

Report No.: SZEM180600492001 Page: 1 of 89

Appendix B

E-UTRA Band 41

Report No.: SZEM180600492001 Page: 2 of 89

CONTENT

1	EFFECTIVE (ISOTROPIC) RADIATED POWER OUTPUT DATA	3
2	PEAK-TO-AVERAGE RATIO	11
	2.1 For LTE	11
	2.1.1 Test Band = LTE band41	11
3	MODULATION CHARACTERISTICS	17
	3.1 FOR LTE	17
	3.1.1 Test Band = LTE band41	17
4	BANDWIDTH	19
	4.1 For LTE	20
	4.1.1 Test Band = LTE band41	20
5	BAND EDGES COMPLIANCE	44
	5.1 FOR LTE	44
	5.1.1 Test Band = LTE band41	44
6	SPURIOUS EMISSION AT ANTENNA TERMINAL	76
	6.1 FOR LTE	76
	6.1.1 Test Band = LTE band41	76
7	FIELD STRENGTH OF SPURIOUS RADIATION	85
	7.1 FOR LTE	85
	7.1.1 Test Band = LTE band41	85
8	FREQUENCY STABILITY	87
	8.1 FREQUENCY ERROR VS. VOLTAGE	87
	8.2 FREQUENCY ERROR VS. TEMPERATURE	88

Report No.: SZEM180600492001 Page: 3 of 89

Effective (Isotropic) Radiated Power Output Data 1

Effect	Effective Isotropic Radiated Power of Transmitter (EIRP) for LTE BAND 41									
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict		
				RB1#0	25.59	27.09	33.00	PASS		
				RB1#13	25.65	27.15	33.00	PASS		
				RB1#24	25.77	27.27	33.00	PASS		
			LCH	RB12#0	24.73	26.23	33.00	PASS		
				RB12#6	25.16	26.66	33.00	PASS		
		5M		RB12#13	25.03	26.53	33.00	PASS		
				RB25#0	24.24	25.74	33.00	PASS		
				RB1#0	25.38	26.88	33.00	PASS		
			МСН	RB1#13	25.41	26.91	33.00	PASS		
	LTE/TM1			RB1#24	25.16	26.66	33.00	PASS		
BAND 41				RB12#0	24.66	26.16	33.00	PASS		
				RB12#6	24.57	26.07	33.00	PASS		
				RB12#13	24.53	26.03	33.00	PASS		
				RB25#0	24.03	25.53	33.00	PASS		
				RB1#0	26.08	27.58	33.00	PASS		
				RB1#13	26.14	27.64	33.00	PASS		
				RB1#24	26.03	27.53	33.00	PASS		
			НСН	RB12#0	25.07	26.57	33.00	PASS		
				RB12#6	25.02	26.52	33.00	PASS		
				RB12#13	24.81	26.31	33.00	PASS		
				RB25#0	24.42	25.92	33.00	PASS		

Report No.: SZEM180600492001 Page: 4 of 89

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	24.65	26.15	33.00	PASS
				RB1#13	24.91	26.41	33.00	PASS
				RB1#24	24.95	26.45	33.00	PASS
			LCH	RB12#0	24.13	25.63	33.00	PASS
				RB12#6	23.97	25.47	33.00	PASS
		2 5M		RB12#13	23.85	25.35	33.00	PASS
				RB25#0	23.55	25.05	33.00	PASS
			МСН	RB1#0	24.48	25.98	33.00	PASS
	LTE/TM2			RB1#13	24.53	26.03	33.00	PASS
				RB1#24	24.67	26.17	33.00	PASS
BAND41				RB12#0	23.68	25.18	33.00	PASS
				RB12#6	23.52	25.02	33.00	PASS
				RB12#13	23.83	25.33	33.00	PASS
				RB25#0	23.23	24.73	33.00	PASS
				RB1#0	25.27	26.77	33.00	PASS
				RB1#13	25.3	26.8	33.00	PASS
				RB1#24	25.13	26.63	33.00	PASS
			НСН	RB12#0	24.08	25.58	33.00	PASS
				RB12#6	24.14	25.64	33.00	PASS
				RB12#13	23.76	25.26	33.00	PASS
				RB25#0	23.85	25.35	33.00	PASS

Report No.: SZEM180600492001 Page: 5 of 89

	Page: 5 of 89							
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	25.6	27.1	33.00	PASS
	LTE/TM1			RB1#25	25.92	27.42	33.00	PASS
				RB1#49	26.06	27.56	33.00	PASS
			LCH	RB25#0	24.83	26.33	33.00	PASS
				RB25#13	25.03	26.53	33.00	PASS
		10M		RB25#25	24.88	26.38	33.00	PASS
				RB50#0	24.66	26.16	33.00	PASS
			МСН	RB1#0	24.83	26.33	33.00	PASS
				RB1#25	25.04	26.54	33.00	PASS
				RB1#49	24.75	26.25	33.00	PASS
BAND41				RB25#0	24.48	25.98	33.00	PASS
				RB25#13	24.42	25.92	33.00	PASS
				RB25#25	24.32	25.82	33.00	PASS
				RB50#0	24.15	25.65	33.00	PASS
				RB1#0	25.97	27.47	33.00	PASS
				RB1#25	26.32	27.82	33.00	PASS
				RB1#49	25.77	27.27	33.00	PASS
			НСН	RB25#0	24.77	26.27	33.00	PASS
				RB25#13	24.74	26.24	33.00	PASS
				RB25#25	24.66	26.16	33.00	PASS
				RB50#0	24.67	26.17	33.00	PASS

Report No.: SZEM180600492001 Page: 6 of 89

r	Page: 6 of 89							
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	24.65	26.15	33.00	PASS
				RB1#25	24.99	26.49	33.00	PASS
				RB1#49	25.08	26.58	33.00	PASS
			LCH	RB25#0	23.96	25.46	33.00	PASS
				RB25#13	24.16	25.66	33.00	PASS
		10M		RB25#25	24.2	25.7	33.00	PASS
				RB50#0	23.52	25.02	33.00	PASS
			MCH	RB1#0	24.09	25.59	33.00	PASS
				RB1#25	24.7	26.2	33.00	PASS
	LTE/TM2			RB1#49	24.53	26.03	33.00	PASS
BAND41				RB25#0	23.59	25.09	33.00	PASS
				RB25#13	23.68	25.18	33.00	PASS
				RB25#25	23.42	24.92	33.00	PASS
				RB50#0	23.32	24.82	33.00	PASS
				RB1#0	24.87	26.37	33.00	PASS
				RB1#25	25.16	26.66	33.00	PASS
				RB1#49	24.85	26.35	33.00	PASS
			НСН	RB25#0	24.03	25.53	33.00	PASS
				RB25#13	24.01	25.51	33.00	PASS
				RB25#25	23.76	25.26	33.00	PASS
				RB50#0	23.76	25.26	33.00	PASS

Report No.: SZEM180600492001 Page: 7 of 89

·	Page: 7 of 89							
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	26	27.5	33.00	PASS
				RB1#38	26.65	28.15	33.00	PASS
		15M		RB1#74	27.11	28.61	33.00	PASS
			LCH	RB36#0	25.16	26.66	33.00	PASS
				RB36#18	25.12	26.62	33.00	PASS
				RB36#39	25.35	26.85	33.00	PASS
				RB75#0	25.12	26.62	33.00	PASS
				RB1#0	25.76	27.26	33.00	PASS
				RB1#38	25.99	27.49	33.00	PASS
			МСН	RB1#74	25.5	27	33.00	PASS
BAND41	LTE/TM1			RB36#0	25.19	26.69	33.00	PASS
				RB36#18	24.66	26.16	33.00	PASS
				RB36#39	24.82	26.32	33.00	PASS
				RB75#0	24.44	25.94	33.00	PASS
				RB1#0	25.89	27.39	33.00	PASS
				RB1#38	25.87	27.37	33.00	PASS
				RB1#74	25.98	27.48	33.00	PASS
			HCH	RB36#0	24.99	26.49	33.00	PASS
				RB36#18	24.78	26.28	33.00	PASS
				RB36#39	24.84	26.34	33.00	PASS
				RB75#0	24.58	26.08	33.00	PASS

Report No.: SZEM180600492001 Page: 8 of 89

Page: 8 of 89								
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	24.99	26.49	33.00	PASS
				RB1#38	25.4	26.9	33.00	PASS
				RB1#74	25.75	27.25	33.00	PASS
			LCH	RB36#0	23.67	25.17	33.00	PASS
				RB36#18	24.38	25.88	33.00	PASS
				RB36#39	24.22	25.72	33.00	PASS
				RB75#0	24.17	25.67	33.00	PASS
				RB1#0	24.79	26.29	33.00	PASS
			МСН	RB1#38	24.7	26.2	33.00	PASS
		15M		RB1#74	24.54	26.04	33.00	PASS
BAND41	LTE/TM2			RB36#0	23.74	25.24	33.00	PASS
				RB36#18	23.31	24.81	33.00	PASS
				RB36#39	23.41	24.91	33.00	PASS
				RB75#0	23.46	24.96	33.00	PASS
				RB1#0	24.97	26.47	33.00	PASS
				RB1#38	25.19	26.69	33.00	PASS
				RB1#74	24.93	26.43	33.00	PASS
			HCH	RB36#0	23.76	25.26	33.00	PASS
				RB36#18	23.57	25.07	33.00	PASS
				RB36#39	23.82	25.32	33.00	PASS
				RB75#0	23.77	25.27	33.00	PASS

Report No.: SZEM180600492001 Page: 9 of 89

	Page: 9 of 89							
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	25.86	27.36	33.00	PASS
				RB1#50	26.76	28.26	33.00	PASS
				RB1#99	27.12	28.62	33.00	PASS
	LTE/TM1		LCH	RB50#0	25.07	26.57	33.00	PASS
				RB50#25	25.24	26.74	33.00	PASS
		20M		RB50#50	25.11	26.61	33.00	PASS
				RB100#0	25.22	26.72	33.00	PASS
			МСН	RB1#0	25.75	27.25	33.00	PASS
				RB1#50	26.02	27.52	33.00	PASS
				RB1#99	25.55	27.05	33.00	PASS
BAND41				RB50#0	24.99	26.49	33.00	PASS
				RB50#25	24.56	26.06	33.00	PASS
				RB50#50	24.68	26.18	33.00	PASS
				RB100#0	24.76	26.26	33.00	PASS
				RB1#0	25.75	27.25	33.00	PASS
				RB1#50	26.03	27.53	33.00	PASS
				RB1#99	25.74	27.24	33.00	PASS
			НСН	RB50#0	24.5	26	33.00	PASS
				RB50#25	24.56	26.06	33.00	PASS
				RB50#50	24.73	26.23	33.00	PASS
				RB100#0	24.67	26.17	33.00	PASS

Report No.: SZEM180600492001 Page: 10 of 89

Page: 10 of 89								
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	24.88	26.38	33.00	PASS
				RB1#50	25.99	27.49	33.00	PASS
				RB1#99	26.44	27.94	33.00	PASS
			LCH	RB50#0	24.17	25.67	33.00	PASS
				RB50#25	24.28	25.78	33.00	PASS
				RB50#50	24.42	25.92	33.00	PASS
		20M		RB100#0	23.74	25.24	33.00	PASS
				RB1#0	25.15	26.65	33.00	PASS
			МСН	RB1#50	25.1	26.6	33.00	PASS
	LTE/TM2			RB1#99	24.35	25.85	33.00	PASS
BAND41				RB50#0	24.01	25.51	33.00	PASS
				RB50#25	23.66	25.16	33.00	PASS
				RB50#50	23.93	25.43	33.00	PASS
			-	RB100#0	23.87	25.37	33.00	PASS
				RB1#0	24.56	26.06	33.00	PASS
				RB1#50	25.26	26.76	33.00	PASS
				RB1#99	24.86	26.36	33.00	PASS
			НСН	RB50#0	23.74	25.24	33.00	PASS
				RB50#25	23.63	25.13	33.00	PASS
				RB50#50	23.99	25.49	33.00	PASS
				RB100#0	23.69	25.19	33.00	PASS

Note:

- a: For getting the EIRP (Efficient Isotropic Radiated Power) in substitution method, the following formula should be taken to calculate it,
- EIRP [dBm] = SGP [dBm] Cable Loss [dB] + Gain [dBi] b: SGP=Signal Generator Level

Report No.: SZEM180600492001 Page: 11 of 89

2 Peak-to-Average Ratio

Part I - Test Results

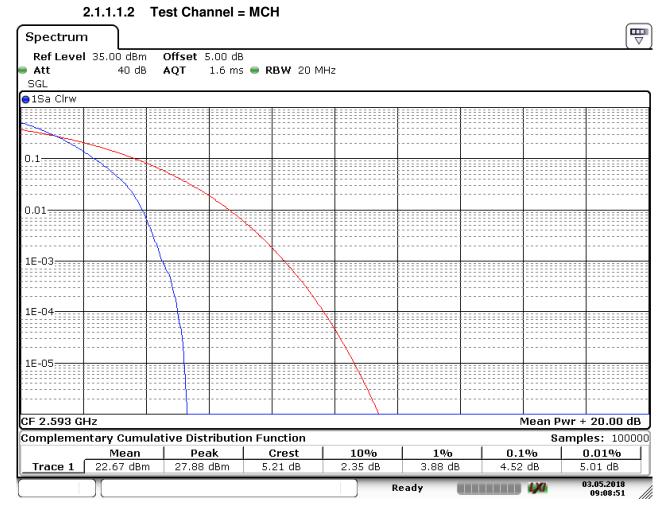
Test Band	Test Mode	Test Channel	Measured[dB]	Limit [dB]	Verdict
		LCH	6.67	13	PASS
	TM1/20M	MCH	4.52	13	PASS
Dond 41		HCH	5.62	13	PASS
Band 41	TM2/20M	LCH	6.96	13	PASS
		MCH	6.46	13	PASS
		НСН	4.78	13	PASS

Part II - Test Plots

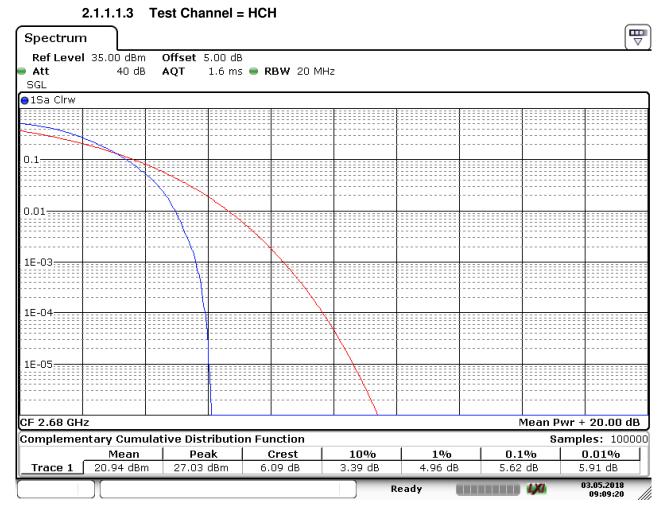
2.1 For LTE

2.1.1 Test Band = LTE band41

2.1.1.1 Test Mode = LTE/TM1.Bandwidth=20MHz

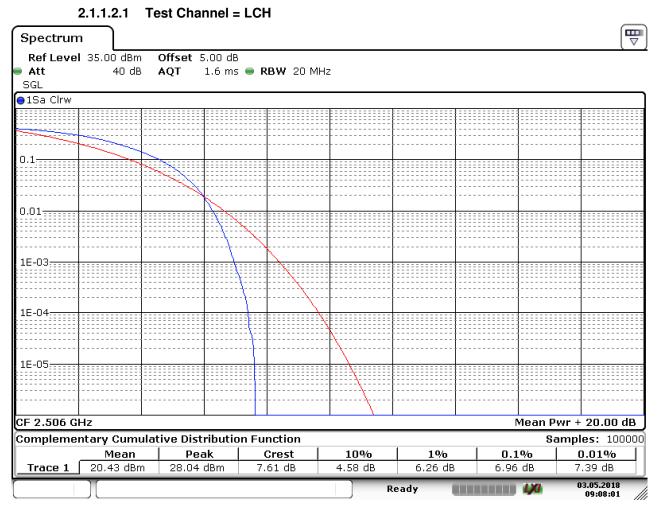

2.1.1.1.1 Test Channel = LCH

Date: 3.MAY.2018 09:07:18


Report No.: SZEM180600492001 Page: 12 of 89

Date: 3.MAY.2018 09:08:52

Report No.: SZEM180600492001 Page: 13 of 89

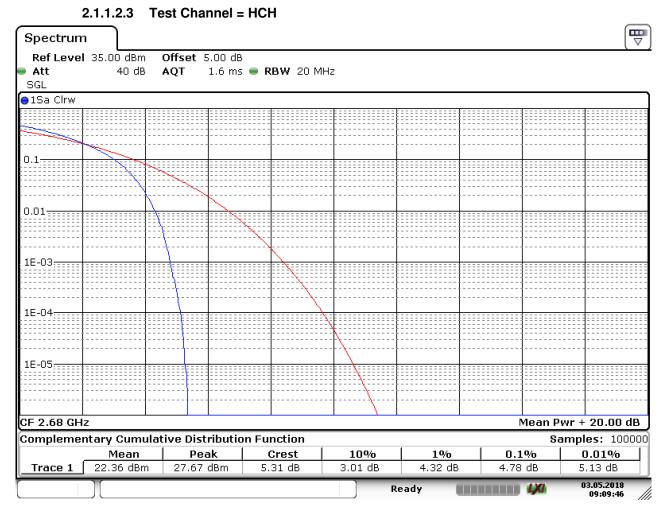


Date: 3.MAY.2018 09:09:21

Report No.: SZEM180600492001 Page: 14 of 89


2.1.1.2 Test Mode = LTE/TM2.Bandwidth=20MHz

Date: 3.MAY.2018 09:08:01


Report No.: SZEM180600492001 Page: 15 of 89

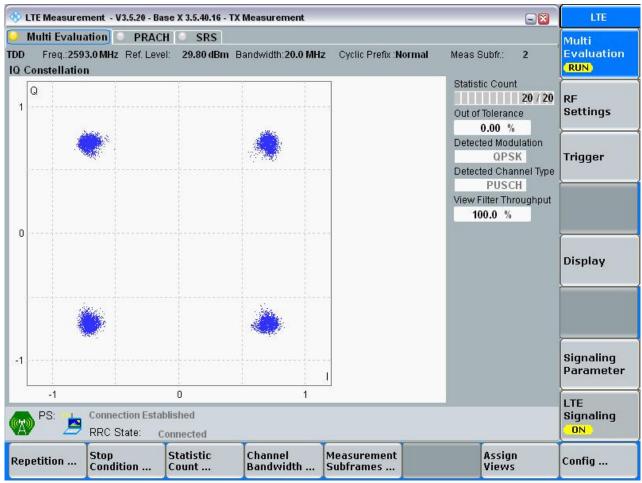
Date: 3.MAY.2018 09:08:31

Report No.: SZEM180600492001 Page: 16 of 89

Date: 3.MAY.2018 09:09:46

Report No.: SZEM180600492001 Page: 17 of 89

3 Modulation Characteristics

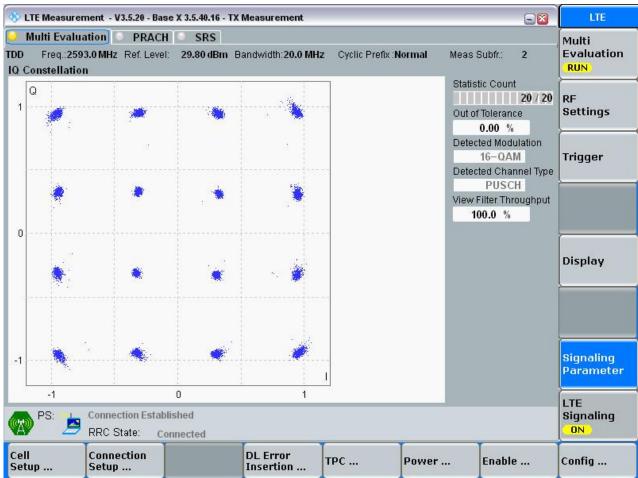

Part I - Test Plots

3.1 For LTE

3.1.1 Test Band = LTE band41

3.1.1.1 Test Mode = LTE /TM1 20MHz


3.1.1.1.1 Test Channel = MCH


This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

Report No.: SZEM180600492001 Page: 18 of 89

Report No.: SZEM180600492001 Page: 19 of 89

4 Bandwidth

Part I - Test Results

Test Band	Test Mode	Test Channel	Occupied Bandwidth [MHz]	Emission Bandwidth [MHz]	Verdict
		LCH	4.47	4.78	PASS
	TM1/ 5MHz	MCH	4.47	4.80	PASS
		HCH	4.47	4.90	PASS
		LCH	4.46	4.78	PASS
	TM2/ 5MHz	MCH	4.46	4.80	PASS
		HCH	4.46	4.84	PASS
		LCH	8.91	9.45	PASS
	TM1/10MHz	MCH	8.89	9.41	PASS
		HCH	8.89	9.33	PASS
	TM2/ 10MHz	LCH	8.91	9.43	PASS
		MCH	8.91	9.41	PASS
Band 7		HCH	8.91	9.47	PASS
Dariu 7	TM1/ 15MHz	LCH	13.35	14.05	PASS
		MCH	13.34	13.94	PASS
		HCH	13.37	13.82	PASS
		LCH	13.37	13.99	PASS
	TM2/ 15MHz	MCH	13.37	13.97	PASS
		HCH	13.37	14.00	PASS
		LCH	17.78	13.66	PASS
	TM1/ 20MHz	MCH	17.78	13.38	PASS
		HCH	17.78	13.42	PASS
		LCH	17.78	13.62	PASS
	TM2/ 20MHz	MCH	17.78	13.42	PASS
		HCH	17.82	13.42	PASS

Report No.: SZEM180600492001 Page: 20 of 89

4.1 For LTE

4.1.1 Test Band = LTE band41

4.1.1.1 Test Mode = LTE/TM1 5MHz

4.1.1.1.1 Test Channel = LCH

Spectrun	n							
Ref Leve Att	l 30.00 dBn	n Offset S B e SWT	5.00 dB 👄 I	RBW 50 kHz VBW 200 kHz				
■ All ● 1Rm Max	35 U	5 - 5 WI	15 📟	VBW 200 KH2	Mode Auto Sv	weep		
20 dBm					D1[1] ——Occ Bw M1[1]		4.4655	-0.51 dB 77500 MHz 34466 MHz 19.94 dBm
10 dBm					1	1	2.490	12200 GHz
0 dBm	-D1 5.480 d	Bm T1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Summer of		m I2		
-10 dBm								
-20 dBm	D2 -20	0.520 dBm						
-30 dBm	hurur Uniter and	a may				- Vu	Muhandundar	Multerstokula
-40 dBm	<u> </u>							1 0 1 0 1 000 440
-50 dBm—								
-60 dBm								
CF 2.4985	GHz			 1001 p	 ts		 Span	10.0 MHz
)[]				Measuring		-)1.05.2018 14:00:55 //

Date: 1.MAY.2018 14:00:55

Report No.: SZEM180600492001 Page: 21 of 89

Spectrum	ר ר								
Ref Level Att	l 30.00 dBm 35 dP) Offset	5.00 dB 👄 1 s 👄	RBW 50 kł VBW 200 kł		Auto Swe	en		
● 1Rm Max	00 42				ie mode	Adto Smc	<u>ор</u>		
20 dBm					0	1[1] cc Bw 1[1]		4.4655	-0.54 dB 79500 MHz 34466 MHz 20.12 dBm
10 dBm		т1				+	Т2		61200 GHz
0 dBm	D1 5.960 dl		- Mar Marana and San	ne-margalean	┶╍╍ ⋪ ╊न╲┸ _┺ ┲╘╼┹╪╝┡	man the man	wint		
-10 dBm									
-20 dBm		M().040 dBm . ↓							
uti Aller Handland	4,46/hunleyrthe	and the					- Upour	millionneuten	howe white the the
-40 dBm									
-50 dBm									
-60 dBm									
CF 2.593 0	 GHz			1001	pts			 Span	10.0 MHz
)[asuring		-)1.05.2018 13:56:32

4.1.1.1.2 Test Channel = MCH

Date: 1.MAY.2018 13:56:33

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

Report No.: SZEM180600492001 Page: 22 of 89

Spectrum	ן י								
Ref Level Att	l 30.00 dBm 35 dB) Offset S = SWT	5.00 dB 👄 1 s 👄	RBW 50 kł VBW 200 kł		Auto Swee	'n		
●1Rm Max	00 42				ie moue	<u>Auto 50000</u>	·P		
20 dBm					0	1[1] cc Bw 1[1]		4.4655	-0.05 dB 90300 MHz 34466 MHz 19.68 dBm
10 dBm		T1					то	2.685	06200 GHz
0 dBm	D1 5.910 dl			um mphant	, and a second second second	goldangyballiofachanna,			
-10 dBm									
- 20 dBm	D2 -20	M1/ 0.090 dBm							
№8 <mark>,Q./Ø</mark> ₿Ħ1₩-√₩	untre majories	yrruttf"					Մակս	hullungft hullinger and	and the growth star
-40 dBm									
-50 dBm									
-60 dBm									
CF 2.6875	GHz			1001	pts			 Span	10.0 MHz
[)[suring		-	10105.2018 13:55:16

4.1.1.1.3 Test Channel = HCH

Date: 1.MAY.2018 13:55:16

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

Report No.: SZEM180600492001 Page: 23 of 89

	4.1.1.2.1	Test Cha	nnel = LCH	1					
Spectru	m								
Ref Lev	el 30.00 dBm	n Offset	5.00 dB 👄	RBW 50 kH	łz				`
🗕 Att		B 👄 SWT	1 s 👄	VBW 200 kH	lz Mode	Auto Swe	ер		
⊖1Rm Ma×	<	1							
					D	1[1]			0.89 dB
00 d0					~	cc Bw			77500 MHz 44456 MHz
20 dBm—						1[1]			44436 MHZ 21.01 dBm
						-[-]			12200 GHz
10 dBm—							1		
	D1 4.750 d	I <u>⊤1</u> Bm √√√	man mana	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	a manun			
0 dBm				•			11		
-10 dBm—									
10 0.0									
		MZ					à1		
-20 dBm—	D2 -21	L.250 dBm					+ +		
							$ \rangle$		
-30 dBm—		udu l							
	HallowendayAnthem	hhend ?					Laure	Walnedgewalling h	hubulautah hubulaha
Mad dBm-									
-50 dBm—									
-60 dBm—									
-oo usin—									
CF 2.498	5 GHz	I		1001	pts	I		Span	10.0 MHz
[) Mea	isuring		1/0	1.05.2018 14:00:12

4.1.1.2 Test Mode = LTE/TM2 5MHz

Date: 1.MAY.2018 14:00:12

Report No.: SZEM180600492001 Page: 24 of 89

Spectrum	ן י								
	I 30.00 dBm		5.00 dB 👄						
Att 1Rm Max	35 GE	3 👄 SWT	1 s 👄	VBW 200 kł	12 Mode	Auto Swee	p		,
20 dBm					0	1[1] cc Bw		4.4555	0.39 dB 79500 MHz 44456 MHz
10 dBm					M	1[1]			21.02 dBm 61200 GHz
0 dBm	D1 5.450 d		anna Manaar	-	mander	and the second	T2		
-10 dBm									
20 dBm	D2 -20).550 dBm							
-30 dBm	Manadan (Marka)	utter of					Lune	mannahan	unpernent
-50 dBm									
-60 dBm									
CF 2.593 0	GHz		1	1001	pts	1	1	l Span	10.0 MHz
(][) Mea	suring		100	01.05.2018 13:57:14

4.1.1.2.2 Test Channel = MCH

Date: 1.MAY.2018 13:57:14

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

Report No.: SZEM180600492001 Page: 25 of 89

Spectrum	,)								
Ref Level	30.00 dBn	n Offset	5.00 dB 👄	RBW 50 kH	Ηz				
🗕 Att	35 dB	B 🔵 SWT	1 s 😑	VBW 200 kH	Hz Mode	Auto Swe	ер		
●1Rm Max				1					
					D	1[1]			0.32 dB
					0	cc Bw			84300 MHz 44456 MHz
20 dBm						1[1]			19.32 dBm
						-[-]			12200 GHz
10 dBm		т1					Т2		
	D1 5.890 d	Bm ym	entre where and	لاصلعا كمعلاهم ومرطلاله والمرو	we w	half and a second			
0 dBm									
-10 dBm—									
		MZ							
20 dBm		0.110 dBm-					P1		
		1					1 - Միսի	and the second	
-an Hithe		Mhd P					UNV -	MUMANA	
V Dallane runne	uffus.								. maarithrat M
-40 dBm									
-40 UBIII									
-50 dBm—									
-60 dBm									
CF 2.6875	GHz			1001	pts			 Span	10.0 MHz
	Υ					suring		-	01.05.2018
									13:54:27

4.1.1.2.3 Test Channel = HCH

Date: 1.MAY.2018 13:54:28

Report No.: SZEM180600492001 Page: 26 of 89

	4.1.1.3.1	Test Cha	nnel = LCH	1					
Spectru	ım								
	el 30.00 dBr	n Offset	5.00 dB 😑	RBW 50 kł	Ηz				
e Att		B 👄 SWT	1 s 👄	VBW 200 kł	Hz Mode	Auto Swee	p		
⊖1Rm Ma>	<	1	1						
					D	1[1]		_	0.90 dB
00 d0					_	CC BW).4510 MHz 88911 MHz
20 dBm—						1[1]			24.18 dBm
						1111			62650 GHz
10 dBm—						1	1		
	-D1 2.610 c	Т1					Т2		
0 dBm—	-01 2.8100	IBIII The	man	monant	and a superior and the second	have warden a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
-10 dBm—									
10 000									
-20 dBm—									
-20 uBIII—	n22	M⊥ 3.390 dB <mark>T</mark> n					01		
		l I							
-30 dBm—		1							
	and the second and the second	olombal					Low	What way of the West of the way	
-40 dBm-	A alwaland a lot							many fime which	murren
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									. I PROMITING
-50 dBm—									
-60 dBm—									
CF 2.501	GHz	-		1001	pts	•		Span	20.0 MHz
					Mea	asuring		1/0)1.05.2018 13:50:57

4.1.1.3 Test Mode = LTE/TM1 10MHz

Date: 1.MAY.2018 13:50:57

Report No.: SZEM180600492001 Page: 27 of 89

Spectrum									
	30.00 dBm		5.00 dB 👄						
Att	35 dB) 🛑 SWT	1 s 👄	VBW 200 kł	Hz Mode	Auto Swee	р		
●1Rm Max			1	1					1 40 40
					D.	1[1]		ç	-1.43 dB 4110 MHz.
20 dBm					0	cc Bw			08891 MHz
					M	1[1]			21.76 dBm
10 dBm						I	+	2.58	83050 GHz
		т1					Т2		
	01 3.280 di	Bm yur	manyo	and the hard	Musellenert-utyp	ward work when	w.K		
O GDIII									
-10 dBm									
-10 0.011									
-20 dBm		MZ							
-20 0011		2.620 dBm							
-30 dBm									
-30 dBm	التديير	Juny J					l du	а.	
الألباباليليام ومرو	White white and the second	UT I					All All and All	Walandanaa	Million at the c
PUT - HURLING - HURLING									erned the first of
-50 dBm									
-60 dBm									
CF 2.593 G	Hz	I	I	1001	pts	I	L	Span	20.0 MHz
	Υ				Mea	suring		1/0	1.05.2018 13:48:22 //

4.1.1.3.2 Test Channel = MCH

Date: 1.MAY.2018 13:48:23

Report No.: SZEM180600492001 Page: 28 of 89

Spectrun	n								
	I 30.00 dBm			RBW 50 kł					
Att	35 dB	SWT 💿	1 s 👄	VBW 200 kł	Hz Mode	Auto Swee	р		
⊖1Rm Max	1	1							
					D	1[1]			-0.35 dB .3310 MHz
20 dBm					0	cc Bw			08891 MHz
20 0011						1[1]			22.84 dBm
10 -10								2.68	03250 GHz
10 dBm									
	D1 2.960 di	Bm <u>T1</u>	eren America	, when the market	homether and and a	hour and the second second second	T2		
0 dBm			0						
-10 dBm—									
-20 dBm		M_							
	D2 -23	3.040 dBm					4		
-30 dBm									
		aller J					Va. ille	ali asta a	
n-ABushBarner	a tala and put about	w. W					Alter	MULLIM WILL	the production of the second
W. Although and									
-50 dBm—									
-60 dBm—									
CF 2.685 (l GHz			1001	pts			 Span	20.0 MHz
						suring		-	1.05.2018
						Saringin		-	13:52:06

4.1.1.3.3 Test Channel = HCH

Date: 1.MAY.2018 13:52:06

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

Report No.: SZEM180600492001 Page: 29 of 89

4.1.1.4.1 Test Channel = LCH Spectrum \triangle Ref Level 30.00 dBm Offset 5.00 dB 👄 RBW 50 kHz 35 dB 👄 SWT 1 s 🔵 **VBW** 200 kHz Att Mode Auto Sweep ●1Rm Max D1[1] -0.12 dB 9.4310 MHz 20 dBm-Occ Bw 8.911088911 MHz -24.27 dBm M1[1] 2.4962850 GHz 10 dBm-D1 | 2.030 dBm 0 dBm--10 dBm--20 dBm-MD D2 -23,970 dB -30 dBm--40 dBm___ whypelver when when a -50 dBm--60 dBm-CF 2.501 GHz 1001 pts Span 20.0 MHz 01.05.2018 13:50:18 Measuring... 11.

4.1.1.4 Test Mode = LTE/TM2 10MHz

Date: 1.MAY.2018 13:50:18

Report No.: SZEM180600492001 Page: 30 of 89

Spectrum	ı]								
	I 30.00 dBm		5.00 dB 👄						
Att 1Rm Max	35 dB	SWT	1 s 👄	VBW 200 kł	Hz Mode	Auto Swee	p		
					D	1[1]			0.00 dB).4110 MHz
20 dBm						cc Bw 1[1]		8.9110	88911 MHz 23.43 dBm
10 dBm		т1						2.58	83050 GHz
0 dBm	D1 2.420 dł	3m yw	mandelyer	ᠬᢦᢍᢦᢍᠯᢦᢦᢏᢧᢦᢦᡟ	han and the second s	Mahamman and Markan and	T2		
-10 dBm——									
-20 dBm	D2 -23	.580 dBm-					D1		
-30 dBm							- W		
49. (A.M	helderholderhouter	and h					Yurm	the work of the state	Mummerphise
-50 dBm									
-60 dBm									
CF 2.593 G	GHz			1001	pts			Span	20.0 MHz
()[) Mea	suring		170)1.05.2018 13:49:18

4.1.1.4.2 Test Channel = MCH

Date: 1.MAY.2018 13:49:19

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

Report No.: SZEM180600492001 Page: 31 of 89

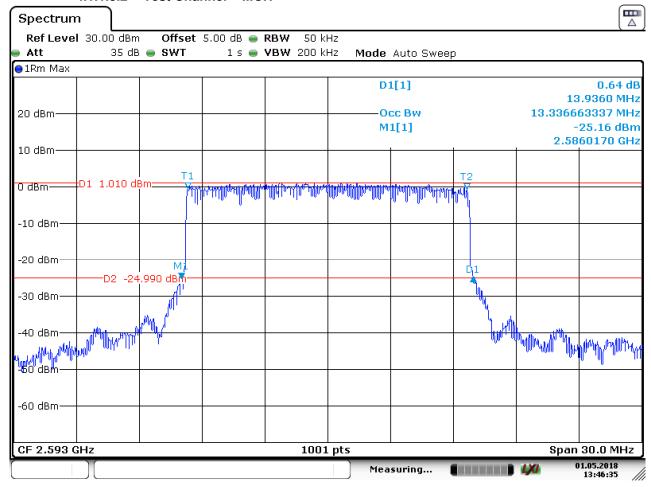
Spectrun	n]								
Ref Leve Att	1 30.00 dBm	Offset	5.00 dB 👄	RBW 50 kł VBW 200 kł		de tute cours			
• All	35 UB	- - 5WI	15 🖷	VBW 200 Ki	72 I VIO	de Auto Swee	эр		
20 dBm						D1[1] -Occ Bw M1[1]		8.9110	0.62 dB).4710 MHz 88911 MHz 23.98 dBm
10 dBm							1		02450 GHz
0 dBm	D1 2.690 dł		prosent and a second	an a	-www.	town the hours and the a	T2		
-10 dBm——									
-20 dBm		.310 dBm-							
-30 dBm									
~=#QHGBnovenad	kye marfatanda	photopol						Cartala Cardonalan	Herbertown brown
-50 dBm									
-60 dBm									
CF 2.685 (GHz			1001	pts			 Span	20.0 MHz
						Measuring)1.05.2018 13:52:57

4.1.1.4.3 Test Channel = HCH

Date: 1.MAY.2018 13:52:58

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

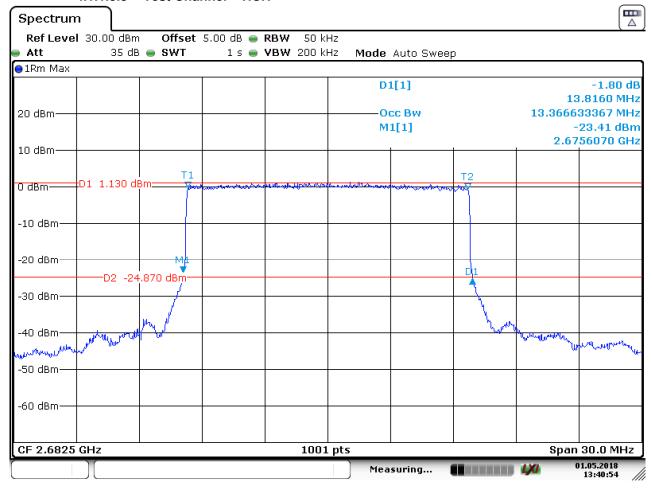
Report No.: SZEM180600492001 Page: 32 of 89


4.1.1.5.1 Test Channel = LCH Spectrum \triangle Offset 5.00 dB 👄 RBW 50 kHz Ref Level 30.00 dBm 35 dB 👄 SWT 1 s 🔵 **VBW** 200 kHz Att Mode Auto Sweep ●1Rm Max D1[1] -0.07 dB 14.0480 MHz 13.336663337 MHz 20 dBm-Occ Bw -24.71 dBm M1[1] 2.4964270 GHz 10 dBm-T: D1 1.290 dBm_ 0 dBm--10 dBm--20 dBm M d: D2 -24.710 dBm -30 dBm--40 dBm 🖊 W Maily Mar . P⁰ -50 dBm--60 dBm[.] CF 2.5035 GHz 1001 pts Span 30.0 MHz 01.05.2018 13:39:19 Measuring... 11.

4.1.1.5 Test Mode = LTE/TM1 15MHz

Date: 1.MAY.2018 13:39:19

Report No.: SZEM180600492001 Page: 33 of 89



4.1.1.5.2 Test Channel = MCH

Date: 1.MAY.2018 13:46:36

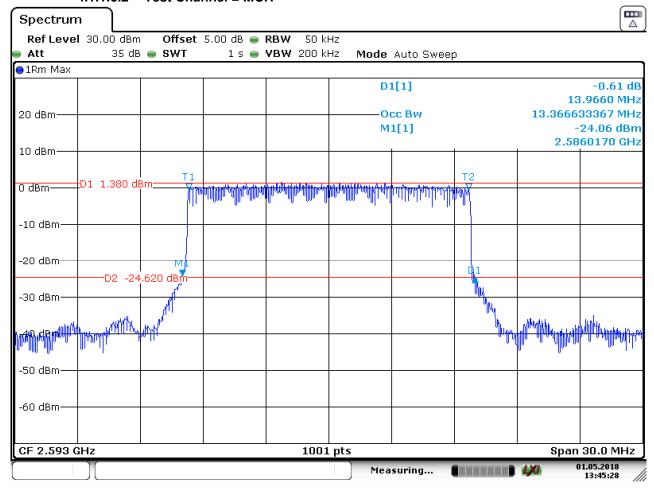
Report No.: SZEM180600492001 Page: 34 of 89

4.1.1.5.3 Test Channel = HCH

Date: 1.MAY.2018 13:40:55

4.1.1.6 Test Mode = LTE/TM2 15MHz

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch


Report No.: SZEM180600492001 Page: 35 of 89

4.1.1.6.1 Test Channel = LCH Spectrum \triangle Ref Level 30.00 dBm Offset 5.00 dB 👄 RBW 50 kHz 35 dB 👄 SWT 1 s 🔵 **VBW** 200 kHz Mode Auto Sweep Att ●1Rm Max D1[1] 0.60 dB 13.9890 MHz 13.366633367 MHz 20 dBm-Occ Bw -25.31 dBm M1[1] 2.4964570 GHz 10 dBm-T1 :D1 0.870 dBm= U dBm--10 dBm--20 dBm M: **r**l 1 -D2 -25.130 dBm -30 dBm-han her population -50 dBm--60 dBm[.] CF 2.5035 GHz 1001 pts Span 30.0 MHz 01.05.2018 Measuring... 11. 13:38:21

Date: 1.MAY.2018 13:38:22

Report No.: SZEM180600492001 Page: 36 of 89

4.1.1.6.2 Test Channel = MCH

Date: 1.MAY.2018 13:45:28

Report No.: SZEM180600492001 Page: 37 of 89

Spectrum	·								
Ref Level Att	30.00 dBm) Offset	5.00 dB 👄 1 s 👄	RBW 50 kH VBW 200 kH		Auto Swe			
1Rm Max			13 🚽	1011 200 Ki	12 Moue	Auto Swe	;eh		
20 dBm					0	1[1] cc Bw 1[1]		13.3666	0.03 dB 3.9960 MHz 33367 MHz 25.00 dBm 54870 GHz
10 dBm									
0 dBm	D1 1.160 di	T1 Bm	a ana ang tang tang tang tang tang tang	مر قرئها من جنحيا مغالي قريمة ب	, and that, latting , and	Rover & and the state	T2		
-10 dBm									
-20 dBm	<u></u>	M1 1.840 dBm							
-30 dBm									
-40 dBm	Uppland warmer	Δ					- Lynully	¹ .oly. ¹⁴ .logly.olW. ¹⁶ .W. ¹⁶ .	man we will have a set of the set
-50 dBm									
-60 dBm									
CF 2.6825	GHz	I	I	1001	pts	1		Span	30.0 MHz
)[Mea	suring		1/0)1.05.2018 13:41:42

4.1.1.6.3 Test Channel = HCH

Date: 1.MAY.2018 13:41:42

Report No.: SZEM180600492001 Page: 38 of 89

	4.1.1.7.1	Test Cha	nnel = LCH							
Spectrun	n									
Ref Leve	I 30.00 dBm	Offset	5.00 dB 🔵 RE	3W 50 kHz						
🕳 Att	35 dB	s 🥌 SWT	1 s 👄 🛛 🛛	3W 200 kHz	Mode	Auto Swe	ер			
😑 1 Rm Max										
					D1	.[1]				0.22 dB
									18	.6610 MHz
20 dBm——						c Bw				17782 MHz
					M:	L[1]				25.72 dBm
10 dBm									2.49	66490 GHz
- I-		Т1					Т	,		
0 dBm	D1 0.130 dl	Bm 	warepennet	anthe contraction of the second	Camprohombra	lon when when	1 marting			
-10 dBm—										
-20 dBm—							_			
		M1					1	41		
00 d0	D2 -25	5.870 dBm-						1		
-30 dBm—		1						7		
								- L		
-40 dBm	without work with	way						- LW		
IL. a moderation with	and walkered							Pr PSA	way your Hand and the	n hornbellinger
-50 dBm							_			Mallon 1.0
-60 dBm										
-00 uBIII										
CF 2.506 (GHz	1		1001 p	its				Span	40.0 MHz
	Υ)	suring			1X0 0	1.05.2018
						-				13:35:45 //

4.1.1.7 Test Mode = LTE/TM1 20MHz

Date: 1.MAY.2018 13:35:45

Report No.: SZEM180600492001 Page: 39 of 89

Spectrum	Γ								
	l 30.00 dBm		5.00 dB 👄						`
Att	35 dB	B 🔵 SWT	1 s 👄	VBW 200 ki	Hz Mode	e Auto Swee	р		
●1Rm Max									
					C	01[1]			0.02 dB
									3.3820 MHz
20 dBm						Dec Bw			17782 MHz
					N	41[1]			25.02 dBm
10 dBm							1	2.58	38090 GHz
	D1 0.650 d						Т2		
0 dBm	DI 0.000 U	Bm ∓1 γ∿^~	mynorthewy	meridian	ware have a second	monthlyphic	on X		
-10 dBm—		/				-			
-20 dBm—									
20 0011		ML					G 1		
		5.350 dBm					1		
-30 dBm		l f							
		John S					1		
-40 dBm	NO LIP	priv .					- Jorg	LIS.	
	which the way							wyond the work which	alad the section being
under all and the									
-40 dBm									
-60 dBm									
				1001				0	40.0 MU
CF 2.593 G				1001					40.0 MHz
					Me	asuring		LXI .)1.05.2018 13:34:10

4.1.1.7.2 Test Channel = MCH

Date: 1.MAY.2018 13:34:10

Report No.: SZEM180600492001 Page: 40 of 89

Spectrum	ι								
Ref Level	I 30.00 dBm	offset	5.00 dB 👄	RBW 50 kH	z				
Att	35 dE	SWT 🖷	1 s 👄	VBW 200 kH	z Mode	Auto Swe	ер		
⊖1Rm Max		-							
					D	1[1]		18	0.63 dB 3.4220 MHz
20 dBm					0	CC BW		17.7822	17782 MHz
					M	11[1]			27.12 dBm
10 dBm						1	+	2.67	07690 GHz
0 dBm	D1 -0.120 d	Bm T1	M. Low Mary Marker Marker	man	www.www.www.	nunnandurado	T2		
-10 dBm—									
-20 dBm									
	D2 -26	 0.120 dBጦ							
-30 dBm—									
		in the					July .		
-40 dBm ^{տե} տչ-Վետլեկես -50 dBm		W HI H					- Guil	humanland	manufuction
on my property and the	MANNAUP							- murpai	manufultion
-50 dBm—									
60 dBm									
-60 dBm									
CF 2.68 GH	lz			1001	pts			Span	40.0 MHz
					Mea	asuring		1 70 ()1.05.2018 13:29:14

4.1.1.7.3 Test Channel = HCH

Date: 1.MAY.2018 13:29:14

Report No.: SZEM180600492001 Page: 41 of 89

4.1.1.8.1 Test Channel = LCH Spectrum \triangle Offset 5.00 dB 👄 RBW 50 kHz Ref Level 30.00 dBm 35 dB 👄 SWT 1 s 🔵 **VBW** 200 kHz Att Mode Auto Sweep ●1Rm Max D1[1] 0.28 dB 18.6210 MHz 17.782217782 MHz 20 dBm-Occ Bw -26.52 dBm M1[1] 2.4966490 GHz 10 dBm-D1 0.320 dBm 0 dBm والله المراجع المراجع المراجع Jank And Alat ik harry blanches and proper property with -10 dBm--20 dBm M -D2 -25.680 dBm -30 dBm-49, dBlochor physics state ኬ Munum and Happeler hard good a -50 dBm--60 dBm[.] 1001 pts CF 2.506 GHz Span 40.0 MHz 01.05.2018 Measuring... LXI 11. 13:36:32

4.1.1.8 Test Mode = LTE/TM2 20MHz

Date: 1.MAY.2018 13:36:32

Report No.: SZEM180600492001 Page: 42 of 89

Spectrum	ι)								
Ref Level Att	30.00 dBm		5.00 dB 👄	RBW 50 ki VBW 200 ki					
All 1Rm Max	35 dB	e swt	1 s 👄	VBW 200 Ki	12 Mode	Auto Swee	p		
-						1[1]			-0.15 dB 8.4220 MHz
20 dBm						CC BW 1[1]		-	17782 MHz 25.34 dBm 37690 GHz
10 dBm									
0 dBm	:D1 0.730 d	 Bm <u>T1</u> 	wheel was a second of the second s	Juna and the states	nt and the state of the state o	man	<u>т2</u>		
-10 dBm									
-20 dBm		мд					Q1		
-30 dBm		5.270 dBM							
etto dBDD	allalinterration and and the	www.					harring (Munnipalanth	r all for the far for the an
-50 dBm									
-60 dBm									
CF 2.593 G	Hz			1001					40.0 MHz
					Mea	suring		LX0	1.05.2018 13:33:21

4.1.1.8.2 Test Channel = MCH

Date: 1.MAY.2018 13:33:22

Report No.: SZEM180600492001 Page: 43 of 89

Spectrun	n								
Ref Leve	I 30.00 dBm) Offset	5.00 dB 😑	RBW 50 kH	lz				
e Att	35 dB	🛛 🖷 SWT	1 s 👄	VBW 200 kH	lz Mode	Auto Swee	р		
●1Rm Max		-							
					D	1[1]			-0.26 dB
					_	_			3.4220 MHz
20 dBm——						CC BW			77822 MHz
					Ι¥.	11[1]			25.90 dBm 08090 GHz
10 dBm						1	1	2.07	00050 012
0 dBm	D1 -0.080 c			and and a second	and the cash of the sec		T2		
		Yuu	PP-Machana albert		u kur (d. 2001 - Ar Kold)	and the second	www		
-10 dBm—									
-10 uBiii—									
-20 dBm—		ML							
	D2 -26	.080 dBm							
-30 dBm							<u> </u>		
							N N		
-40 dBm		www.www					Jordhy	adit distingu	
-40 dBm	Atrahan and the							and mathematic	Hull Marine Marine
-50 dBm									
-50 uBiii									
-60 dBm—									
CF 2.68 GI	 _			1001	nts				40.0 MHz
	7			1001					1.05.2018
(Mea	asuring			13:31:56

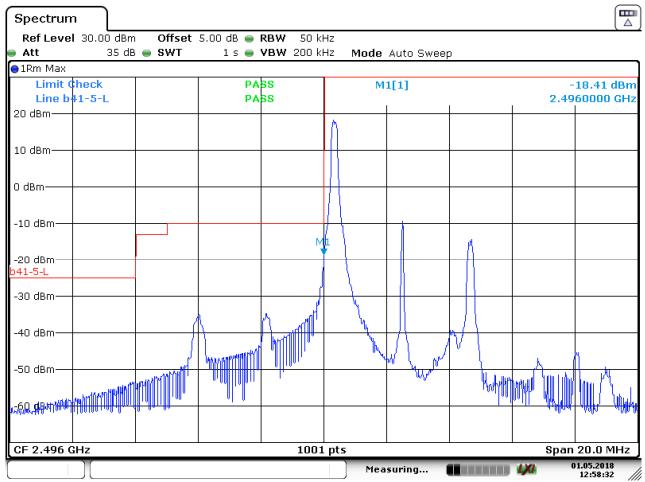
4.1.1.8.3 Test Channel = HCH

Date: 1.MAY.2018 13:31:57

Report No.: SZEM180600492001 Page: 44 of 89

5 Band Edges Compliance

Part I –


5.1 For LTE

5.1.1 Test Band = LTE band41

5.1.1.1 Test Mode = LTE/TM1 5MHz

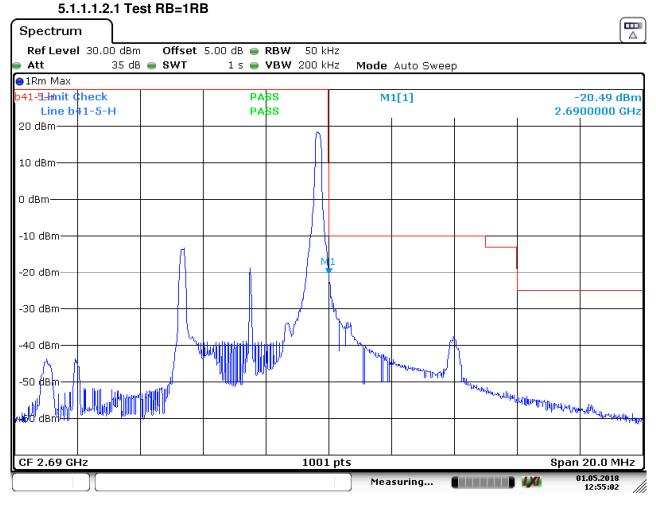
5.1.1.1.1 Test Channel = LCH

5.1.1.1.1.1 Test RB=1RB

Date: 1.MAY.2018 12:58:33

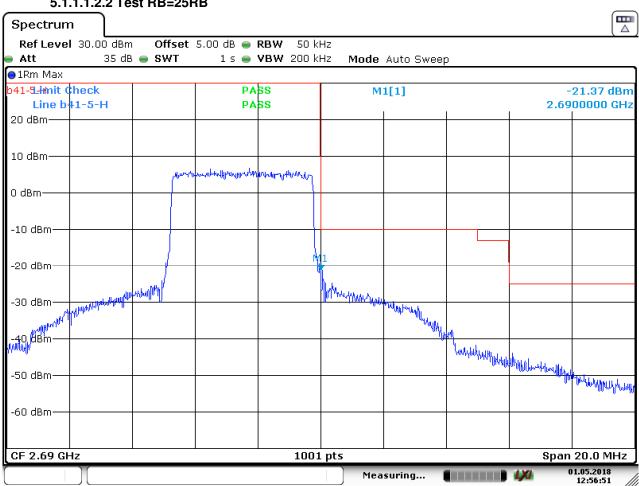
Report No.: SZEM180600492001 Page: 45 of 89

Spectrum	ı)								
Ref Level	30.00 dBr	n Offset	5.00 dB 🔵	RBW 50 kł	Ηz				(-
👄 Att		B 👄 SWT		VBW 200 kł	Hz Mode	Auto Swee	р		
😑 1Rm Max							•		
Limit C Line bi			PA PA		М	1[1]	1		29.51 dBm 60000 GHz
20 dBm——									
10 dBm									
0 40					Martheret	nduntunuum	when		
0 dBm									
-10 dBm									
-20 dBm									
b41-5-L		_		м	ł		\		
-30 dBm									
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm			whether	WWWWWWWWW			willing -	11 Hill Hill Harderton	N.
-50 dBm		Habbert Marthalan Har	uration .						" With Marken
Manuna	hitter and the second second								
-60 dBm									
CF 2.496 G	Hz			1001	nts			Span	20.0 MHz
	Y					isuring			1.05.2018


5.1.1.1.1.2 Test RB=25RB

Date: 1.MAY.2018 12:59:52

Report No.: SZEM180600492001 Page: 46 of 89


5.1.1.1.2 Test Channel = HCH

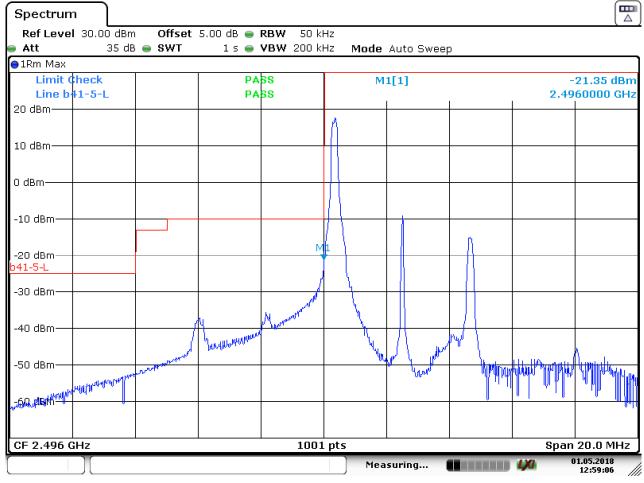
Date: 1.MAY.2018 12:55:03

Report No.: SZEM180600492001 Page: 47 of 89

Date: 1.MAY.2018 12:56:51

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

5.1.1.1.2.2 Test RB=25RB



Report No.: SZEM180600492001 Page: 48 of 89

5.1.1.2 Test Mode = LTE/TM2 5MHz

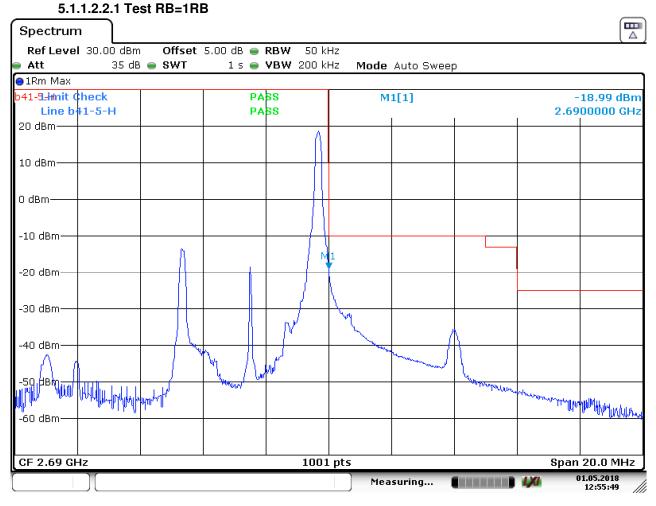
5.1.1.2.1 Test Channel = LCH

5.1.1.2.1.1 Test RB=1RB

Date: 1.MAY.2018 12:59:06

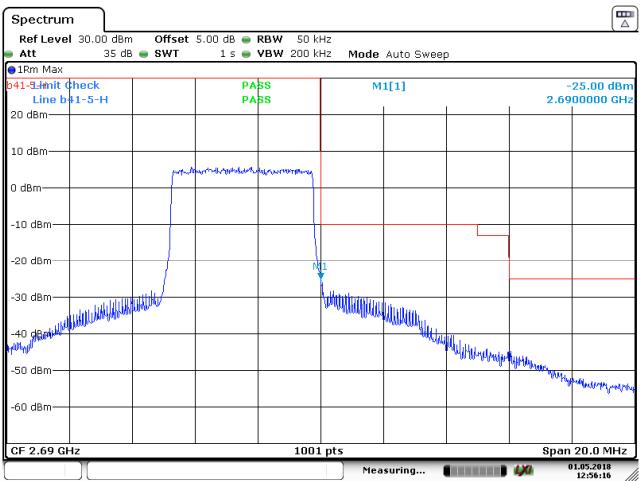
Report No.: SZEM180600492001 Page: 49 of 89

Spectrum	ι								
Ref Level	I 30.00 dE	Bm Offset	5.00 dB 👄	RBW 50 kH	Ηz				(-
👄 Att		dB 👄 SWT	1 s 👄	VBW 200 kH	lz Mode	Auto Swee	эр		
⊖1Rm Max							•		•
Limit C Line b			PA PA		М	1[1]			26.81 dBm 60000 GHz
20 dBm——									
10 dBm									
0 dBm					hannah	mondulation	www		
-10 dBm									
-20 dBm				M			+		
-30 dBm				in the second	,				
-40 dBm			AMUR WOULD AND AND	Multimetrantin A			V MA	Alhvyhawnwaradad	Muyouthey when
-50 dBm	pra. Arspharth Harth	Rellysheetahlikakad							
-60 dBm									
CF 2.496 G	Hz			1001	pts			Span	20.0 MHz
	Π				Mea	suring		1XI	1.05.2018 12:59:30


5.1.1.2.1.2 Test RB=25RB

Date: 1.MAY.2018 12:59:31

Report No.: SZEM180600492001 Page: 50 of 89

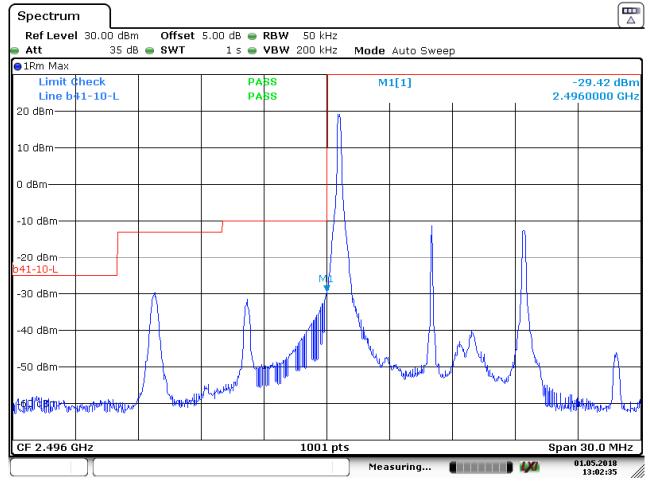

5.1.1.2.2 Test Channel = HCH

Date: 1.MAY.2018 12:55:49

Report No.: SZEM180600492001 Page: 51 of 89

5.1.1.2.2.2 Test RB=25RB

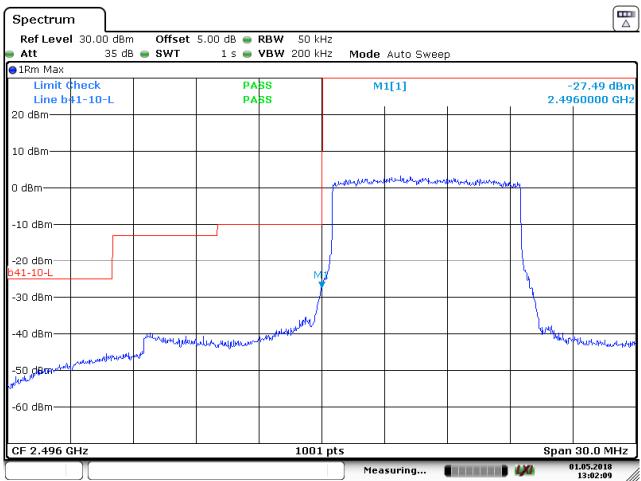
Date: 1.MAY.2018 12:56:16



Report No.: SZEM180600492001 Page: 52 of 89

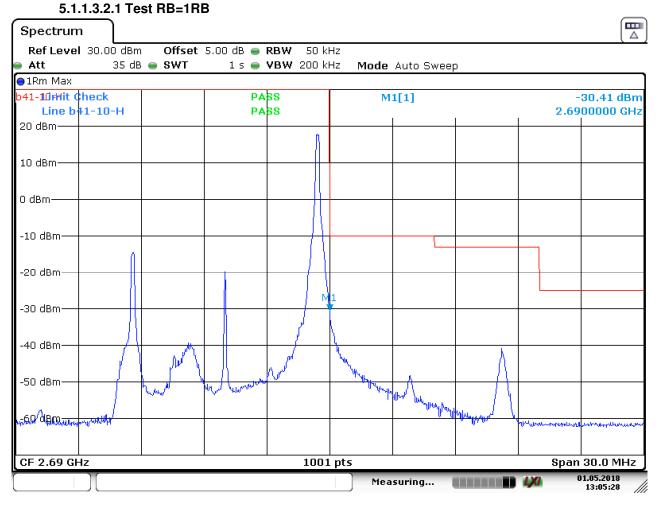
5.1.1.3 Test Mode = LTE/TM1 10MHz

5.1.1.3.1 Test Channel = LCH


5.1.1.3.1.1 Test RB=1RB

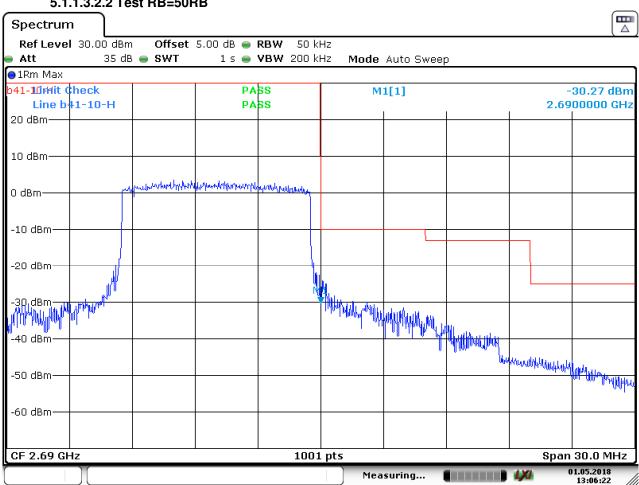
Date: 1.MAY.2018 13:02:36

Report No.: SZEM180600492001 Page: 53 of 89


5.1.1.3.1.2 Test RB=50RB

Date: 1.MAY.2018 13:02:09

Report No.: SZEM180600492001 Page: 54 of 89


5.1.1.3.2 Test Channel = HCH

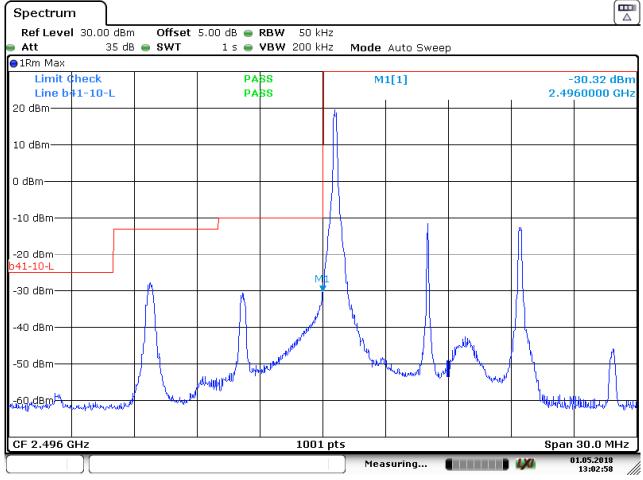
Date: 1.MAY.2018 13:05:29

Report No.: SZEM180600492001 Page: 55 of 89

Date: 1.MAY.2018 13:06:22

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

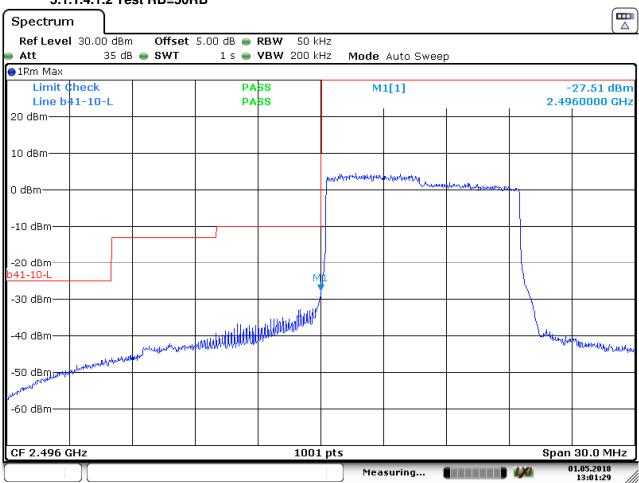
5.1.1.3.2.2 Test RB=50RB



Report No.: SZEM180600492001 Page: 56 of 89

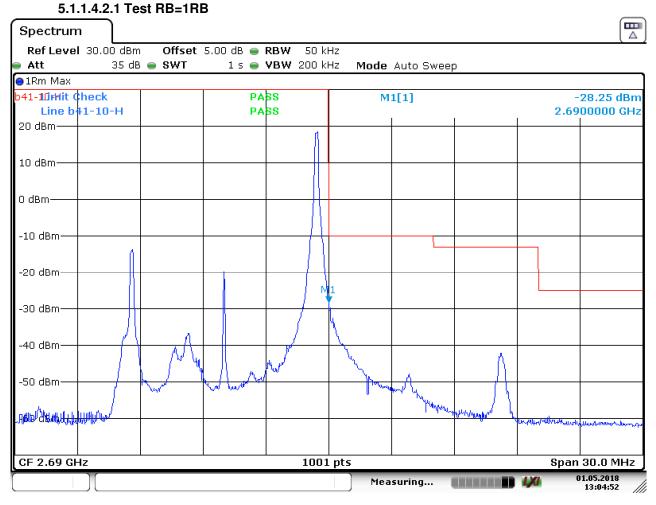
5.1.1.4 Test Mode = LTE/TM2 10MHz

5.1.1.4.1 Test Channel = LCH


5.1.1.4.1.1 Test RB=1RB

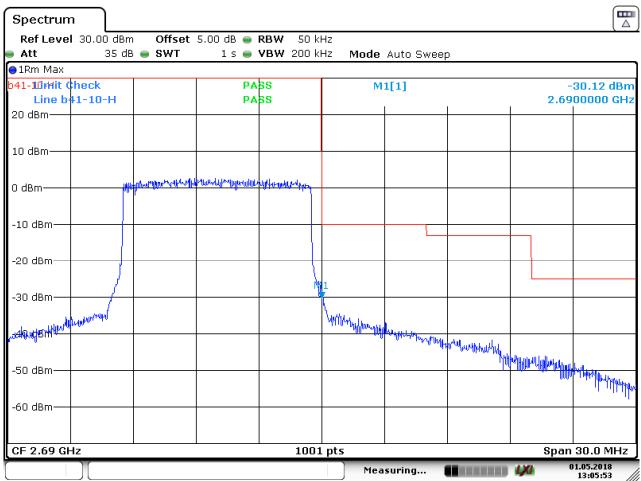
Date: 1.MAY.2018 13:02:58

Report No.: SZEM180600492001 Page: 57 of 89


5.1.1.4.1.2 Test RB=50RB

Date: 1.MAY.2018 13:01:29

Report No.: SZEM180600492001 Page: 58 of 89

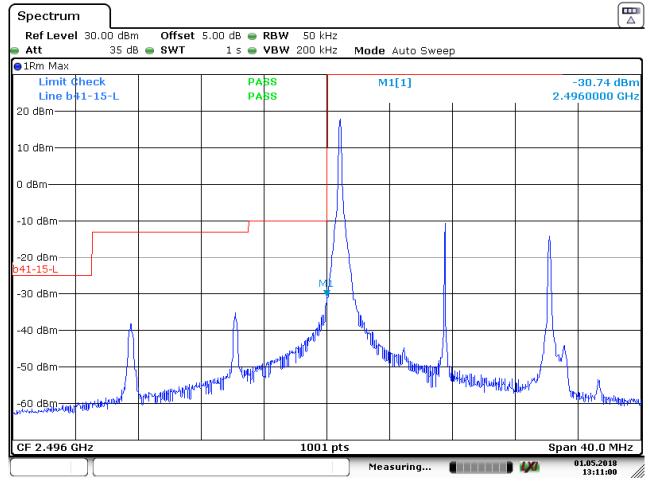

5.1.1.4.2 Test Channel = HCH

Date: 1.MAY.2018 13:04:52

Report No.: SZEM180600492001 Page: 59 of 89

5.1.1.4.2.2 Test RB=50RB

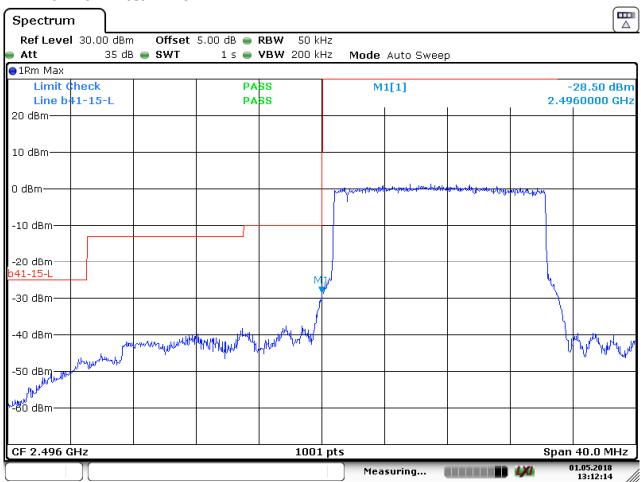
Date: 1.MAY.2018 13:05:54



Report No.: SZEM180600492001 Page: 60 of 89

5.1.1.5 Test Mode = LTE/TM1 15MHz

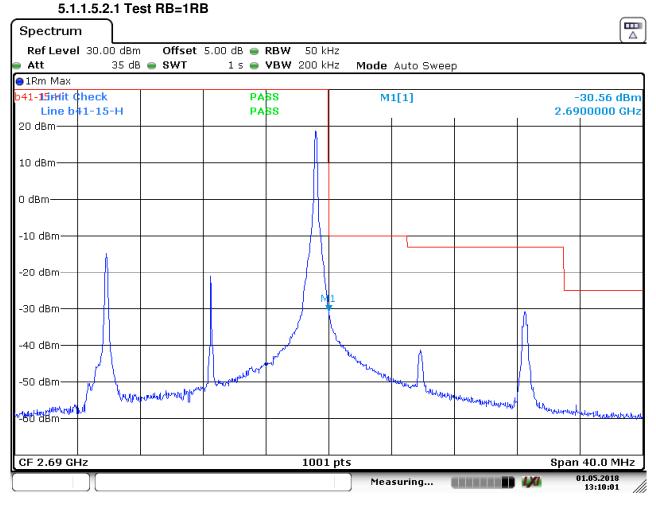
5.1.1.5.1 Test Channel = LCH


5.1.1.5.1.1 Test RB=1RB

Date: 1.MAY.2018 13:11:01

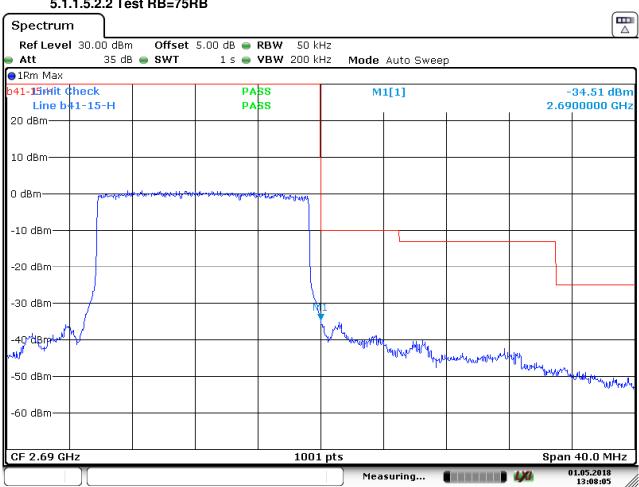
Report No.: SZEM180600492001 Page: 61 of 89

Date: 1.MAY.2018 13:12:15


This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

5.1.1.5.1.2 Test RB=75RB

Report No.: SZEM180600492001 Page: 62 of 89


5.1.1.5.2 Test Channel = HCH

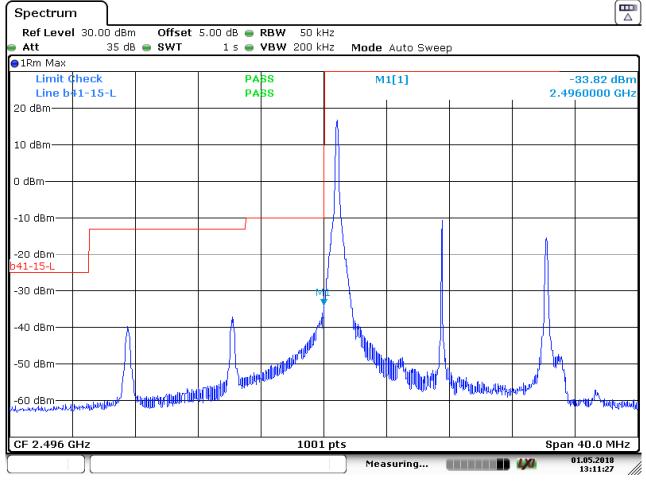
Date: 1.MAY.2018 13:10:01

Report No.: SZEM180600492001 Page: 63 of 89

Date: 1.MAY.2018 13:08:05

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

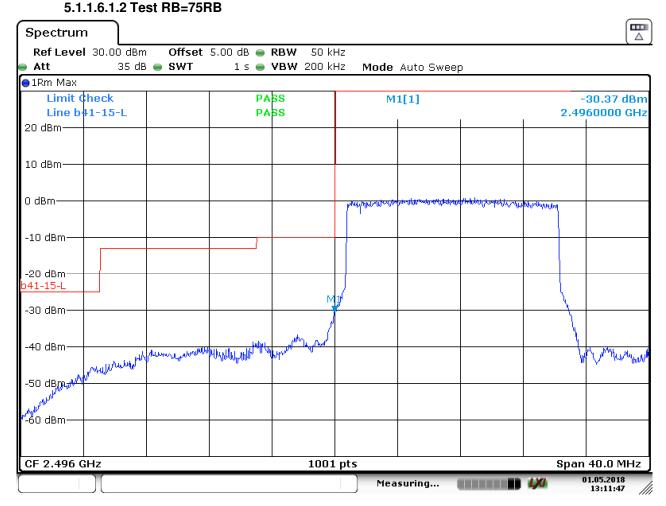
5.1.1.5.2.2 Test RB=75RB



Report No.: SZEM180600492001 Page: 64 of 89

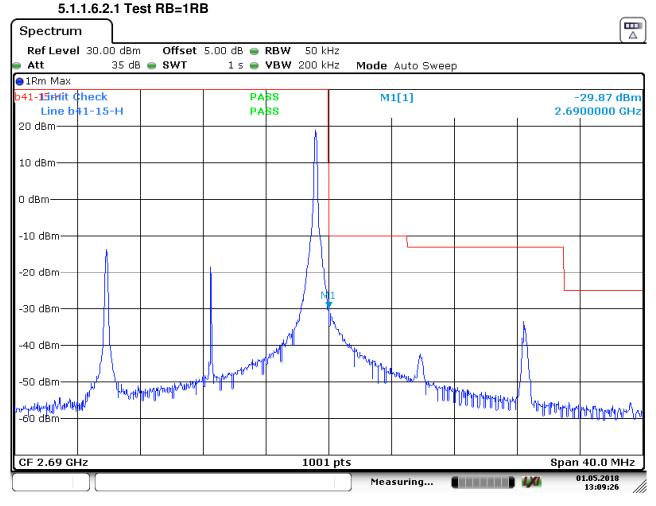
5.1.1.6 Test Mode = LTE/TM2 15MHz

5.1.1.6.1 Test Channel = LCH


5.1.1.6.1.1 Test RB=1RB

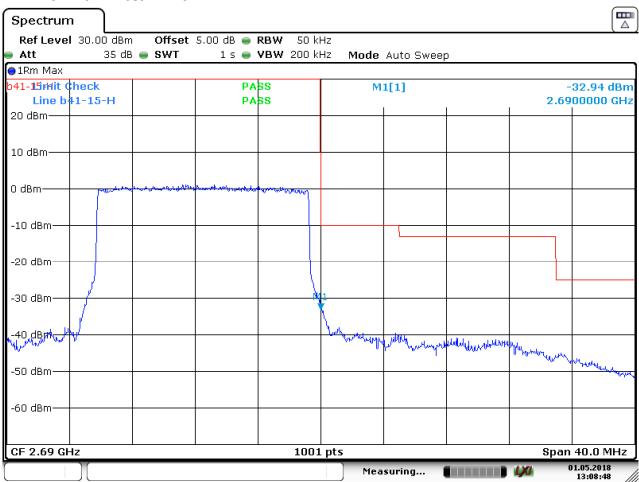
Date: 1.MAY.2018 13:11:27

Report No.: SZEM180600492001 Page: 65 of 89



Date: 1.MAY.2018 13:11:48

Report No.: SZEM180600492001 Page: 66 of 89

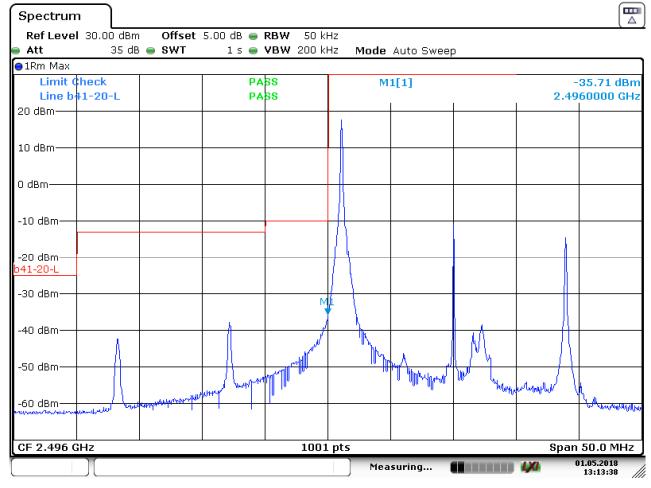

5.1.1.6.2 Test Channel = HCH

Date: 1.MAY.2018 13:09:27

Report No.: SZEM180600492001 Page: 67 of 89

5.1.1.6.2.2 Test RB=75RB

Date: 1.MAY.2018 13:08:48



Report No.: SZEM180600492001 Page: 68 of 89

5.1.1.7 Test Mode = LTE/TM1 20MHz

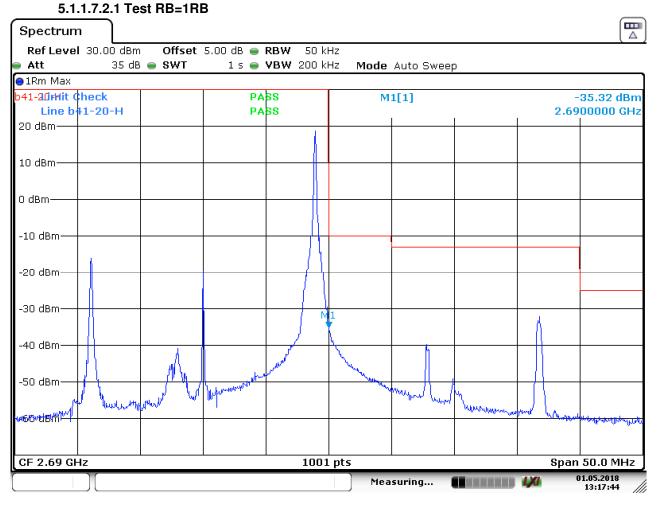
5.1.1.7.1 Test Channel = LCH

5.1.1.7.1.1 Test RB=1RB

Date: 1.MAY.2018 13:13:38

Report No.: SZEM180600492001 Page: 69 of 89

Spectrum	ı)									
Ref Leve	I 30.00 dBn	n Offset	5.00 dB 😑 I	RBW 50 kł	Ηz					
🗕 Att	35 dB	B 👄 SWT	1 s 😑 '	VBW 200 kł	Ηz	Mode	Auto Swee	р		
⊖1Rm Max										
Limit C			PA	6S		M:	1[1]		-	33.71 dBm
	+1-20-L		PA	SS				1	2.49	60000 GHz
20 dBm——										
10 dBm										
0 dBm						وهر المرجوع الم	๛๚๚๛๚๚๛ฦ๎๚๛	NUMBER AND AND AN	4	
					M	Marcha attar 1	ي بيني بيا يا ي	hundlinden	mitmentering	
-10 dBm—										
-20 dBm										
641-20-L										
-30 dBm				t v 1	4				<u> </u>	
-40 dBm										
-40 0811	nuthak	an a	hallow hallowede	mphanet and						What was a straight was a straight with the straight was a straight with the straight was a straight with the straight was a s
-50 dBm	wheel-wheel									ու միմ
-60 dBrown	Wohner									
w-paulour.										
CF 2.496 0	GHz	I	I	1001	pts	5		I	l Span	50.0 MHz
)[Mea	suring		1 /0	1.05.2018 13:15:10


5.1.1.7.1.2 Test RB=100RB

Date: 1.MAY.2018 13:15:10

Report No.: SZEM180600492001 Page: 70 of 89

5.1.1.7.2 Test Channel = HCH

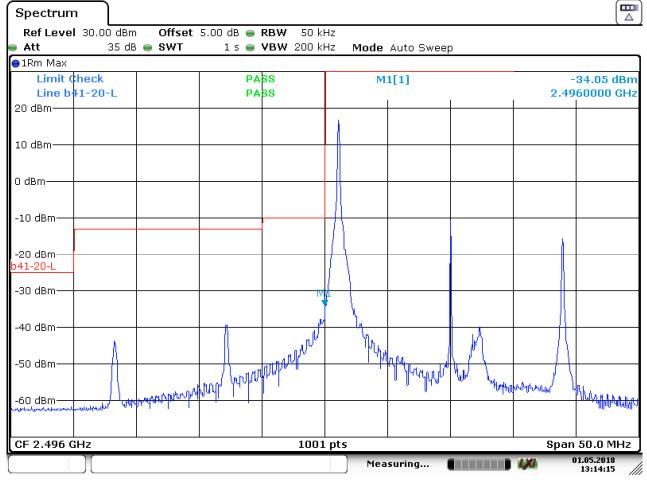
Date: 1.MAY.2018 13:17:45

Report No.: SZEM180600492001 Page: 71 of 89

Spectrum			'nD						
									(A)
ef Level	30.00 dBm	Offset	5.00 dB 😑 l	RBW 50 k VBW 200 k					
-	35 UB	- 5WI	1 s 👄 '	VBW 200 K	.HZ MOGE	e Auto Swee	p		
●1Rm Max									
b41-20Mit C	песк 1-20-Н		PA PA		N	41[1]			37.32 dBm
	1-20-H		PA	55		1	T	2.09	00000 GHz
20 dBm									
10 dBm						-			
0 dBm									
o abiii	phyphythemet	harman	hopemorthappe	nunquelanteer black					
-10 dBm									
-20 dBm									
00 d0									
-30 dBm	1			1	1				
1	J			I.	↓				
-40 dBm					When an				
-40 dBm					- Manadhal	- Jumph Mulphanen	HILL COMMANDER MARKED	WIND	
-50 dBm						1 (Mod		wonderstand	the for the second s
00 00.									- and the property of the
-60 dBm									
CF 2.69 GH	1-3			100	l ntc			 En an	50.0 MU-2
	2			100.	1 pts				50.0 MHz
	」				Me	asuring		LXI .	1.05.2018

5.1.1.7.2.2 Test RB=100RB

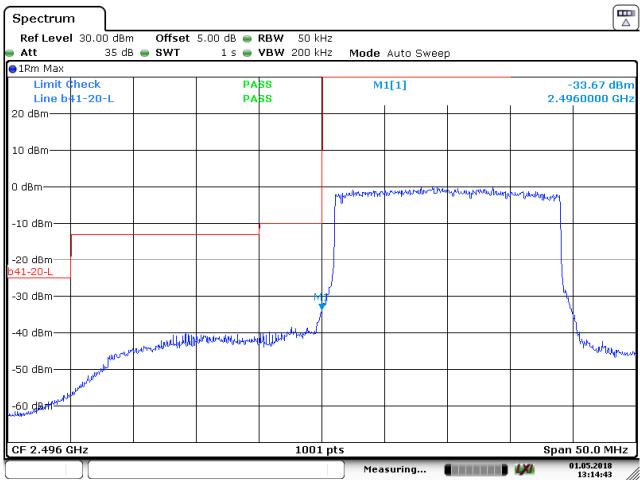
Date: 1.MAY.2018 13:16:05



Report No.: SZEM180600492001 Page: 72 of 89

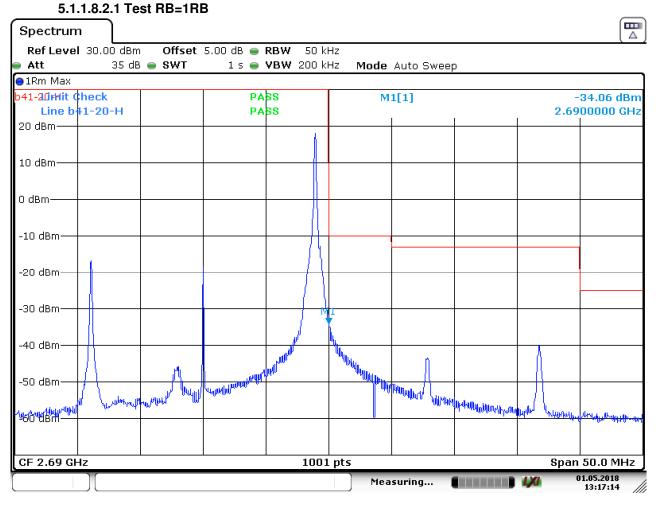
5.1.1.8 Test Mode = LTE/TM2 20MHz

5.1.1.8.1 Test Channel = LCH


5.1.1.8.1.1 Test RB=1RB

Date: 1.MAY.2018 13:14:16

Report No.: SZEM180600492001 Page: 73 of 89


5.1.1.8.1.2 Test RB=100RB

Date: 1.MAY.2018 13:14:43

Report No.: SZEM180600492001 Page: 74 of 89

5.1.1.8.2 Test Channel = HCH

Date: 1.MAY.2018 13:17:14

Report No.: SZEM180600492001 Page: 75 of 89

Spectrun	n								
Ref Leve	I 30.00 dBm	Offset	5.00 dB 😑	RBW 50 k	Hz				
🕳 Att	35 dB	🔵 SWT	1 s 👄	VBW 200 k	Hz Mode	Auto Swee	эр		
⊖1Rm Max									
b41-20mit (PA		M	1[1]			35.15 dBm
	41-20-H		PA	SS			1	2.69	00000 GHz
20 dBm——									
10 dBm									
0 dBm	abadah dalar be	hunderadentation	mappinghumu	-wind your all and a					
-10 dBm—									
-20 dBm—									
-30 dBm—	P			¹ X	1				
-1919801-4	л 				Juran Universitier	1 m - 1			
174					× 140 00	and an ablifte of the	nhahrdungperheterte	low when the start	No. Martine Lands
-50 dBm—									- 4 an all broken property of
-60 dBm—									
CF 2.69 GI	Hz		1	1001	pts	1	1	Span	50.0 MHz
()[) Mea	suring		1/0)1.05.2018 13:16:43

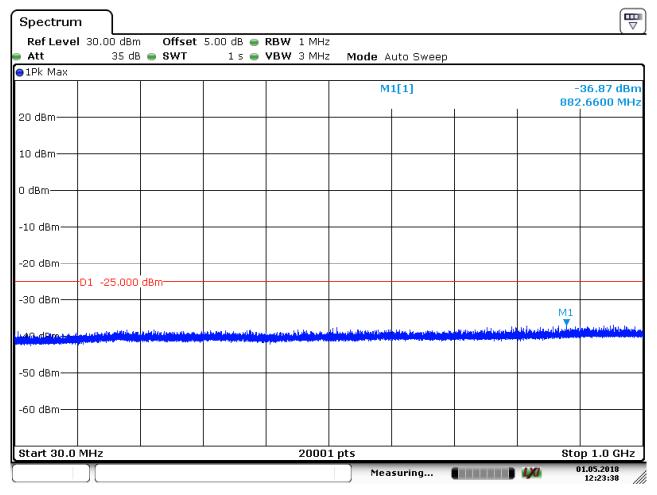
5.1.1.8.2.2 Test RB=100RB

Date: 1.MAY.2018 13:16:44

Report No.: SZEM180600492001 Page: 76 of 89

6 Spurious Emission at Antenna Terminal

NOTE: For the averaged unwanted emissions measurements, the measurement points in each sweep is greater than twice the Span/RBW in order to ensure bin-to-bin spacing of < RBW/2 so that narrowband signals are not lost between frequency bins. As to the present test item, the "Measurement Points = k * (Span / RBW)" with k between 4 and 5, which results in an acceptable level error of less than 0.5 dB.


Part I - Test Plots

6.1 For LTE

6.1.1 Test Band = LTE band41

6.1.1.1 Test Mode = LTE / TM1 20MHz RB1#0

6.1.1.1.1 Test Channel = LCH

Date: 1.MAY.2018 12:23:39

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en

Report No.: SZEM180600492001 Page: 77 of 89

Spectrum	ı)									
Ref Leve					RBW 1 MHz					
Att	3	5 dB	😑 SWT	1 s 👄	VBW 3 MHz	Mode A	uto Sweep			
⊖1Pk Max										
		·				M	1[1]			25.28 dBm
		M:					1	I.	2.4	97300 GHz
20 dBm										
10 dBm										
0 dBm		<u> </u>								
-10 dBm										
-20 dBm										
	D1 -25	000	dBm							
-30 dBm	DI -23.	.000								
-30 ubiii							nder all asked			
			للقاق والمعرجين المرجوري	and the later bar	والالتسار الماسين والم		and a second second			
-40 HBm			and the state of t	- Harting and the second second	<u></u>		nu.	. Internation constru		
							in the second	a na sa		
-50 dBm										
-60 dBm—										
Start 1.0 G	Hz				2000:	1 pts			-	10.0 GHz
						Mea	suring)1.05.2018 12:24:05

Date: 1.MAY.2018 12:24:05

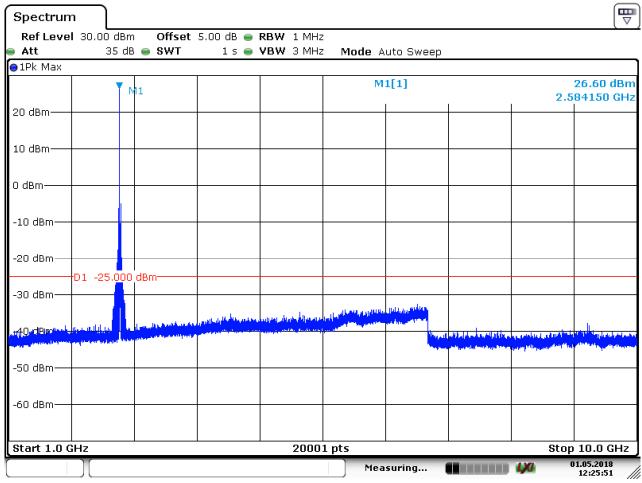
Report No.: SZEM180600492001 Page: 78 of 89

Spectrum	ιÌ									
Ref Level				et 5.00 dB 👄						
Att		35 dB	SWT	1 s 👄	VBW 3 MHz	Mode A	uto Sweep			
😑 1Pk Max										
						М	1[1]			37.02 dBm
								1	15.1	53200 GHz
20 dBm										
10 dBm										
0 dBm				_						
-10 dBm—										
10 0.0										
-20 dBm—										
		I	10							
	·D1 -25	.000 (aem							
-30 dBm—			M1							
			. Ja		la la					
-40 dBd ^a r-dd	and write	a a substantia	ار المانية مي المانية. محافظت المانية						lite to get a gift.	l lagu a shine a babail a sa shi shi shi sa sa
and an international statements					and the second second	a state and a state of the	and the state of the state of the	and the production of the		n de lan alle le co
-50 dBm										
-60 dBm										
Start 10.0	GHz				2000:	1 pts				30.0 GHz
						Mea	suring		1,70)1.05.2018 12:24:23

Date: 1.MAY.2018 12:24:23

Report No.: SZEM180600492001 Page: 79 of 89

Spectrun	n								
	l 30.00 dBm			RBW 1 MHz					
Att 1Pk Max	35 dE	B 🔵 SWT	1 s 👄	VBW 3 MHz	Mode A	uto Sweep			
отык мах	1				5.0	1[1]			38.26 dBm
					191	1[1]			0900 MHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm—									
-20 dBm									
	D1 -25.000	dBm							
-30 dBm—									M1
. 4 0.dBm				halfertifelinigeretetete	land age of the second	hadrand the table to get		n da ana dala dila	Hushel Laborated
ta terring territy dia tangka Arth	ang a basa na sa ta babara	e de la billa phone de la c	والمتلاصط ويصرونها	والمعالية والتروية والمارية والمارية والمراجع	an de la ser provident de la serie (a a a a a a a a a a a a a a a a a a a	a hadaya gunda aya da da aya		
-50 dBm—									
-60 dBm									
Start 30.0	MHz			2000	1 pts				p 1.0 GHz
[][Mea	suring		1/0	1.05.2018 12:25:29


6.1.1.1.2 Test Channel = MCH

Date: 1.MAY.2018 12:25:29

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

Report No.: SZEM180600492001 Page: 80 of 89

Date: 1.MAY.2018 12:25:51

Report No.: SZEM180600492001 Page: 81 of 89

Spectrun	ı)								
Ref Leve					RBW 1 MHz				
e Att	3	5 dB 🍯	swt	1 s 👄	VBW 3 MHz	Mode A	uto Sweep		
⊖1Pk Max									
						М	1[1]		37.61 dBm
20 dBm							I	28.8	94600 GHz
20 0011									
10 dBm									
10 UBIII									
0 dBm									
-10 dBm—									
-10 4011									
-20 dBm—									
20 0011	D1 -25	000 ds) m						
-30 dBm	01 -20	.000 at	500						
00 0011									M1
			المعالية مالدها المثل	La Constanting	Marrie Marrie		Tel: splerings for ear	 Markey and a star of the	المعار والأسر الأربطانية وال
and a start of the		a the second second	A CONTRACTOR	And the second second	protection of the second s		Photo and a second s	And a life of the part of the life of the	and the state of the
-50 dBm									
-60 dBm									
00 40.00									
Start 10.0	GHz				2000	1 pts		-	30.0 GHz
	Л					Mea	suring	1,00)1.05.2018 12:26:03

Date: 1.MAY.2018 12:26:04

Report No.: SZEM180600492001 Page: 82 of 89

Spectrum	ιÌ											
Ref Level	l 30.00) dBm	Offs	set 5.00	dB 😑	RBW	1 MHz					
Att	3	35 dB	🔵 SW	Г	1 s 👄	VBW 🔅	3 MHz	Mode A	uto Sweep			
😑 1Pk Max												
								M	1[1]		-	38.09 dBm
											817	7.0910 MHz
20 dBm												
10 dBm												
0 dBm												
-10 dBm—												
-20 dBm												
	D1 -25	5.000 (dBm									
-30 dBm												
											M1	
40.dBm	ब्रागुर का ब्राग्स स्टाज	oldorad	terited operation	deglerne sorre	weightings	-	anne line, i	terley by the light back pro		a addition a start and the		المعرفين الملاصية فيتعاد
algen, einertet en blechet	la province il barbar				palaterale leaves	e alte une des alte	a na parte d	al hand and and a start for the			a na fan de la	
-50 dBm												
-60 dBm—						1						
Start 30.0	MHz	I		I			20001	. pts	1	1	Sto	p 1.0 GHz
								Mea	suring		1/0)1.05.2018 12:26:26

6.1.1.1.3 Test Channel = HCH

Date: 1.MAY.2018 12:26:26

Report No.: SZEM180600492001 Page: 83 of 89

Spectrum	ı)								
	I 30.00 dBn		_	RBW 1 MHz					
Att	35 dB	B 👄 SWT	1 s 😑	VBW 3 MHz	Mode A	uto Sweep			
⊖1Pk Max	1		1	1					
	T	M1			M	1[1]			25.99 dBm
20 dBm								2.6	70990 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm	D1 -25.000					at a cardinate			
-40 dBmbbbb		n han farfinn triffinna d	la patricia di actari matematica di actari			and the second sec	and the Alline Manufacture	dan tana tana da sa	a ^{tert} anagenteratura
						Thu.	Ann talatilige weeting	and block and block	and a state of the
-50 dBm									
-60 dBm—									
Start 1.0 G	SHz			2000	1 pts			Stop	10.0 GHz
					Mea	suring		1/0	1.05.2018 12:26:42

Date: 1.MAY.2018 12:26:42

Report No.: SZEM180600492001 Page: 84 of 89

Spectrun	n								
	l 30.00 dBm			RBW 1 MHz					
e Att	35 dB	SWT 😑 SWT	1 s 🔵	VBW 3 MHz	Mode A	uto Sweep			
⊖1Pk Max	1								
					M	1[1]			37.52 dBm
00 ID						1	1	12.8	54400 GHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
	D1 -25.000	dBm							
-30 dBm—									
	M1								
	all the local sector	العملية الأسية عين. منف	Part and the second	All and the product of the second s	al des Angle des and des and des	Mahilipathanakanaka	a ning the particular states	lilling have been been and the second se	
and the second second	and the strength	Carl Sector Sector	AND IN A CONTRACTOR	station of philip	a state of the second secon	and the second second	and the second se	and a state	and the state of the
-50 dBm									
-60 dBm									
00 0.0									
Start 10.0	GHz			2000	1 pts			Stop	30.0 GHz
) Mea	suring		1 /0)1.05.2018 12:26:52

Date: 1.MAY.2018 12:26:52

Report No.: SZEM180600492001 Page: 85 of 89

7 Field Strength of Spurious Radiation

7.1 For LTE

7.1.1 Test Band = LTE band41

7.1.1.1 Test Mode =LTE/TM1 20MHz RB1#0

7.1.1.1.1	Test Channel = LC	Н		
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
72.050000	-78.09	-25.00	53.09	Vertical
144.000000	-70.81	-25.00	45.81	Vertical
288.000000	-76.91	-25.00	51.91	Vertical
4993.875000	-59.15	-25.00	34.15	Vertical
7491.175000	-61.41	-25.00	36.41	Vertical
9988.150000	-61.88	-25.00	36.88	Vertical
63.750000	-77.55	-25.00	52.55	Horizontal
144.000000	-78.26	-25.00	53.26	Horizontal
4994.525000	-61.06	-25.00	36.06	Horizontal
7491.500000	-62.87	-25.00	37.87	Horizontal
9988.800000	-54.50	-25.00	29.50	Horizontal
12485.450000	-61.53	-25.00	36.53	Horizontal

7.1.1.1.1 Test Channel = MCH

/.1.1.1.1				
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
72.100000	-77.34	-25.00	52.34	Vertical
144.000000	-69.80	-25.00	44.80	Vertical
288.000000	-78.54	-25.00	53.54	Vertical
5168.725000	-56.60	-25.00	31.60	Vertical
7751.825000	-62.46	-25.00	37.46	Vertical
10336.550000	-61.74	-25.00	36.74	Vertical
63.650000	-77.77	-25.00	52.77	Horizontal
144.000000	-77.81	-25.00	52.81	Horizontal
288.000000	-80.88	-25.00	55.88	Horizontal
5168.400000	-60.58	-25.00	35.58	Horizontal
7752.475000	-60.83	-25.00	35.83	Horizontal
10335.900000	-61.92	-25.00	36.92	Horizontal

Report No.: SZEM180600492001 Page: 86 of 89

7.1.1.1.1	Test Channel = HC	СН		
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
72.150000	-76.44	-25.00	51.44	Vertical
144.000000	-72.79	-25.00	47.79	Vertical
288.000000	-77.87	-25.00	52.87	Vertical
5341.625000	-62.94	-25.00	37.94	Vertical
7939.675000	-64.32	-25.00	39.32	Vertical
11404.175000	-65.42	-25.00	40.42	Vertical
62.600000	-78.06	-25.00	53.06	Horizontal
144.000000	-77.09	-25.00	52.09	Horizontal
288.000000	-81.93	-25.00	56.93	Horizontal
5341.625000	-58.51	-25.00	33.51	Horizontal
8013.775000	-63.13	-25.00	38.13	Horizontal
10684.300000	-64.05	-25.00	39.05	Horizontal

NOTE:

- 1) The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
- 2) We have tested all modulation and all Bandwidth, but only the worst case data presented in this report.

Report No.: SZEM180600492001 Page: 87 of 89

8 Frequency Stability

8.1 Frequency Error VS. Voltage

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				VL	-8.45	-0.00337	PASS
		LCH	TN	VN	2.83	0.00113	PASS
				VH	7.93	0.00316	PASS
				VL	-0.46	-0.00018	PASS
	LTE/TM1 20MHz	MCH	TN	VN	0.02	0.00001	PASS
				VH	6.76	0.00261	PASS
				VL	-2.05	-0.00076	PASS
		HCH	TN	VN	-4.57	-0.00171	PASS
LTEban41				VH	-5.37	-0.00200	PASS
				VL	-0.89	-0.00036	PASS
		LCH	TN	VN	-3.26	-0.00130	PASS
				VH	-8.25	-0.00329	PASS
				VL	2.43	0.00094	PASS
	LTE/TM2 20MHz	MCH	TN	VN	8.19	0.00316	PASS
				VH	-0.26	-0.00010	PASS
				VL	1.32	0.00049	PASS
		HCH	TN	VN	6.26	0.00234	PASS
				VH	-1.62	-0.00060	PASS

Report No.: SZEM180600492001 Page: 88 of 89

8.2 Frequency Error VS. Temperature

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
LTEband41	LTE/TM1 20MHz	LCH	VN	-30	-7.59	-0.00303	PASS
				-20	1.96	0.00078	PASS
				-10	4.65	0.00186	PASS
				0	9.45	0.00377	PASS
				10	5.30	0.00212	PASS
				20	9.76	0.00389	PASS
				30	4.04	0.00161	PASS
				40	-1.17	-0.00047	PASS
				50	1.14	0.00046	PASS
		МСН	VN	-30	5.26	0.00203	PASS
				-20	4.43	0.00171	PASS
				-10	4.90	0.00189	PASS
				0	0.36	0.00014	PASS
				10	8.38	0.00323	PASS
				20	-9.51	-0.00367	PASS
				30	-0.73	-0.00028	PASS
				40	0.75	0.00029	PASS
				50	2.47	0.00095	PASS
		НСН	VN	-30	-3.43	-0.00128	PASS
				-20	8.38	0.00313	PASS
				-10	5.84	0.00218	PASS
				0	6.75	0.00252	PASS
				10	-7.68	-0.00287	PASS
				20	-0.94	-0.00035	PASS
				30	-5.75	-0.00214	PASS
				40	1.40	0.00052	PASS
				50	8.26	0.00308	PASS

Report No.: SZEM180600492001 Page: 89 of 89

					Page:	89 of 89	
Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
	LTE/TM2 20MHz	LCH	VN	-30	-4.91	-0.00196	PASS
				-20	4.73	0.00189	PASS
				-10	-1.68	-0.00067	PASS
				0	3.83	0.00153	PASS
				10	-0.41	-0.00016	PASS
				20	6.72	0.00268	PASS
				30	1.83	0.00073	PASS
				40	6.82	0.00272	PASS
				50	0.84	0.00034	PASS
		МСН	VN	-30	-2.49	-0.00096	PASS
LTEband41				-20	-8.34	-0.00322	PASS
				-10	-8.56	-0.00330	PASS
				0	-6.22	-0.00240	PASS
				10	2.76	0.00106	PASS
				20	4.57	0.00176	PASS
				30	1.47	0.00057	PASS
				40	-4.23	-0.00163	PASS
				50	5.97	0.00230	PASS
		НСН	VN	-30	7.06	0.00263	PASS
				-20	-4.20	-0.00157	PASS
				-10	-5.40	-0.00202	PASS
				0	-6.74	-0.00252	PASS
				10	-5.86	-0.00219	PASS
				20	6.48	0.00242	PASS
				30	-2.54	-0.00095	PASS
				40	-3.39	-0.00126	PASS
				50	7.12	0.00265	PASS

The End