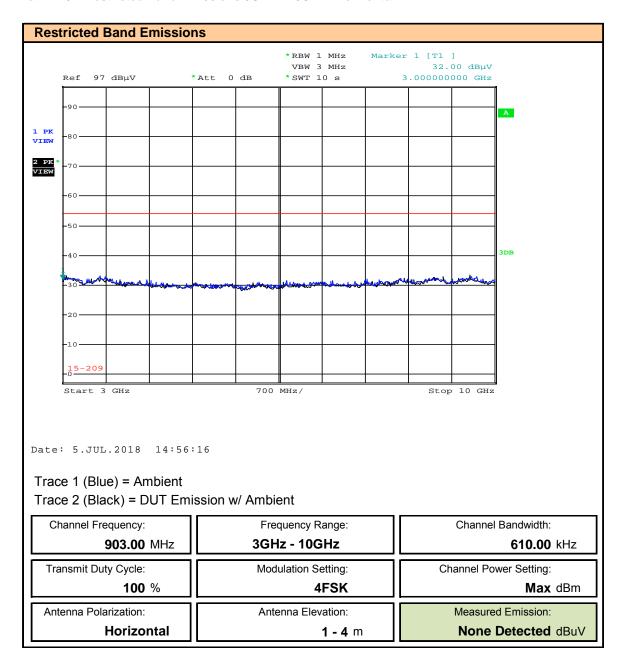
45461445 R4.0

12 September 2018


Plot 12.11 - Restricted Band Emissions 1GHz - 3GHz - Horizontal

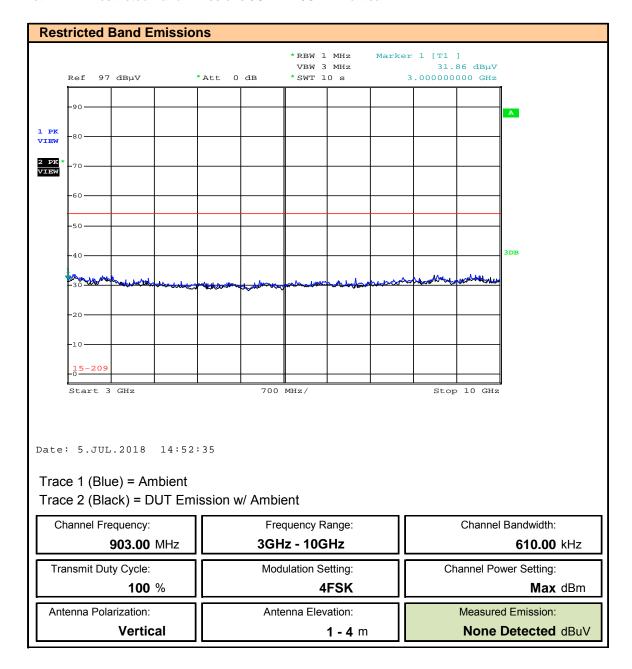
45461445 R4.0 12 September 2018

Plot 12.12 - Restricted Band Emissions 1GHz - 3GHz - Vertical



45461445 R4.0

12 September 2018


Plot 12.13 - Restricted Band Emissions 3GHz - 10GHz - Horizontal

45461445 R4.0 12 September 2018

Plot 12.14 - Restricted Band Emissions 3GHz - 10GHz - Vertical

45461445 R4.0 12 September 2018

Table 12.1 - Summary of Restricted Band Emissions

Emission Level Measurement Results										
Frequency	BW	Modulation	Power (1)	Transmit Duty	Antenna Polarization	Measured Emission ⁽²⁾	Worst Case Limit ⁽³⁾	Margin		
Range	4.1.		Setting ⁽¹⁾	Cycle	Polarization	[E _{Meas}] (dBuV @ 3m)	[A _∟] (dBuV @ 3m)	(15)		
	(kHz)		(dBm)	(%)			(abuv @ sm)	(dB)		
9kHz - 150kHz	_				Front	45.00	93.8	48.80		
9kHz - 150kHz					Side	45.00	00.0	48.80		
150kHz - 30MHz					Front	30.00	63.0	33.00		
150kHz - 30MHz						Side	30.00	05.0	33.00	
30MHz - 88MHz					Horizontal	30.00	40.0	10.00		
30MHz - 88MHz					Vertical	30.00		10.00		
88MHz - 216MHz	610	4FSK	Max	100	Horizontal	30.00	43.5	13.50		
88MHz - 216MHz] 610	4F3N	IVIAX	100	Vertical	30.00	43.5	13.50		
216MHz - 1000MHz							Horizontal 3	30.00	46.0	16.00
216MHz - 1000MHz					Vertical	30.00	54.0	16.00		
1GHz - 3GHz					Horizontal	25.00		29.00		
1GHz - 3GHz					Vertical	25.00		29.00		
3GHz - 10GHz					Horizontal	30.00	54.0	24.00		
3GHz - 10GHz	1				Vertical	30.00		24.00		
						Results:	Compli	es		

((1)	ıne	output	power	is ractory	set to	maximum

Limit between 9kHz and 490kHz = 2400/F (kHz) @300m = 266uV/m to 4.89uV/m

dBuV/m = 20Log (uV/m) = 48.5dBuV/m to 13.8dBuV/m

Distance Corrected: = 128.5dBuV/m to 93.8dBuV/m

Limit between 490kHz and 1705kHz = 24000/F (kHz) @30m = 160uV/m to 14uV/m

dBuV/m = 20Log (uV/m) = 44.1dBuV/m to 23dBuV/m

Distance Corrected: = 88.1dBuV/m to 63dBuV/m

Limit Between 1705kHz and 30MHz = 30uV/m @30m

dBuV/m = 20Log (uV/m) = 29.5dBuV/m

Distance Corrected: = 69.5dBuV/m

Limit between 30MHz and 88MHz = 100uV/m @ 3m

dBuV/m = 20Log (uV/m) = 40dBuV/m

Limit between 88MHz and 216MHz = 150uV/m @ 3m

dBuV/m = 20Log (uV/m) = 43.5dBuV/m

Limit between 216MHz and 960MHz = 200uV/m @3m

dBuV/m = 20Log (uV/m) = 46dBuV/m

Limit Above 960MHz = 500uV/m @3m

dBuV/m = 20Log (uV/m) = 54.0dBuV/m

Distance Correction: $40Log(D_{LIM}/D_{MEAS}) + Limit$

Below 30MHz Where D_{LIM} is the Limit Distance, D_{MEAS} is the Measurement Distance, Below

= 80dB + Limit @300m = 40dB + Limit @30m

§15.31(f)(2) At frequencies below 30 MHz...when performing measurements at a closer distance than specified, the results shall

be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using thes quare of an inverse linear distance

extrapolation factor (40 dB/decade).

(2) No emissions above the ambient were detected.

(3) The lowest limit within the test frequency range applied.

Worst case of all DUT orientations

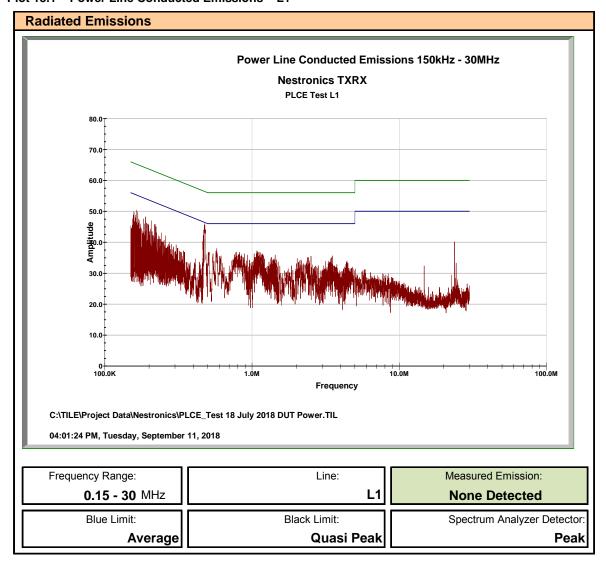
45461445 R4.0

12 September 2018

13.0 - POWER LINE CONDUCTED EMISSIONS

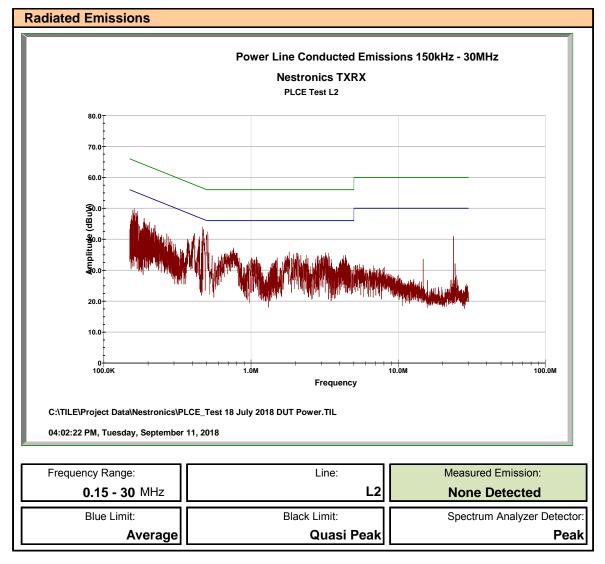
Test Procedure	
Normative Reference	FCC 47 CFR §15.207, ICES-003(6.1)
Limits	
47 CFR §15.207	(a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges. 0.15-0.5MHz: 66-56 dBuV Quasi Peak, 56-46 dBuV Average, Decreases with the logrithm of the 0.5 - 5.0 MHz: 56 dBuV Quasi Peak, 46 dBuV Average 5.0 - 30.0 MHz: 60 dBuV Quasi Peak, 50 dBuV Average
ICES-003(6.1)	6.1 - AC Power Line Conducted Emissions Limits Class B: ITE that does not meet the conditions for Class A operation shall comply with the Class B radiated limits set out in Table 2. 0.15-0.5MHz: 66-56 dBuV Quasi Peak, 56-46 dBuV Average, Decreases with the logrithm of the 0.5 - 5.0 MHz: 56 dBuV Quasi Peak, 46 dBuV Average 5.0 - 30.0 MHz: 60 dBuV Quasi Peak, 50 dBuV Average
Test Setup	Appendix A Figure A.5

Measurement Procedure


The DUT was connected to a CUI Inc. P/N: SWI6-3.3-N-P7, 3.3VDC, 5W wall mount DC power suppy. The DUT was allowed to transmit continuously. Emissions were measured from the LISN for both L1 and L2.

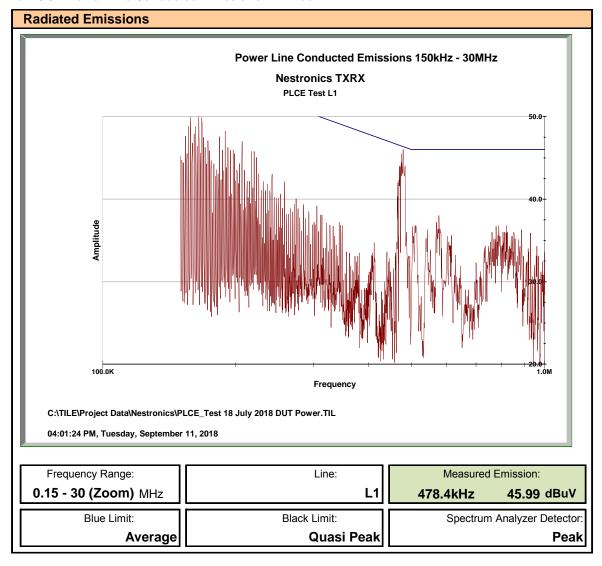
45461445 R4.0

Test Report Issue Date: 12 September 2018


Plot 13.1 - Power Line Conducted Emissions - L1

45461445 R4.0 12 September 2018

Plot 13.2 - Power Line Conducted Emissions - L2



45461445 R4.0

12 September 2018

Plot 13.3 - Power Line Conducted Emissions - L1 Zoom

45461445 R4.0 12 September 2018

Table 13.1 – Summary of Power Line Conducted Emissions Measurements

§15.207, I	CES-003 (6	6.1)		
Emission		Measured		
Frequency	Line	Emission	Limit	Margin
		[E _{Meas}]		
(kHz)		(dBuV)	(W)	(dB)
478.4	L1	45.99	46.4	0.4
		R	Results: Cor	nplies

Measured Emissions with Peak Detector Compared to Average Limits.

45461445 R4.0

12 September 2018

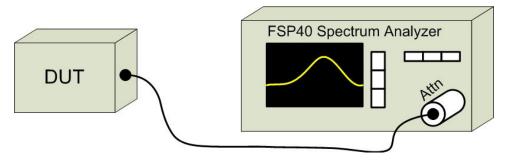

APPENDIX A - TEST SETUP DRAWINGS AND CONDITIONS

Table A.1 – Conducted Measurement Setup and Environmental

	Environmental Conditions (Typical)				
Temperature	25°C				
Humidity	<60%				
Barometric Pressure	101 +/- 3kPa				

			Equipment List
Asset	Manufacturer	Model	Description
Number	manara otar or	Number	200011.p.1.011
00241	R&S	FSU40	Spectrum Analyzer

Figure A.1 – Test Setup – Conducted Measurements

45461445 R4.0

12 September 2018

Table A.2 – Radiated Emissions Measurement Equipment and Environmental

Environmental Conditions (Typical)		
Temperature	25°C	
Humidity	<60%	
Barometric Pressure	101 +/- 3kPa	

Equipm	Equipment List			
Asset Number	Manufacturer	Model Number	Description	
00051	HP	8566B	Spectrum Analyzer	
00049	HP	85650A	Quasi-peak Adapter	
00047	HP	85685A	RF Preselector	
00072	EMCO	2075	Mini-mast	
00073	EMCO	2080 Turn Table		
00071	EMCO	2090 Multi-Device Controller		
00265	Miteq	JS32-00104000-58-5P	Microwave L/N Amplifier	
00241	R&S	FSU40 Spectrum Analyzer		
00050	Chase	CBL-6111A	Bilog Antenna	
00275	Coaxis	LMR400	25m Cable	
00276	Coaxis	LMR400 4m Cable		
00278	TILE	34G3	TILE Test Software	
00034	ETS	3115	Double Ridged Guide Horn	
00085	EMCO	6502	Loop Antenna	

45461445 R4.0 12 September 2018

Figure A.2 – Test Setup Radiated Measurements 9kHzMHz – 30MHz

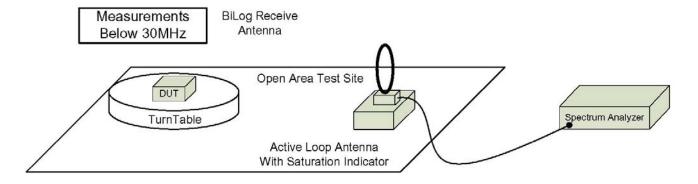


Figure A.3 - Test Setup Radiated Measurements 30MHz - 1GHz

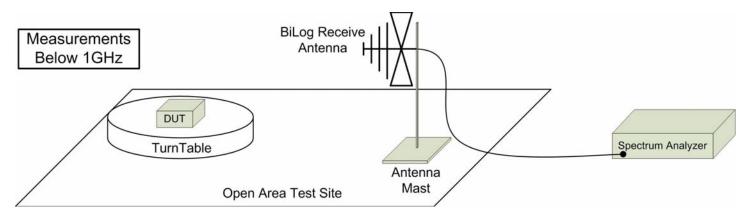
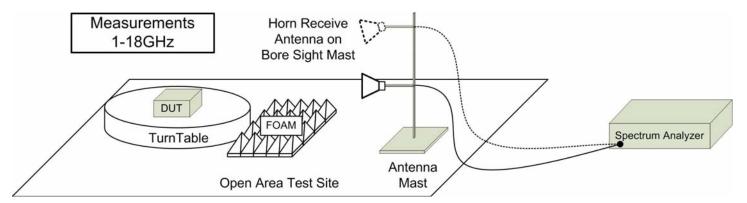
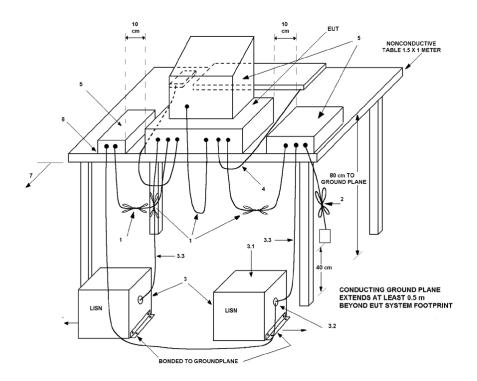



Figure A.4 – Test Setup Radiated Measurements Above 1GHz

45461445 R4.0

e: 12 September 2018

Table A.3 – Power Line Conducted Measurement Equipment and Environmental


Environmental Conditions (Typical)		
Temperature	25°C	
Humidity	<60%	
Barometric Pressure	101 +/- 3kPa	

Equipme	Equipment List				
Asset Number	Manufacturer	Model Number	Description		
00051	HP	8566B	Spectrum Analyzer		
00049	HP	85650A	Quasi-peak Adapter		
00047	HP	85685A	RF Preselector		
00275	Coaxis	LMR400	25m Cable		
00276	Coaxis	LMR400	4m Cable		
00278	TILE	34G3	TILE Test Software		
00257	Comm Power	LI-215A	LISN		

45461445 R4.0 12 September 2018

Figure A.5 – Test Setup Power Line Conducted Measurements

- 1. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long (see 6.2.5, also 11.5.5).
- 2. Input/output (I/O) cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m (see 6.2.5).
- 3. EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated into 50 Ω loads. LISN can be placed on top of, or immediately beneath, reference ground plane (see 5.2.4 and 7.3.1).
- 3.1 All other equipment powered from additional LISN(s).
- 3.2 Multiple outlet strips can be used for multiple power cords of non-EUT equipment.
- 3.3 LISN at least 80 cm from nearest part of EUT chassis.
- 4. Cables of hand-operated devices, such as keyboards and mice, shall be placed as for normal use (see 6.3.2.4 and 11.5.5).
- 5. Non-EUT components of EUT system being tested (see also Figure 7).
- 6. Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop (see 6.3.2.2 and 6.3.2.3).
- 7. Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane (see 5.2.3 for options).

45461445 R4.0

12 September 2018

APPENDIX B - EQUIPMENT LIST AND CALIBRATION

Εqι	ıipment L	.ist						
(*)	Asset	Manufacturer	Model	Serial	Description	Last	Calibration	Calibration
` '	Number	Wandidetarei	Number	Number	Description	Calibrated	Interval	Due
*	00050	Chase	CBL-6111A	1607	Bilog Antenna	23 Jun 2017	Triennial	23 Jun 2020
*	00034	ETS	3115	6267	Double Ridged Guide Horn	2 Dec 2015	Triennial	2 Dec 2018
	00035	ETS	3115	6276	Double Ridged Guide Horn	2 Dec 2015	Triennial	2 Dec 2018
*	00085	EMCO	6502	9203-2724	Loop Antenna	8 Jun 2016	Triennial	8 Jun 2019
*	00047	HP	85685A	2837A00826	RF Preselector	23 Jun 2017	Triennial	23 Jun 2020
*	00049	HP	85650A	2043A00162	Quasi-peak Adapter	23 Jun 2017	Triennial	23 Jun 2020
*	00051	HP	8566B	2747A05510	Spectrum Analyzer	23 Jun 2017	Triennial	23 Jun 2020
	00223	HP	8901A	3749A07154	Modulation Analyzer	27 Dec 2017	Triennial	27 Dec 2020
	00224	HP	8903B	3729A18691	Audio Analyzer	28 Dec 2017	Triennial	28 Dec 2020
*	00241	R&S	FSU40	100500	Spectrum Analyzer	23 Apr 2015	Triennial	23 Apr 2018
*	00005	HP	8648D	3847A00611	Signal Generator	21 Jun 2017	Triennial	21 Jun 2020
	00006	R&S	SMR20	100104	Signal Generator	29 May 2017	Triennial	29 May 2020
	00243	Rigol	DS1102E	DS1ET150502164	Oscilloscope	7 Nov 2017	Triennial	7 Nov 2020
	00254	LeCroy	WM8600A	532	Oscilloscope	NCR	n/a	NCR
	00110	Gigatronics	8652A	1875801	Power Meter	29 Feb 2016	Triennial	29 Feb 2019
	00237	Gigatronics	80334A	1837001	Power Sensor	23 Jun 2014	Triennial	23 Jun 2017
	00232	ETS Lindgren	HI-6005	91440	Isotropic E-Field Probe	18 Dec 2017	Triennial	18 Dec 2020
	00003	HP	53181A	3736A05175	Frequency Counter	21 Jun 2017	Triennial	21 Jun 2020
*	00257	Com-Power	LI-215A	191934	LISN	5 Jan 2018	Triennial	5 Jan 2021
	00041	AR	10W1000C	27887	Power Amplifier	NCR	n/a	NCR
	00106	AR	5SIG4	26235	Power Amplifier	NCR	n/a	NCR
	00280	AR	25A250AM6	22702	Power Amplifier	NCR	n/a	NCR
	00265	Miteq	JS32-00104000-58-5P	1939850	Microwave L/N Amplifier	COU	n/a	COU
	00071	EMCO	2090	9912-1484	Multi-Device Controller	n/a	n/a	n/a
*	00072	EMCO	2075	0001-2277	Mini-mast	n/a	n/a	n/a
*	00073	EMCO	2080	0002-1002	Turn Table	n/a	n/a	n/a
	00081	ESPEC	ECT-2	0510154-B	Environmental Chamber	CNR	n/a	CNR
	00234	VWR	61161-378	140320430	Temp/Humidity Meter	New	Triennial	New
	00236	Nokia	-	236	ESD Table	NCR	n/a	NCR
	00255	Expert ESD	A4001	A4001-155	ESD Target	COU	n/a	COU
	00064	NARDA	3020A	n/a	Bi-Directional Coupler	COU	n/a	COU
	00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable	COU	n/a	COU
*	00263B	Koaxis	KP10-1.00M-TD	263B	1m Armoured Cable	COU	n/a	COU
*	00264	Koaxis	KP10-7.00M-TD	264	7m Armoured Cable	COU	n/a	COU
*	00275	TMS	LMR400	n/a	25m Cable	COU	n/a	COU
*	00276	TMS	LMR400	n/a	4m Cable	COU	n/a	COU
*	00277	TMS	LMR400	n/a	4m Cable	COU	n/a	COU
*	00278	TILE	34G3	n/a	TILE Test Software	NCR	n/a	NCR
Ren	ted Equip							
<u>دا ا د</u>	ad during	the course of th						

* Used during the course of this investigation

CNR: Calibration Not Required COU: Calibrate On Use

45461445 R4.0

12 September 2018

APPENDIX C - MEASUREMENT INSTRUMENT UNCERTAINTY

	CISPR 16-4 Measurement Uncertainty (U _{LAB})					
Th	This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence interval using a coverage factor of k=2					
	30MHz - 200MHz					
	$U_{LAB} = 5.14dB$ $U_{CISPR} = 6.3dB$					
	200MHz - 1000MHz					
	$U_{LAB} = 5.90dB$ $U_{CISPR} = 6.3dB$					
	1GHz - 6GHz					
	U _{LAB} = 4.80dB					
	6GHz - 18GHz					
	$U_{LAB} = 5.1dB$ $U_{CISPR} = 5.5dB$					
	If the calculated uncertainty \mathbf{U}_{lab} is $less$ than \mathbf{U}_{CISPR} then:					
1	Compliance is deemed to occur if NO measured disturbance exceeds the disturbance limit					
2	Non-Compliance is deemed to occur if ANY measured disturbance EXCEEDS the disturbance limit					
	If the calculated uncertainty \mathbf{U}_{lab} is $\mathbf{greater}$ than \mathbf{U}_{CISPR} then:					
3	Compliance is deemed to occur if NO measured disturbance, increased by (U _{lab} - U _{CISPR}), exceeds the disturbance limit					
4	4 Non-Compliance is deemed to occur if ANY measured disturbance, increased by (U _{lab} - U _{CISPR}), EXCEEDS the disturbance limit					