

Report No.: SZEM180600492001 Page: 1 of 40

# Appendix B

E-UTRA Band 13



Report No.: SZEM180600492001 Page: 2 of 40

Page

### CONTENT

| 1 | EFFECTIVE (ISOTROPIC) RADIATED POWER OUTPUT DATA | 3  |
|---|--------------------------------------------------|----|
| 2 | PEAK-TO-AVERAGE RATIO                            | 6  |
|   | 2.1 FOR LTE                                      | 6  |
|   | 2.1.1 Test Band = LTE band13                     | 6  |
| 3 | MODULATION CHARACTERISTICS                       | 8  |
|   | 3.1 FOR LTE                                      |    |
|   | 3.1.1 Test Band = LTE band13                     | 8  |
| 4 | BANDWIDTH                                        |    |
|   | 4.1 For LTE                                      |    |
|   | 4.1.1 Test Band = LTE band13                     |    |
| 5 | BAND EDGES COMPLIANCE                            |    |
|   | 5.1 FOR LTE                                      |    |
|   | 5.1.1 Test Band = LTE band13                     |    |
| 6 | SPURIOUS EMISSION AT ANTENNA TERMINAL            | 34 |
|   | 6.1 For LTE                                      |    |
|   | 6.1.1 Test Band = LTE band13                     |    |
| 7 | FIELD STRENGTH OF SPURIOUS RADIATION             |    |
|   | 7.1 For LTE                                      |    |
|   | 7.1.1 Test Band = LTE band13                     |    |
| 8 | FREQUENCY STABILITY                              |    |
|   | 8.1 FREQUENCY ERROR VS. VOLTAGE                  |    |
|   | 8.2 FREQUENCY ERROR VS. TEMPERATURE              | 40 |
|   |                                                  |    |



Report No.: SZEM180600492001 Page: 3 of 40

### 1 Effective (Isotropic) Radiated Power Output Data

#### Test Test ERP limit Test Test Measured Test RB Verdict Band(LTE) Mode **Bandwidth** channel (dBm) (dBm) (dBm) RB1#0 23.58 20.93 34.77 PASS RB1#13 23.39 20.74 34.77 PASS RB1#24 23.49 20.84 34.77 PASS LCH RB12#0 PASS 22.76 20.11 34.77 RB12#6 22.55 34.77 PASS 19.9 RB12#13 22.69 34.77 PASS 20.04 22.59 PASS RB25#0 19.94 34.77 RB1#0 23.32 34.77 PASS 20.67 RB1#13 23.56 34.77 PASS 20.91 RB1#24 23.36 20.71 34.77 PASS BAND13 LTE/TM1 5M MCH PASS RB12#0 22.74 20.09 34.77 PASS RB12#6 22.78 20.13 34.77 RB12#13 22.75 20.1 34.77 PASS RB25#0 22.73 20.08 34.77 PASS PASS RB1#0 23.58 20.93 34.77 RB1#13 23.72 21.07 34.77 PASS RB1#24 PASS 23.28 20.63 34.77 HCH RB12#0 22.67 34.77 PASS 20.02 RB12#6 PASS 22.86 20.21 34.77 RB12#13 22.79 20.14 34.77 PASS RB25#0 22.72 PASS 20.07 34.77

#### Effective Radiated Power of Transmitter (ERP) for LTE BAND 13



Report No.: SZEM180600492001 Page: 4 of 40

| Test<br>Band(LTE) | Test<br>Mode | Test<br>Bandwidth | Test<br>channel | Test RB | Measured<br>(dBm) | ERP<br>(dBm) | limit<br>(dBm) | Verdict |      |
|-------------------|--------------|-------------------|-----------------|---------|-------------------|--------------|----------------|---------|------|
|                   |              |                   |                 | RB1#0   | 22.6              | 19.95        | 34.77          | PASS    |      |
|                   |              |                   |                 | RB1#13  | 22.48             | 19.83        | 34.77          | PASS    |      |
|                   |              |                   |                 | RB1#24  | 21.93             | 19.28        | 34.77          | PASS    |      |
|                   |              |                   | LCH             | RB12#0  | 21.75             | 19.1         | 34.77          | PASS    |      |
|                   |              |                   |                 | RB12#6  | 21.57             | 18.92        | 34.77          | PASS    |      |
|                   |              |                   |                 | RB12#13 | 21.58             | 18.93        | 34.77          | PASS    |      |
|                   |              |                   |                 | RB25#0  | 21.75             | 19.1         | 34.77          | PASS    |      |
|                   |              |                   | МСН             | RB1#0   | 22.98             | 20.33        | 34.77          | PASS    |      |
|                   |              |                   |                 | RB1#13  | 22.63             | 19.98        | 34.77          | PASS    |      |
|                   | LTE/TM2      |                   |                 |         | RB1#24            | 22.78        | 20.13          | 34.77   | PASS |
| BAND13            |              | 5M                |                 | RB12#0  | 21.7              | 19.05        | 34.77          | PASS    |      |
|                   |              |                   |                 | RB12#6  | 21.58             | 18.93        | 34.77          | PASS    |      |
|                   |              |                   |                 | RB12#13 | 21.85             | 19.2         | 34.77          | PASS    |      |
|                   |              |                   |                 | RB25#0  | 21.85             | 19.2         | 34.77          | PASS    |      |
|                   |              |                   |                 | RB1#0   | 22.06             | 19.41        | 34.77          | PASS    |      |
|                   |              |                   |                 | RB1#13  | 22.26             | 19.61        | 34.77          | PASS    |      |
|                   |              |                   |                 | RB1#24  | 22.4              | 19.75        | 34.77          | PASS    |      |
|                   |              |                   | НСН             | RB12#0  | 21.52             | 18.87        | 34.77          | PASS    |      |
|                   |              |                   |                 | RB12#6  | 21.56             | 18.91        | 34.77          | PASS    |      |
|                   |              |                   |                 | RB12#13 | 21.65             | 19           | 34.77          | PASS    |      |
|                   |              |                   |                 | RB25#0  | 21.62             | 18.97        | 34.77          | PASS    |      |



Report No.: SZEM180600492001 Page: 5 of 40

| Test<br>Band(LTE) | Test<br>Mode | Test<br>Bandwidth | Test<br>channel | Test RB | Measured<br>(dBm) | ERP<br>(dBm) | limit<br>(dBm) | Verdict |
|-------------------|--------------|-------------------|-----------------|---------|-------------------|--------------|----------------|---------|
|                   |              |                   |                 | RB1#0   | 23.32             | 20.67        | 34.77          | PASS    |
|                   |              |                   | МСН             | RB1#25  | 23.8              | 21.15        | 34.77          | PASS    |
|                   |              | 10M               |                 | RB1#49  | 23.62             | 20.97        | 34.77          | PASS    |
|                   | LTE/TM1      |                   |                 | RB25#0  | 22.79             | 20.14        | 34.77          | PASS    |
|                   |              |                   |                 | RB25#13 | 22.87             | 20.22        | 34.77          | PASS    |
|                   |              |                   |                 | RB25#25 | 22.81             | 20.16        | 34.77          | PASS    |
| BAND13            |              |                   |                 | RB50#0  | 22.74             | 20.09        | 34.77          | PASS    |
| BAND 13           |              |                   |                 | RB1#0   | 23.17             | 20.52        | 34.77          | PASS    |
|                   |              |                   |                 | RB1#25  | 22.99             | 20.34        | 34.77          | PASS    |
|                   |              |                   |                 | RB1#49  | 22.36             | 19.71        | 34.77          | PASS    |
|                   | LTE/TM2      | 10M               | MCH             | RB25#0  | 21.8              | 19.15        | 34.77          | PASS    |
|                   |              |                   |                 | RB25#13 | 21.92             | 19.27        | 34.77          | PASS    |
|                   |              |                   | -               | RB25#25 | 21.75             | 19.1         | 34.77          | PASS    |
|                   |              |                   |                 | RB50#0  | 21.8              | 19.15        | 34.77          | PASS    |

Note:

a: For getting the EIRP (Efficient Isotropic Radiated Power) in substitution method, the following formula should be taken to calculate it,

EIRP [dBm] = SGP [dBm] – Cable Loss [dB] + Gain [dBi] b: SGP=Signal Generator Level

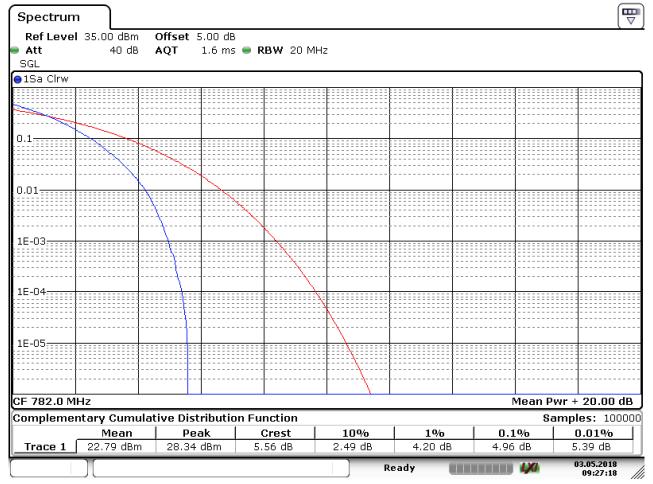


Report No.: SZEM180600492001 Page: 6 of 40

### 2 Peak-to-Average Ratio

#### Part I - Test Results

| Test Band | Test Mode | Test Channel | Measured[dB] | Limit [dB] | Verdict |
|-----------|-----------|--------------|--------------|------------|---------|
| Dond 10   | TM1/10M   | HCH          | 4.96         | 13         | PASS    |
| Band 13   | TM2/10M   | HCH          | 5.80         | 13         | PASS    |


Part II - Test Plots

### 2.1 For LTE

#### 2.1.1 Test Band = LTE band13

#### 2.1.1.1 Test Mode = LTE/TM1.Bandwidth=10MHz





Date: 3.MAY.2018 09:27:19

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions.Terms-en-Document.aspx</a> Attention is for electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx">http://www.sgs.com/en/Terms-end-Conditions.Terms-end-Conditions.Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditions/Terms-end-Conditis/Terms-end-Conditions/Terms-end-Conditions/Terms-en



Report No.: SZEM180600492001 Page: 7 of 40

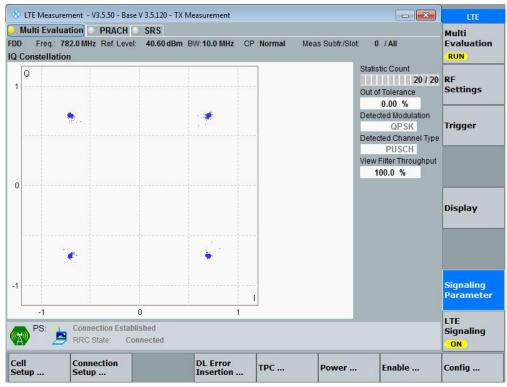
#### 2.1.1.2 Test Mode = LTE/TM2.Bandwidth=10MHz



Date: 3.MAY.2018 09:27:41

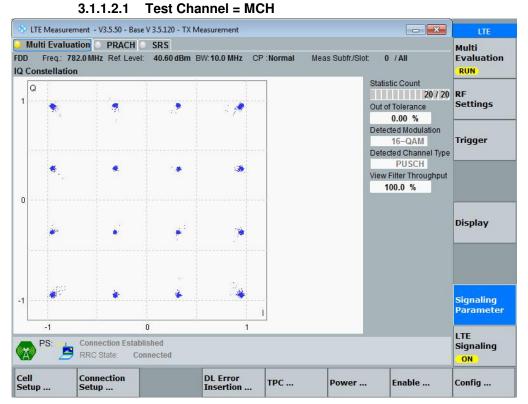


Report No.: SZEM180600492001 Page: 8 of 40


### **3 Modulation Characteristics**

Part I - Test Plots

### 3.1 For LTE


- 3.1.1 Test Band = LTE band13
- 3.1.1.1 Test Mode = LTE /TM1 10MHz

3.1.1.1.1 Test Channel = MCH





Report No.: SZEM180600492001 Page: 9 of 40



### 3.1.1.2 Test Mode = LTE /TM2 10MHz



Report No.: SZEM180600492001 Page: 10 of 40

### 4 Bandwidth

#### Part I - Test Results

| Test Band | Test Mode | Test<br>Channel | Occupied Bandwidth<br>[MHz] | Emission<br>Bandwidth [MHz] | Verdict |
|-----------|-----------|-----------------|-----------------------------|-----------------------------|---------|
|           |           | LCH             | 4.47                        | 4.79                        | PASS    |
|           | TM1/ 5MHz | MCH             | 4.49                        | 4.79                        | PASS    |
|           |           | HCH             | 4.49                        | 4.79                        | PASS    |
| Band 13   | TM2/ 5MHz | LCH             | 4.47                        | 4.79                        | PASS    |
| Dallu 13  |           | MCH             | 4.49                        | 4.83                        | PASS    |
|           |           | HCH             | 4.49                        | 4.77                        | PASS    |
|           | TM1/10MHz | MCH             | 8.93                        | 9.49                        | PASS    |
|           | TM2/10MHz | MCH             | 8.93                        | 9.49                        | PASS    |

### 4.1 For LTE

#### 4.1.1 Test Band = LTE band13

#### 4.1.1.1 Test Mode = LTE/TM1 5MHz

#### 4.1.1.1.1 Test Channel = LCH



Date: 1.MAY.2018 04:47:39



Report No.: SZEM180600492001 Page: 11 of 40

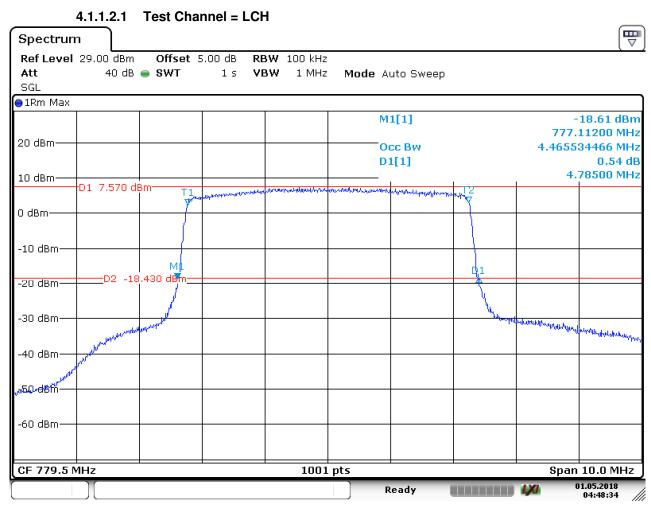
| Spectrun                | n                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                      |             |                          |                      |                          |          |                |                                                 |
|-------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|-------------|--------------------------|----------------------|--------------------------|----------|----------------|-------------------------------------------------|
| Ref Level<br>Att<br>SGL |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Offset<br>SWT   | 5.00 dB<br>1 s       | RBW<br>VBW  | 100 kHz<br>1 MHz         | Mode                 | Auto Sweep               |          |                |                                                 |
| ●1Rm Max                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                      |             |                          |                      |                          |          |                |                                                 |
| 20 dBm                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                      |             |                          |                      | D1[1]<br>Dcc Bw<br>M1[1] |          | 4.4855         | -0.13 dB<br>79300 MHz<br>14486 MHz<br>17.76 dBm |
| 10 dBm                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                      |             |                          |                      |                          |          |                | 59200 MHz                                       |
|                         | D1 8.060          | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>т</u> 1<br>7 | etrodul (free-to)re- | www.eucarta | <sup>war</sup> where J-b | aprelotion preserved | nggagydinianaeanaeana    | wurky    |                | 00000                                           |
| 0 dBm                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                      |             |                          |                      |                          |          |                |                                                 |
| -10 dBm——               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M               |                      |             |                          |                      |                          |          |                |                                                 |
| -20 dBm—                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>40 dBm-</u>  |                      |             |                          |                      |                          |          |                |                                                 |
| -30 dBm                 | nandertellerander | - Jaho and a state of the state | ndr-dl          |                      |             |                          |                      |                          | - Annone | uluph war ward | analmal-landqaa                                 |
| -40 dBm——               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                      |             |                          |                      |                          |          |                |                                                 |
| -50 dBm                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                      |             |                          |                      |                          |          |                |                                                 |
| -60 dBm                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                      |             |                          |                      |                          |          |                |                                                 |
| CF 782.0 N              | MHz               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                      |             | 1001                     | pts                  |                          |          | Span           | 10.0 MHz                                        |
|                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                      |             |                          |                      | Ready                    |          | <b>1,70</b>    | )1.05.2018<br>04:51:44                          |

#### 4.1.1.1.2 Test Channel = MCH

Date: 1.MAY.2018 04:51:44



Report No.: SZEM180600492001 Page: 12 of 40


| Spectrun                | n                                           |                 |                           |                                                                                                                                |                                        |                        |      |                                                                                                                 |                                                                                                                  |
|-------------------------|---------------------------------------------|-----------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Ref Level<br>Att<br>SGL | 29.00 dBm<br>40 dB                          | Offset<br>e SWT |                           | RBW 100 kHz<br>/BW 1 MHz                                                                                                       | Mode A                                 | uto Sweep              |      |                                                                                                                 |                                                                                                                  |
| 😑 1 Rm Max              |                                             |                 |                           |                                                                                                                                |                                        |                        |      |                                                                                                                 |                                                                                                                  |
| 20 dBm                  |                                             |                 |                           |                                                                                                                                | o                                      | 1[1]<br>cc Bw<br>1[1]  |      | 4.4855                                                                                                          | -0.15 dB<br>79100 MHz<br>14486 MHz<br>18.53 dBm                                                                  |
|                         |                                             |                 |                           |                                                                                                                                | 111                                    | 1[1]                   |      |                                                                                                                 | 10200 MHz                                                                                                        |
| 10 dBm                  | D1 8.200 c                                  |                 | nayabaliydorifedeniybedyr | art <mark>a</mark> ayayayaanaa ahaanaa | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | a hayd yn offar fan yn | wt2  |                                                                                                                 |                                                                                                                  |
| -10 dBm—                | Do _ 1                                      | 7,800 dem-      |                           |                                                                                                                                |                                        |                        |      |                                                                                                                 |                                                                                                                  |
| -20 dBm                 | 02 -1                                       | 7.800 dBiii-    |                           |                                                                                                                                |                                        |                        |      |                                                                                                                 |                                                                                                                  |
| -40 dBm                 | hand an | mund            |                           |                                                                                                                                |                                        |                        | Jour | and a second and a s | house have the second of the second |
| -50 dBm                 |                                             |                 |                           |                                                                                                                                |                                        |                        |      |                                                                                                                 |                                                                                                                  |
| -60 dBm                 |                                             |                 |                           |                                                                                                                                |                                        |                        |      |                                                                                                                 |                                                                                                                  |
| CF 784.5 N              | HIT                                         | i               | _i                        | 1001                                                                                                                           | pts                                    | İ                      | i    | Span                                                                                                            | 10.0 MHz                                                                                                         |
|                         |                                             |                 |                           |                                                                                                                                |                                        | Ready                  |      |                                                                                                                 | 01.05.2018<br>04:52:54                                                                                           |

#### 4.1.1.1.3 Test Channel = HCH

Date: 1.MAY.2018 04:52:54



Report No.: SZEM180600492001 Page: 13 of 40



#### 4.1.1.2 Test Mode = LTE/TM2 5MHz

Date: 1.MAY.2018 04:48:34



Report No.: SZEM180600492001 Page: 14 of 40

| Spectrum                | ı       |             |        |                           |                                                                                                                 |               |                  |                                                                |           |                        |               | ₽                      |
|-------------------------|---------|-------------|--------|---------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|------------------|----------------------------------------------------------------|-----------|------------------------|---------------|------------------------|
| Ref Level<br>Att<br>SGL |         | dBm<br>0 dB |        |                           | 5.00 dB<br>1 s                                                                                                  |               | 100 kHz<br>1 MHz | Mode A                                                         | uto Sweep |                        |               |                        |
| ⊖1Rm Max                |         |             |        |                           |                                                                                                                 |               |                  |                                                                |           |                        |               |                        |
|                         |         |             |        |                           |                                                                                                                 |               |                  | D                                                              | 1[1]      |                        | 4.            | -0.38 dB<br>83300 MHz  |
| 20 dBm                  |         |             |        |                           |                                                                                                                 |               |                  | 0                                                              | CC BW     |                        | 4.4855        | 14486 MHz              |
|                         |         |             |        |                           |                                                                                                                 |               |                  | M                                                              | 11[1]     |                        | -             | 19.60 dBm              |
| 10 dBm                  |         |             |        |                           |                                                                                                                 |               |                  |                                                                | 1         | 1                      | 779.          | 57200 MHz              |
|                         | Ð1 7.:  | 190 de      | 3m     | Ť                         | -test and a second s | ntohogine for | whether when     | nella stran Jana yan da ka | nununun   | ounty                  |               |                        |
| 0 dBm——                 |         |             |        |                           |                                                                                                                 |               |                  |                                                                |           |                        |               |                        |
| -10 dBm                 |         |             |        |                           | _                                                                                                               |               |                  |                                                                |           | $\left  \right\rangle$ |               |                        |
| -20 dBm                 | D       | 2 -18       | .810   | <br>D_d <mark>∮</mark> m= |                                                                                                                 |               |                  |                                                                |           | <u> </u>               |               |                        |
|                         |         |             |        | al and                    |                                                                                                                 |               |                  |                                                                |           | <u>)</u>               |               |                        |
| -30 dBm                 | portunt | Laborates   | an sun | pl <sup>e</sup>           |                                                                                                                 |               |                  |                                                                |           | - Color                | and provident | down the second second |
| -40 dBm                 |         |             |        |                           |                                                                                                                 |               |                  |                                                                |           |                        |               |                        |
| -50 dBm                 |         |             |        |                           |                                                                                                                 |               |                  |                                                                |           |                        |               |                        |
| -60 dBm                 |         |             |        |                           |                                                                                                                 |               |                  |                                                                |           |                        |               |                        |
|                         |         |             |        |                           |                                                                                                                 |               |                  |                                                                |           |                        |               |                        |
| CF 782.0 N              | 1Hz     |             |        |                           |                                                                                                                 |               | 1001             | pts                                                            | +         | <u> </u>               |               | 10.0 MHz               |
|                         |         |             |        |                           |                                                                                                                 |               |                  |                                                                | Ready     |                        | 1,70          | 01.05.2018<br>04:50:49 |

#### 4.1.1.2.2 Test Channel = MCH

Date: 1.MAY.2018 04:50:50



Report No.: SZEM180600492001 Page: 15 of 40

| Spectrum                | 1 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |               |                    |                     |                  |                                                                                  |                                                 |      |                                                                                                                 |                           |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|--------------------|---------------------|------------------|----------------------------------------------------------------------------------|-------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------|---------------------------|
| Ref Level<br>Att<br>SGL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | Offset<br>SWT | 5.00 dB<br>1 s     | RBW<br>VBW          | 100 kHz<br>1 MHz | Mode                                                                             | Auto Sweep                                      |      |                                                                                                                 |                           |
| ●1Rm Max                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |               |                    |                     |                  |                                                                                  |                                                 |      |                                                                                                                 |                           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |               |                    |                     |                  |                                                                                  | D1[1]                                           |      | 4.                                                                                                              | 1.10 dB<br>77100 MHz      |
| 20 dBm——                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |               |                    |                     |                  |                                                                                  | Occ Bw<br>M1[1]                                 |      |                                                                                                                 | 14486 MHz<br>18.63 dBm    |
| 10 dBm                  | D1 7.180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | T1            |                    |                     |                  |                                                                                  | 1.                                              | L T2 |                                                                                                                 | 12200 MHz                 |
| 0 dBm                   | 01 7.180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | - J           | njorth transformer | nutra utiler telefo | where have       | hartrefan skalan syn sen steren sen steren sen sen sen sen sen sen sen sen sen s | the for the | -    |                                                                                                                 |                           |
| -10 dBm                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |               |                    |                     |                  |                                                                                  |                                                 | +    |                                                                                                                 |                           |
| -20 dBm                 | D2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.82 | 20 dBm=       |                    |                     |                  |                                                                                  |                                                 |      |                                                                                                                 |                           |
| -30 dBm—                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |               |                    |                     |                  |                                                                                  |                                                 | l l  | and the state of the |                           |
| -40 dBm                 | where the famous of the second s |       |               |                    |                     |                  |                                                                                  |                                                 |      |                                                                                                                 | underson and and          |
| -50 dBm—                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |               |                    |                     |                  |                                                                                  |                                                 |      |                                                                                                                 |                           |
| -60 dBm——               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |               |                    |                     |                  |                                                                                  |                                                 |      |                                                                                                                 |                           |
| CF 784.5 M              | /Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |               |                    |                     | 1001             | pts                                                                              |                                                 |      | Span                                                                                                            | 10.0 MHz                  |
|                         | )[                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |               |                    |                     |                  |                                                                                  | Ready                                           |      | 1,70                                                                                                            | )1.05.2018<br>04:53:44 // |

#### 4.1.1.2.3 Test Channel = HCH

Date: 1.MAY.2018 04:53:45



Report No.: SZEM180600492001 Page: 16 of 40

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.1.1.3.1      | Test Cha                                | nnel = MCI               | 4                                                                                                               |        |                                                   |         |                             |                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------|---------|-----------------------------|------------------------|
| Spectru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n              |                                         |                          |                                                                                                                 |        |                                                   |         |                             | E<br>□                 |
| Ref Leve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l 29.00 dBm    | Offset                                  | 5.00 dB RB               | <b>W</b> 200 kHz                                                                                                |        |                                                   |         |                             |                        |
| Att<br>SGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40 dE          | s 🕳 SML                                 | 15 <b>VB</b>             | W 2 MHz                                                                                                         | Mode A | uto Sweep                                         |         |                             |                        |
| 😑 1Rm Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                         |                          |                                                                                                                 |        |                                                   |         |                             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                         |                          |                                                                                                                 | D      | 1[1]                                              |         |                             | -1.34 dB               |
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                         |                          |                                                                                                                 | 0      | cc Bw                                             |         |                             | .4880 MHz<br>68931 MHz |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                         |                          |                                                                                                                 |        | 1[1]                                              |         |                             | 17.48 dBm              |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                         |                          |                                                                                                                 |        |                                                   |         |                             | .2650 MHz              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D1 8.230       | dBm──────────────────────────────────── | N-ARRI-RUN-RANNAR CARLAN | nan haard and a stand a |        | ىدىنىۋاتىدىلايىتىلىرىنى<br>سىرىۋاتىدىلايىتىلىرىنى | why Z   |                             |                        |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | +                                       |                          |                                                                                                                 |        |                                                   |         |                             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                         |                          |                                                                                                                 |        |                                                   |         |                             |                        |
| -10 dBm—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                                         |                          |                                                                                                                 |        |                                                   |         |                             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D2 1           | .7,.770 dBm-                            |                          |                                                                                                                 |        |                                                   | D1      |                             |                        |
| -20 dBm—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02 -1          |                                         |                          |                                                                                                                 |        |                                                   | 1       |                             |                        |
| -30 dBm—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                                         |                          |                                                                                                                 |        |                                                   | Manager |                             |                        |
| -30 0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | and a second                            |                          |                                                                                                                 |        |                                                   |         | mon and a second a property | Waren - Other Brang    |
| -40 dBm—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | ø                                       |                          |                                                                                                                 |        |                                                   |         |                             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                         |                          |                                                                                                                 |        |                                                   |         |                             |                        |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and the second |                                         |                          |                                                                                                                 |        |                                                   |         |                             |                        |
| When an an a fair and a second s |                |                                         |                          |                                                                                                                 |        |                                                   |         |                             |                        |
| -60 dBm—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                                         |                          |                                                                                                                 |        |                                                   |         |                             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                         |                          |                                                                                                                 |        |                                                   |         |                             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>       |                                         |                          |                                                                                                                 |        |                                                   |         |                             |                        |
| CF 782.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MHZ            |                                         |                          | 1001                                                                                                            |        |                                                   |         |                             | 20.0 MHz               |
| l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                         |                          |                                                                                                                 | F      | eady (                                            |         | LX0                         | 1.05.2018<br>04:55:46  |

#### 4.1.1.3 Test Mode = LTE/TM1 10MHz

Date: 1.MAY.2018 04:55:46



Report No.: SZEM180600492001 Page: 17 of 40

|                                                                                                                 | 4.1.1.4.1      | Test Ch     | annel = MCH                         | l                     |                                            |                                                                                                                  |          |                        |                                         |
|-----------------------------------------------------------------------------------------------------------------|----------------|-------------|-------------------------------------|-----------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------|------------------------|-----------------------------------------|
| Spectru                                                                                                         | m              |             |                                     |                       |                                            |                                                                                                                  |          |                        | l III III III III III III III III III I |
| Ref Leve                                                                                                        | l 29.00 dBi    | m Offset    | 5.00 dB <b>RB</b>                   | <b>W</b> 200 kHz      |                                            |                                                                                                                  |          |                        |                                         |
| Att<br>SGL                                                                                                      | 40 d           | IB 👄 SWT    | 1s <b>VB</b>                        | W 2 MHz               | Mode A                                     | uto Sweep                                                                                                        |          |                        |                                         |
| ⊖1Rm Max                                                                                                        | {              |             |                                     |                       |                                            |                                                                                                                  |          |                        |                                         |
|                                                                                                                 |                |             |                                     |                       | D                                          | 1[1]                                                                                                             |          |                        | 0.98 dB                                 |
| 20 dBm—                                                                                                         |                |             |                                     |                       |                                            | CC BW                                                                                                            |          |                        | 9.4880 MHz<br>68931 MHz                 |
|                                                                                                                 |                |             |                                     |                       |                                            | 11[1]                                                                                                            |          |                        | 19.61 dBm                               |
| 10 dBm—                                                                                                         |                |             | _                                   |                       |                                            |                                                                                                                  |          |                        | 7.2650 MHz                              |
|                                                                                                                 | -D1 7.150      | dBm T1      | in the second and the second second | and the second second | -<br>William and a group of a start of the | and the second |          |                        |                                         |
| 0 dBm                                                                                                           |                | , Y         |                                     |                       |                                            |                                                                                                                  |          |                        |                                         |
|                                                                                                                 |                |             |                                     |                       |                                            |                                                                                                                  |          |                        |                                         |
| -10 dBm—                                                                                                        |                |             |                                     |                       |                                            |                                                                                                                  |          |                        |                                         |
|                                                                                                                 |                | MI          |                                     |                       |                                            |                                                                                                                  |          |                        |                                         |
| -20 dBm—                                                                                                        | D2 -           | 18.850 dBm= |                                     |                       |                                            |                                                                                                                  |          |                        |                                         |
|                                                                                                                 |                |             |                                     |                       |                                            |                                                                                                                  | <b>\</b> |                        |                                         |
| -30 dBm—                                                                                                        |                |             |                                     |                       |                                            |                                                                                                                  |          |                        |                                         |
|                                                                                                                 |                | Harver      |                                     |                       |                                            |                                                                                                                  | - Arway  | wheel Hymnesel and man | munanguating                            |
| -40 dBm—                                                                                                        |                | <u> </u>    |                                     |                       |                                            |                                                                                                                  |          |                        |                                         |
|                                                                                                                 | 1              | /           |                                     |                       |                                            |                                                                                                                  |          |                        |                                         |
| -50 dBm                                                                                                         | population and |             |                                     |                       |                                            |                                                                                                                  |          |                        |                                         |
| a filment a start and a start and a start a sta |                |             |                                     |                       |                                            |                                                                                                                  |          |                        |                                         |
| -60 dBm—                                                                                                        | _              |             |                                     |                       |                                            |                                                                                                                  |          |                        |                                         |
|                                                                                                                 |                |             |                                     |                       |                                            |                                                                                                                  |          |                        |                                         |
|                                                                                                                 |                |             |                                     |                       |                                            |                                                                                                                  |          |                        |                                         |
| CF 782.0                                                                                                        | MHz            |             |                                     | 1001                  |                                            |                                                                                                                  |          |                        | 20.0 MHz                                |
|                                                                                                                 |                |             |                                     |                       |                                            | Ready                                                                                                            |          | <b>1,70</b>            | 01.05.2018<br>04:54:46                  |

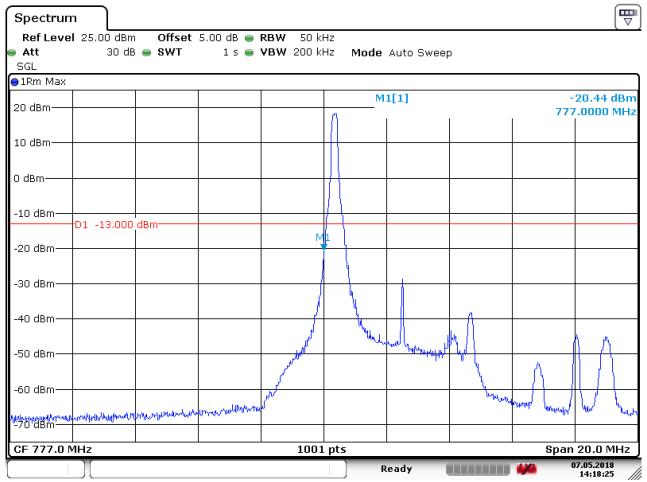
#### 4.1.1.4 Test Mode = LTE/TM2 10MHz

Date: 1.MAY.2018 04:54:46



Report No.: SZEM180600492001 Page: 18 of 40

### 5 Band Edges Compliance


Part I –

### 5.1 For LTE

- 5.1.1 Test Band = LTE band13
- 5.1.1.1 Test Mode = LTE/TM1 5MHz

5.1.1.1.1 Test Channel = LCH

5.1.1.1.1.1 Test RB=1RB

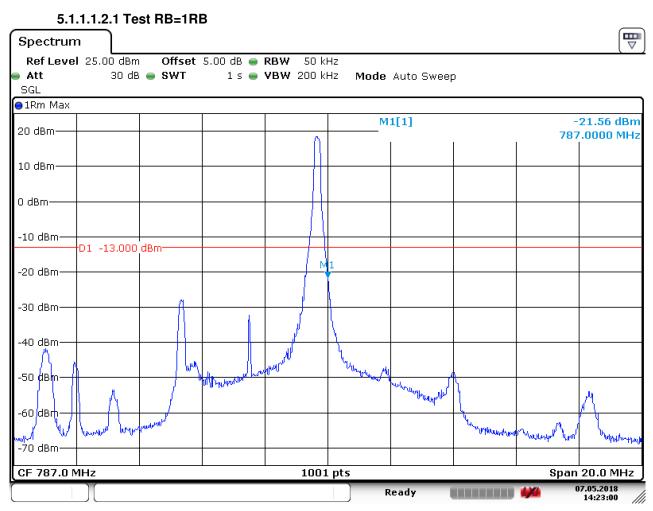


Date: 7.MAY.2018 14:18:26

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-an



Report No.: SZEM180600492001 Page: 19 of 40


| Spectrun               | n                     |                            |                                 |                         |                |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|------------------------|-----------------------|----------------------------|---------------------------------|-------------------------|----------------|-----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Ref Leve<br>Att<br>SGL | l 25.00 dBn<br>30 dB  | n Offset<br>3 e SWT        | 5.00 dB 👄<br>1 s 👄              | RBW 50 ki<br>VBW 200 ki |                | Auto Swee       | р        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 😑 1 Rm Max             |                       |                            |                                 |                         |                |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 20 dBm                 |                       |                            |                                 |                         | M              | 1[1]            | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.98 dBm<br>.0000 MHz |
| 10 dBm                 |                       |                            |                                 |                         |                |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 0 dBm                  |                       |                            |                                 |                         | phrandellander | derbrahenhynder | universe |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| -10 dBm—               | D1 -13.000            |                            |                                 |                         |                |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| -20 dBm                | 01 -13,000            |                            |                                 |                         |                |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| -30 dBm                |                       |                            |                                 | M                       |                |                 | h h      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| -40 dBm                |                       |                            |                                 | and the second          |                |                 |          | flithearter and the section of the s | Muydenerghave          |
| -50 dBm                |                       |                            |                                 | /                       |                |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Why                    |
| -60 dBm                |                       |                            | and a start and a start a start |                         |                |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| -60 aBm                | Warnhy Marked Milling | Marin Marine Marine Marine | R.M. Mark                       |                         |                |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| CF 777.0 N             | <br>MHz               |                            |                                 | 1001                    | pts            |                 | <u> </u> | <br>Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.0 MHz               |
|                        | )[]                   |                            |                                 |                         |                | teady           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.05.2018<br>14:21:15 |

5.1.1.1.1.2 Test RB=25RB

Date: 7.MAY.2018 14:21:15



Report No.: SZEM180600492001 Page: 20 of 40



5.1.1.1.2 Test Channel = HCH

Date: 7.MAY.2018 14:23:00



Report No.: SZEM180600492001 Page: 21 of 40

| Spectrum                | ı                    |                 |         |                    |                       |                      |           |          |             |                         |
|-------------------------|----------------------|-----------------|---------|--------------------|-----------------------|----------------------|-----------|----------|-------------|-------------------------|
| Ref Level<br>Att<br>SGL | l 25.00 dBm<br>30 dE | n Off<br>8 🖷 SW |         | 5.00 dB 👄<br>1 s 👄 | RBW 50 k<br>VBW 200 k |                      | Auto Swee | p        |             | `                       |
| ⊖1Rm Max                |                      |                 |         |                    |                       |                      |           |          |             |                         |
| 20 dBm                  |                      |                 |         |                    |                       | M                    | 1[1]      | 1        |             | 28.86 dBm<br>7.0000 MHz |
| 10 dBm                  |                      |                 |         |                    |                       |                      |           |          |             |                         |
| 0 dBm                   |                      |                 | purroma | www.hubble.        | allowandermany        |                      |           |          |             |                         |
| -10 dBm                 | D1 -13.000           | dem             |         |                    |                       |                      |           |          |             |                         |
| -20 dBm—                | DI -13.000           |                 |         |                    |                       |                      |           |          |             |                         |
| -30 dBm                 |                      |                 |         |                    | Γ                     |                      |           |          |             |                         |
| -40 dBm                 | the tradition of the | mun             |         |                    |                       | huber and a straight | Hunne m   | ututi    |             |                         |
| ылыри<br>-50 dBm-       |                      |                 |         |                    |                       |                      |           | how have | prominenter |                         |
|                         |                      |                 |         |                    |                       |                      |           |          | problems    | have been and           |
| -60 dBm——               |                      |                 |         |                    |                       |                      |           |          |             |                         |
| -70 dBm                 | /Hz                  |                 |         |                    | 100                   | 1 pts                |           |          | Span        | 20.0 MHz                |
|                         | )[]                  |                 |         |                    | _00                   |                      | Ready     |          |             | 14:23:24                |

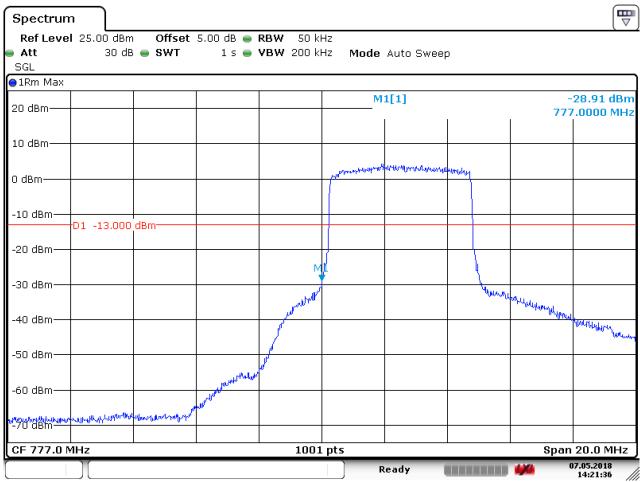
5.1.1.1.2.2 Test RB=25RB

Date: 7.MAY.2018 14:23:25



5.1.1.2 Test Mode = LTE/TM2 5MHz

## SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

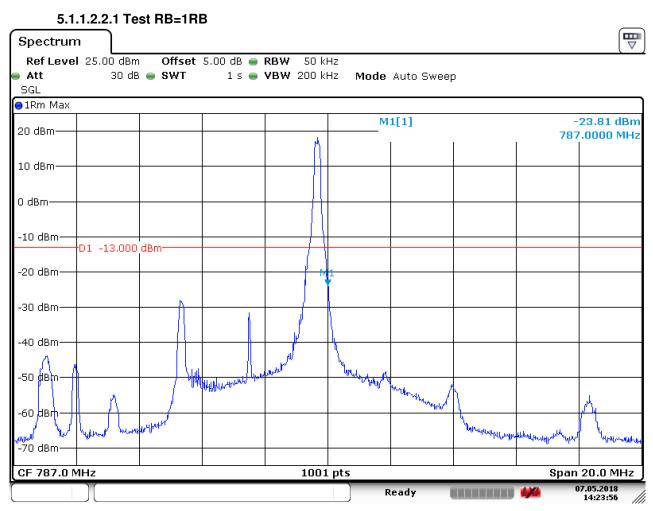

Report No.: SZEM180600492001 Page: 22 of 40

#### 5.1.1.2.1 Test Channel = LCH 5.1.1.2.1.1 Test RB=1RB ₽ Spectrum Ref Level 25.00 dBm Offset 5.00 dB 👄 RBW 50 kHz Att 30 dB 💿 SWT 1 s 👄 **VBW** 200 kHz Mode Auto Sweep SGL ●1Rm Max M1[1] -22.43 dBm 20 dBm-777.0000 MHz 10 dBm-0 dBm--10 dBm-D1 -13.000 dBm--20 dBm--30 dBm--40 dBm--50 dBm--60 dBmtiou waltherestation our put to the destruction of the second s -70 dBm 1001 pts CF 777.0 MHz Span 20.0 MHz 07.05.2018 14:22:11 Ready

Date: 7.MAY.2018 14:22:11



Report No.: SZEM180600492001 Page: 23 of 40

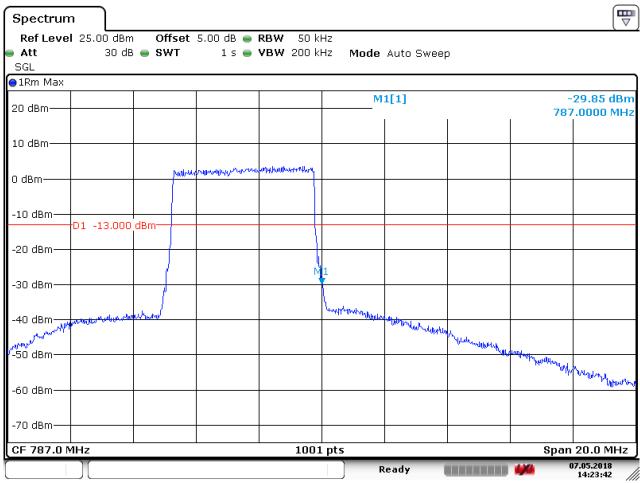



#### 5.1.1.2.1.2 Test RB=25RB

Date: 7.MAY.2018 14:21:36



Report No.: SZEM180600492001 Page: 24 of 40




5.1.1.2.2 Test Channel = HCH

Date: 7.MAY.2018 14:23:57



Report No.: SZEM180600492001 Page: 25 of 40



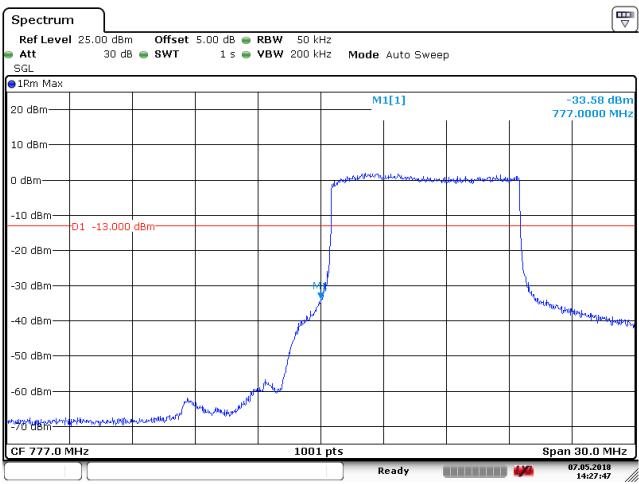
#### 5.1.1.2.2.2 Test RB=25RB

Date: 7.MAY.2018 14:23:42



5.1.1.3 Test Mode = LTE/TM1 10MHz

## SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

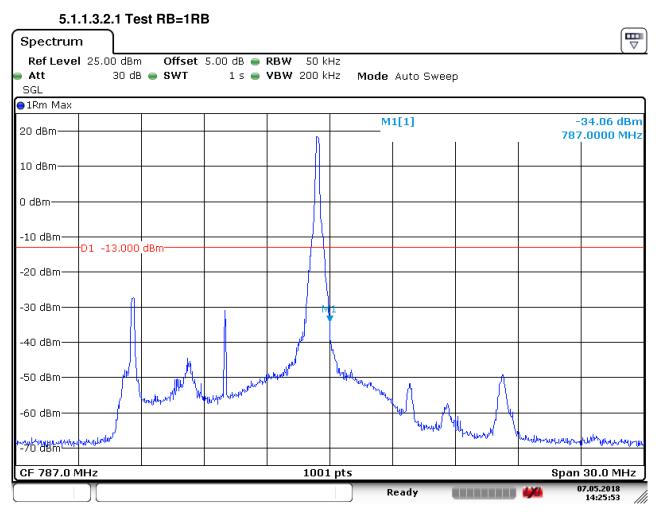

Report No.: SZEM180600492001 Page: 26 of 40

#### 5.1.1.3.1 Test Channel = LCH 5.1.1.3.1.1 Test RB=1RB ₩ Spectrum Ref Level 25.00 dBm Offset 5.00 dB 👄 RBW 50 kHz Att 30 dB 👄 SWT 1 s 👄 **VBW** 200 kHz Mode Auto Sweep SGL ●1Rm Max M1[1] -35.68 dBm 20 dBm-777.0000 MHz 10 dBm-0 dBm--10 dBm-D1 -13.000 dBm -20 dBm--30 dBm-M -40 dBm-Wylaha -50 dBm--60 dBm· WANNH henry performance R. W. W. Walker to Sheels Willing Mr. My 490raBm to a text to a text to CF 777.0 MHz 1001 pts Span 30.0 MHz 07.05.2018 Ready 14:27:27

Date: 7.MAY.2018 14:27:27



Report No.: SZEM180600492001 Page: 27 of 40

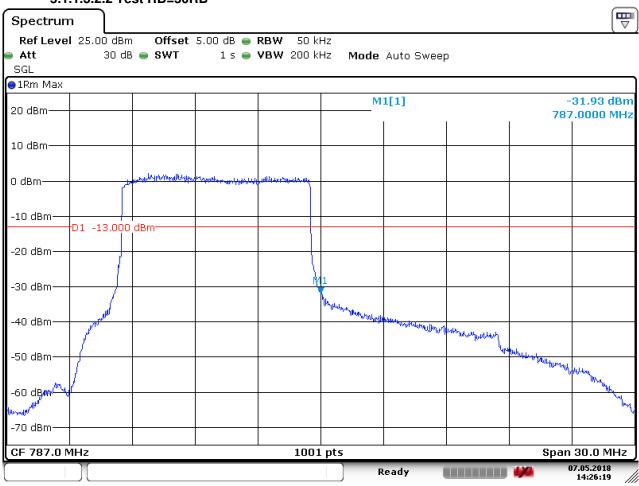



5.1.1.3.1.2 Test RB=50RB

Date: 7.MAY.2018 14:27:48



Report No.: SZEM180600492001 Page: 28 of 40




5.1.1.3.2 Test Channel = HCH

Date: 7.MAY.2018 14:25:53



Report No.: SZEM180600492001 Page: 29 of 40



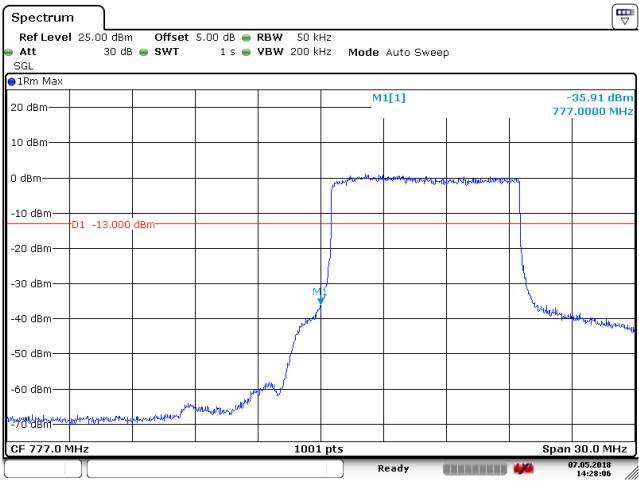
5.1.1.3.2.2 Test RB=50RB

Date: 7.MAY.2018 14:26:19



5.1.1.4 Test Mode = LTE/TM2 10MHz

### SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

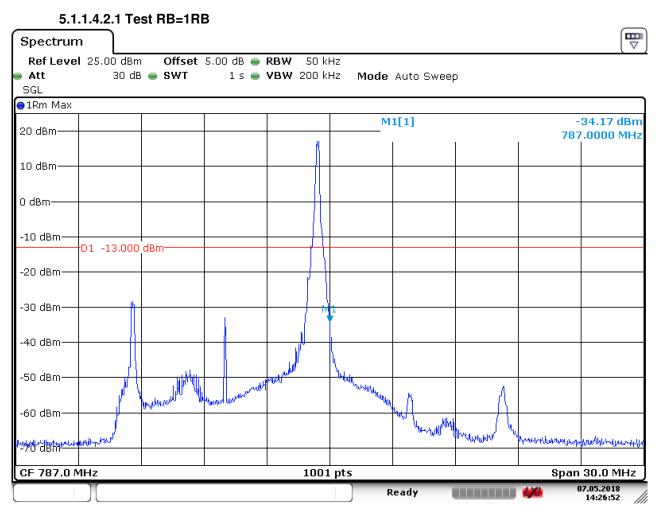

Report No.: SZEM180600492001 Page: 30 of 40

#### 5.1.1.4.1 Test Channel = LCH 5.1.1.4.1.1 Test RB=1RB ₽ Spectrum Ref Level 25.00 dBm Offset 5.00 dB 👄 RBW 50 kHz Att 30 dB 💿 SWT 1 s 🔵 **VBW** 200 kHz Mode Auto Sweep SGL ●1Rm Max M1[1] -36.65 dBm 20 dBm-777.0000 MHz 10 dBm-0 dBm--10 dBm-D1 -13.000 dBm--20 dBm--30 dBm-M -40 dBm-WWW HA -50 dBm-- The grad -60 dBmun and a start when an war when the When you when the work b.r. 1001 pts CF 777.0 MHz Span 30.0 MHz 07.05.2018 14:28:22 Ready

Date: 7.MAY.2018 14:28:22



Report No.: SZEM180600492001 Page: 31 of 40

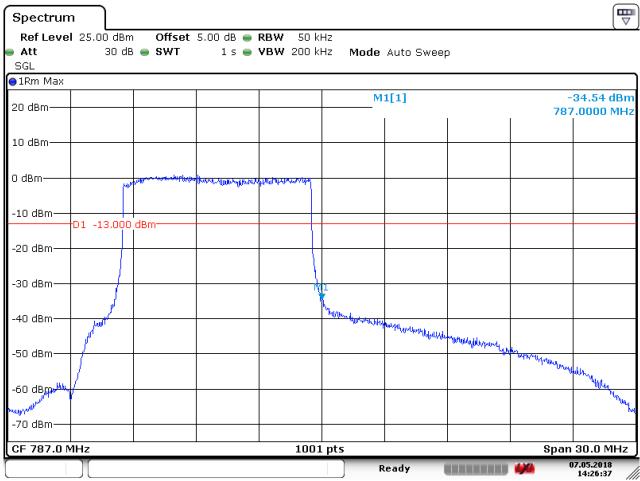



5.1.1.4.1.2 Test RB=50RB

Date: 7.MAY.2018 14:28:07



Report No.: SZEM180600492001 Page: 32 of 40




5.1.1.4.2 Test Channel = HCH

Date: 7.MAY.2018 14:26:53



Report No.: SZEM180600492001 Page: 33 of 40



5.1.1.4.2.2 Test RB=50RB

Date: 7.MAY.2018 14:26:38



Report No.: SZEM180600492001 Page: 34 of 40

### 6 Spurious Emission at Antenna Terminal

NOTE: For the averaged unwanted emissions measurements, the measurement points in each sweep is greater than twice the Span/RBW in order to ensure bin-to-bin spacing of < RBW/2 so that narrowband signals are not lost between frequency bins. As to the present test item, the "Measurement Points = k \* (Span / RBW)" with k between 4 and 5, which results in an acceptable level error of less than 0.5 dB. Part I - Test Plots

### 6.1 For LTE

#### 6.1.1 Test Band = LTE band13

6.1.1.1 Test Mode = LTE / TM1 10MHz RB1#0

6.1.1.1.1 Test Channel = MCH

| Spectrum                                                                                                         | ן ר                                                                                                             |                                  |                          |                                                                                                                                                                                                                                     |                        |                      |                       |   |                                        |                        |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|-----------------------|---|----------------------------------------|------------------------|
| Ref Level<br>Att                                                                                                 | 1 30.00 dBm                                                                                                     | Offset                           | 5.00 dB 👄                | <b>RBW</b> 50 ki<br><b>VBW</b> 200 ki                                                                                                                                                                                               |                        | Auto Swee            | _                     |   |                                        |                        |
| ● 1Rm Max                                                                                                        | 55 45                                                                                                           |                                  | 13 🚽                     | • D W 200 Ki                                                                                                                                                                                                                        | 12 Ifioue              | Auto Swee            | J                     |   |                                        | ,                      |
|                                                                                                                  |                                                                                                                 |                                  |                          |                                                                                                                                                                                                                                     | М                      | 1[1]                 | M                     | 1 |                                        | 22.02 dBm<br>.6140 MHz |
| 20 dBm——                                                                                                         |                                                                                                                 |                                  |                          |                                                                                                                                                                                                                                     |                        |                      |                       |   |                                        |                        |
| 10 dBm                                                                                                           |                                                                                                                 |                                  |                          |                                                                                                                                                                                                                                     |                        |                      |                       |   |                                        |                        |
| 0 dBm                                                                                                            |                                                                                                                 |                                  |                          |                                                                                                                                                                                                                                     |                        |                      |                       |   |                                        |                        |
| -10 dBm—                                                                                                         | D1 -13.000                                                                                                      | dBm                              |                          |                                                                                                                                                                                                                                     |                        |                      |                       |   |                                        |                        |
| -20 dBm                                                                                                          |                                                                                                                 |                                  |                          |                                                                                                                                                                                                                                     |                        |                      |                       |   |                                        |                        |
| -30 dBm                                                                                                          |                                                                                                                 |                                  |                          |                                                                                                                                                                                                                                     |                        |                      |                       |   |                                        |                        |
| -40 dBm——                                                                                                        |                                                                                                                 |                                  |                          |                                                                                                                                                                                                                                     |                        |                      |                       | 1 |                                        |                        |
| -50 dBm                                                                                                          |                                                                                                                 |                                  |                          |                                                                                                                                                                                                                                     |                        |                      |                       |   |                                        |                        |
| ահիստենովութ                                                                                                     |                                                                                                                 |                                  |                          | والماعير والمورقي الربين                                                                                                                                                                                                            |                        |                      |                       |   |                                        |                        |
| and a barrier of the failure of the second | n ponto e la construcción de la con | ann <mark>a bhailte san a</mark> | haladi den filikalingen: | a de la contra de la<br>Contra de la contra d | and the fighter of the | an na statu na statu | and the literation of | 1 | ne serba, peta profilo debla de la com | يوليه يستشامانها ودرا  |
| Start 30.0                                                                                                       | MHz                                                                                                             | <u> </u>                         | <u> </u>                 | 2000                                                                                                                                                                                                                                | 1 pts                  | <u> </u>             | I                     |   | Sto                                    | p 1.0 GHz              |
|                                                                                                                  | Υ                                                                                                               |                                  |                          |                                                                                                                                                                                                                                     | Mea                    | suring               |                       |   | <b>1)/0</b>                            | 1.05.2018              |

Date: 1.MAY.2018 14:14:32

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-an



Report No.: SZEM180600492001 Page: 35 of 40

| Spectrun    | n        | )      |       |                                     |           |        |                       |   |      |                           |
|-------------|----------|--------|-------|-------------------------------------|-----------|--------|-----------------------|---|------|---------------------------|
| Ref Leve    | l 15.0   |        |       | et 5.00 dB 👄                        |           |        |                       |   |      | `                         |
| Att         |          | 30 dB  | 🔵 SWT | 1 s 👄                               | VBW 3 MHz | Mode A | uto Sweep             |   |      |                           |
| ●1Rm Max    |          |        |       |                                     | 1         |        | 4541                  |   |      | 41.00 Jp                  |
| 10 dBm      |          |        |       |                                     |           | N      | 1[1]                  | 1 |      | -41.33 dBm<br>551850 GHz  |
| 0 dBm       |          |        |       |                                     |           |        |                       |   |      |                           |
| -10 dBm—    | -D1 -1   | .3.000 | dBm   |                                     |           |        |                       |   |      |                           |
| -20 dBm—    |          | .5.000 |       |                                     |           |        |                       |   |      |                           |
| -30 dBm—    |          |        |       |                                     |           |        |                       |   |      |                           |
| -40 dBm     |          |        |       |                                     |           |        |                       |   |      | M                         |
| -50 dBm     |          |        |       |                                     |           |        |                       |   |      |                           |
|             | 1,000    |        |       | (diget, plant light of other and li |           |        | an later in stated in |   |      |                           |
| -60 dBm——   |          |        |       |                                     |           |        |                       |   |      |                           |
| -70 dBm—    |          |        |       |                                     |           |        |                       |   |      |                           |
| -80 dBm     |          |        |       |                                     |           |        |                       |   |      |                           |
| Start 1.0 C | i<br>GHz |        |       |                                     | 20001     | pts    | 1                     | 1 | Stop | 1.559 GHz                 |
|             | )[       |        |       |                                     |           |        | suring                |   | -    | 07.05.2018<br>14:32:26 // |

Date: 7.MAY.2018 14:32:27



Report No.: SZEM180600492001 Page: 36 of 40

| Spectrum                | 1      | )           |              |          |                        |     |       |                        |                   |   |     |                           |
|-------------------------|--------|-------------|--------------|----------|------------------------|-----|-------|------------------------|-------------------|---|-----|---------------------------|
| Ref Level               | 15.0   |             |              | set 5.00 |                        |     |       |                        |                   |   |     |                           |
| Att                     |        | 30 dB       | e sw         | Т        | 1 s 👄                  | VBW | 3 MHz | Mode A                 | Auto Sweej        | p |     |                           |
| ⊖1Rm Max                |        |             |              |          |                        |     |       |                        |                   |   |     |                           |
| 10 dBm                  |        |             |              |          |                        | _   |       | M                      | 1[1]              |   |     | ·54.35 dBm<br>174840 GHz  |
|                         |        |             |              |          |                        |     |       |                        | 1                 |   |     |                           |
| 0 dBm                   |        |             |              |          |                        |     |       |                        |                   |   |     |                           |
| 0 0.0                   |        |             |              |          |                        |     |       |                        |                   |   |     |                           |
| -10 dBm—                |        |             |              |          |                        |     |       |                        |                   |   |     |                           |
| 10 0.0111               |        |             |              |          |                        |     |       |                        |                   |   |     |                           |
| -20 dBm                 |        |             |              |          |                        |     |       |                        |                   |   |     |                           |
| 20 0.0111               |        |             |              |          |                        |     |       |                        |                   |   |     |                           |
| -30 dBm                 |        |             |              |          |                        |     |       |                        |                   |   |     |                           |
| 00 dbiii                |        |             |              |          |                        |     |       |                        |                   |   |     |                           |
| -40 dBm                 | ∙D1 -4 | <br>  0.000 | dBm          |          |                        |     |       |                        |                   |   |     |                           |
|                         |        |             | abiii        |          |                        |     |       |                        |                   |   |     |                           |
| <mark>ו⊽</mark> ק0 dBm— |        |             |              |          |                        |     |       |                        |                   |   |     |                           |
| VII-                    |        |             | يعارجون ورجو |          | - Indone has no settle |     |       | ten diamana amin'ny fi | a particular da a |   |     |                           |
| -60 dBm—                |        |             |              |          |                        |     |       |                        |                   |   |     | hap and the false of      |
|                         |        |             |              |          |                        |     |       |                        |                   |   |     |                           |
| -70 dBm                 |        |             |              |          |                        |     |       |                        |                   |   |     |                           |
|                         |        |             |              |          |                        |     |       |                        |                   |   |     |                           |
| -80 dBm                 |        |             |              |          |                        |     |       |                        |                   |   |     |                           |
|                         |        |             |              |          |                        |     |       |                        |                   |   |     |                           |
| Start 1.559             | 9 GHz  |             |              |          |                        |     | 20001 | pts                    |                   |   | -   | ) 1.61 GHz                |
| [                       | Л      |             |              |          |                        |     |       | Mea                    | asuring           |   | 4/4 | 07.05.2018<br>14:31:17 // |

Date: 7.MAY.2018 14:31:17



Report No.: SZEM180600492001 Page: 37 of 40

| Spectrun   | n      |       |      |       |            |        |           |        | ſ                       | ∀  |
|------------|--------|-------|------|-------|------------|--------|-----------|--------|-------------------------|----|
| Ref Leve   |        |       |      |       | RBW 1 MHz  |        |           |        |                         |    |
| Att        |        | 30 dB | SWT  | 1 s 😑 | VBW 3 MHz  | Mode A | uto Sweep | p      |                         |    |
| ●1Rm Max   | 1      |       |      |       | <u>т т</u> |        | 1111      |        | -48.88 dE               |    |
| 10 dBm     |        |       |      |       |            |        | 1[1]<br>I | 1 1    | -48.88 uE<br>6.933400 G |    |
| 0 dBm      |        |       |      |       |            |        |           |        |                         |    |
| -10 dBm—   | D1 -1: | 2 000 | d8 m |       |            |        |           |        |                         |    |
| -20 dBm—   |        | 5.000 |      |       |            |        |           |        |                         |    |
| -30 dBm—   |        |       |      |       |            |        |           |        |                         |    |
| -40 dBm—   |        |       |      |       |            |        |           |        |                         |    |
| -50 dBm    |        |       |      |       |            |        | M1        |        |                         |    |
| -60 dBm    |        |       |      |       |            |        |           |        |                         |    |
| -70 dBm—   |        |       |      |       |            |        |           |        |                         |    |
| -80 dBm    |        |       |      |       |            |        |           |        |                         |    |
| Start 1.61 | GHz    |       |      | 1     | 20001      | pts    |           |        | <br>Stop 10.0 GH        | ١z |
|            |        |       |      |       |            | Mea    | suring    | •••••• | 07.05.2018 14:32:01     |    |

Date: 7.MAY.2018 14:32:01



Report No.: SZEM180600492001 Page: 38 of 40

### 7 Field Strength of Spurious Radiation

### 7.1 For LTE

### 7.1.1 Test Band = LTE band13

### 7.1.1.1 Test Mode =LTE/TM1 10MHz RB1#0

| 7.1.1.1.1       | Test Channel = M | СН               |                 |              |
|-----------------|------------------|------------------|-----------------|--------------|
| Frequency (MHz) | Level (dBm)      | Limit Line (dBm) | Over Limit (dB) | Polarization |
| 71.953333       | -73.54           | -13.00           | 60.54           | Vertical     |
| 144.006667      | -70.53           | -13.00           | 57.53           | Vertical     |
| 1605.000000     | -60.28           | -40.00           | 20.28           | Vertical     |
| 2332.500000     | -54.12           | -13.00           | 41.12           | Vertical     |
| 3109.850000     | -68.04           | -13.00           | 55.04           | Vertical     |
| 4011.725000     | -67.08           | -13.00           | 54.08           | Vertical     |
| 62.713333       | -78.04           | -13.00           | 65.04           | Horizontal   |
| 144.006667      | -75.51           | -13.00           | 62.51           | Horizontal   |
| 1605.000000     | -62.38           | -40.00           | 20.38           | Horizontal   |
| 2332.500000     | -57.11           | -13.00           | 44.11           | Horizontal   |
| 3110.175000     | -68.01           | -13.00           | 55.01           | Horizontal   |
| 6056.625000     | -65.26           | -13.00           | 52.26           | Horizontal   |

NOTE:

1) The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

2) We have tested all modulation and all Bandwidth, but only the worst case data presented in this report



Report No.: SZEM180600492001 Page: 39 of 40

### 8 Frequency Stability

### 8.1 Frequency Error VS. Voltage

| Test Band | Test Mode     | Test<br>Channel | Test<br>Temp. | Test<br>Volt. | Freq. Error<br>[Hz] | Freq. vs.<br>rated [ppm] | Verdict |
|-----------|---------------|-----------------|---------------|---------------|---------------------|--------------------------|---------|
|           |               |                 |               | VL            | 8.41                | 0.01075                  | PASS    |
|           |               | LCH             | TN            | VN            | -2.33               | -0.00297                 | PASS    |
|           |               |                 |               | VH            | 0.16                | 0.00021                  | PASS    |
|           |               |                 |               | VL            | -6.82               | -0.00872                 | PASS    |
|           | LTE/TM1 10MHz | MCH             | ΤN            | VN            | 2.30                | 0.00294                  | PASS    |
|           |               |                 |               | VH            | 7.89                | 0.01009                  | PASS    |
|           |               | НСН             | TN            | VL            | -3.42               | -0.00437                 | PASS    |
|           |               |                 |               | VN            | -4.79               | -0.00612                 | PASS    |
| LTEband13 |               |                 |               | VH            | 2.82                | 0.00361                  | PASS    |
| LIEDanuis |               | LCH             | TN            | VL            | -6.49               | -0.00830                 | PASS    |
|           |               |                 |               | VN            | 8.37                | 0.01070                  | PASS    |
|           |               |                 |               | VH            | -6.40               | -0.00818                 | PASS    |
|           |               |                 |               | VL            | -2.56               | -0.00327                 | PASS    |
|           | LTE/TM2 10MHz | MCH             | TN            | VN            | -1.07               | -0.00137                 | PASS    |
|           |               |                 |               | VH            | 0.54                | 0.00069                  | PASS    |
|           |               |                 |               | VL            | 4.50                | 0.00575                  | PASS    |
|           |               | HCH             | ΤN            | VN            | -7.63               | -0.00976                 | PASS    |
|           |               |                 |               | VH            | 6.68                | 0.00854                  | PASS    |



Report No.: SZEM180600492001 Page: 40 of 40

### 8.2 Frequency Error VS. Temperature

| Test Band | Test Mode     | Test<br>Channel | Test<br>Volt. | Test<br>Temp. | Freq.<br>Error<br>[Hz] | Freq. vs.<br>rated [ppm] | Verdict |
|-----------|---------------|-----------------|---------------|---------------|------------------------|--------------------------|---------|
|           |               |                 |               | -30           | -4.90                  | -0.00627                 | PASS    |
|           |               |                 | VN            | -20           | -6.14                  | -0.00785                 | PASS    |
|           |               |                 |               | -10           | 5.47                   | 0.00699                  | PASS    |
|           |               |                 |               | 0             | -3.63                  | -0.00464                 | PASS    |
|           | LTE/TM1 10MHz | MCH             |               | 10            | 7.43                   | 0.00950                  | PASS    |
|           |               |                 |               | 20            | 6.03                   | 0.00771                  | PASS    |
|           |               |                 |               | 30            | 0.99                   | 0.00126                  | PASS    |
|           |               |                 |               | 40            | -4.50                  | -0.00575                 | PASS    |
| LTEband13 |               |                 |               | 50            | -4.42                  | -0.00565                 | PASS    |
| LIEDanuis |               |                 |               | -30           | -2.09                  | -0.00268                 | PASS    |
|           |               |                 |               | -20           | -6.03                  | -0.00771                 | PASS    |
|           |               |                 |               | -10           | 0.60                   | 0.00076                  | PASS    |
|           |               |                 |               | 0             | 2.34                   | 0.00299                  | PASS    |
|           | LTE/TM2 10MHz | MCH             | VN            | 10            | 4.16                   | 0.00532                  | PASS    |
|           |               |                 |               | 20            | 0.39                   | 0.00050                  | PASS    |
|           |               |                 |               | 30            | 9.98                   | 0.01276                  | PASS    |
|           |               |                 |               | 40            | 1.61                   | 0.00205                  | PASS    |
|           |               |                 |               | 50            | -4.09                  | -0.00522                 | PASS    |

The End