Customer:

HERMOS AG

Gartenstr. 19 95490 Mistelgau GermanyTel.: +49 9279 991-0

RF test report 180412-AU01+W02

HERMOS AG RFID-Reader LFP USB Reader

The test result refers exclusively to the model tested.

This test report may not be copied or published in extracts without the written authorization of the accreditation agency and/or EMV TESTHAUS GmbH

EMV TESTHAUS GmbH

Gustav-Hertz-Straße 35 94315 Straubing Germany Tel.: +49 9421 56868-0

Fax: +49 9421 56868-100 Email: info@emv-testhaus.com

Accreditation:

Test Firm Type "accredited": Valid until 2019-05-06 MRA US-EU, FCC designation number: DE0010 BNetzA-CAB-02/21-02/04 Valid until 2018-11-27

Test laboratory:

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

The technical accuracy is guaranteed through the quality management of EMV **TESTHAUS** GmbH.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany HERMOS AG RFID-Reader LFP USB Reader

180412-AU01+W02

Page 2 of 42

Table of contents

1	Summary of test results6								
2	Referenced publications7								
3	Equipment under test (EUT)8								
	3.1	General information	8						
	3.2	Radio specifications	9						
	3.3	Photo documentation	9						
4	Tes	st configuration and mode of operation	10						
	4.1	Test configuration	10						
	4.2	Mode of operation	10						
5	Tes	st procedures	11						
	5.1	General specifications	11						
	5.2	AC power line conducted emission	11						
	5.3	Radiated emissions below 30 MHz	13						
	5.4	Radiated emissions from 30 MHz to 1 GHz	15						
	5.5	Radiated emissions above 1 GHz	17						
	5.6	Bandwidth measurements	19						
	5.7	Restricted bands of operation	20						
6	Tes	st results	21						
	6.1	AC power line conducted emissions 150 kHz to 30 MHz	22						
	6.2	Occupied bandwidth	26						
	6.3	Restricted band of operation from 0.090 MHz to 0.110 MHz	29						
	6.4	Radiated emissions	32						
7	Zequipment calibration status40								
8	3 Measurement uncertainties41								
9	Revision history42								

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

List of figures

Figure 1: Setup for AC power-line conducted emissions test from 150 kHz to 30 MHz	12
Figure 2: Setup for radiated emissions test below 30 MHz	15
Figure 3: Setup for radiated emissions test from 30 MHz to 1 GHz	16
Figure 4: Setup for radiated emissions test above 1 GHz	19
Figure 5: Chart of AC power-line conducted emissions test – phase L1	
Figure 6: Final results of AC power-line conducted emissions test – phase L1	24
Figure 7: Chart of AC power-line conducted emissions test – phase N	
Figure 8: Final results of AC power-line conducted emissions test – phase N	
Figure 9: Chart of occupied bandwidth test	
Figure 10: Restricted band of operation @ 3m distance	
Figure 11: Chart of emissions test below 30 MHz without tag in position 2	
Figure 12: Chart of emissions test from 30 MHz to 1 GHz with tag in position 3	

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

List of tables

Table 1: Devices used for testing	10
Table 2: Bandwidth and detector type for AC power-line conducted emissions test	12
Table 3: Recalculation factors for extrapolation	13
Table 4: Bandwidth and detector type for radiated emissions test below 30 MHz	14
Table 5: Bandwidth and detector type for radiated emissions test from 30 MHz to 1 GHz	15
Table 6: Bandwidth and trace settings for exploratory radiated emissions test above 1 GHz	17
Table 7: Bandwidth and detector type for final radiated emissions test above 1 GHz	18
Table 8: AC power-line conducted limits	23
Table 9: Results of occupied bandwidth test	28
Table 10: General radiated emission limits up to 30 MHz according to §15.209	33
Table 11: Final results of emissions test below 30 MHz without tag in position 2	35
Table 12: General radiated emission limits ≥ 30 MHz according to §15.209	37
Table 13: Final results of emissions test from 30 MHz to 1 GHz with tag in position 3	39

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

1 Summary of test results

System type: RFID Reader

47 CFR part and section	Test	Page	Result	Note(s)
15.207	AC power line conducted emissions 150 kHz to 30 MHz	22	Passed	
2.202(a) ANSI C63.10	Occupied bandwidth (99 %)	26	For information only	
15.205 (a) – (c)	Restricted bands of operation	29	Passed	
15.209	Radiated emissions 9 kHz to 10 th harmonic			
	9 kHz to 30 MHz	32	Passed	
	30 MHz to 1 GHz	36	Passed	
	1 GHz to 10 th harmonic		Not applicable	1

Notes (for information about EUT see clause 3):

1 Not applicable if the 10th harmonic of the intentional transmitter is beyond 1 GHz (please see CFR 47 Part 15, section 15.33(a)(1), and RSS-Gen, section 6.13.

Straubing, July 19, 2018

Andreas Menacher
Test engineer

Andreas Menally

EMV TESTHAUS GmbH

Konrad Graßl Head of radio department EMV **TESTHAUS** GmbH

Konnad Grafl

2 Referenced publications

Publication	Title
CFR 47 Part 2 October 2017	Code of Federal Regulations, Title 47 (Telecommunication), Part 2 (Frequency allocation and radio treaty matters; General rules and regulations) of the Federal Communication Commission (FCC)
CFR 47 Part 15 October 2017	Code of Federal Regulations, Title 47 (Telecommunication), Part 15 (Radio Frequency Devices) of the Federal Communication Commission (FCC)
ANSI C63.10 June 2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
KDB 174176 D01 June 3, 2015	AC power-line conducted emissions Frequently Asked Questions

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

Equipment under test (EUT) All Information in this clause is declared by customer. **General information** 3.1 RFID-Reader Product type: Model name: LFP USB Reader Serial number(s): 1806HAG01858 **HERMOS AG** Applicant: Manufacturer: **HERMOS AG** Version: Hardware: LFS_HLG_RevA Software: LFSHI1.0 FV02 Additional modifications: Ferrite Würth **742 711 11** inside the grip on USB-cable. FCC ID: 2AP5OLFP Power supply: DC supply Nominal voltage: 5.0V Minimum voltage: 4.75 V Maximum voltage: 5.50 V Nominal frequency: 0 °C to +50 °C (customer defined) Temperature range: Device type: ☐ Portable ☐ Mobile

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

3.2 Radio specifi	ications							
System type:	RFID Reader							
System type:								
Application frequency band:	n/a							
Frequency range used:	120 kHz - 149 kHz							
Operating frequencies:	134 kHz							
Short description:	The EUT is a RFID Rea	ader operating at the free	quency 134 kHz.					
Number of RF channels	1							
Modulation	ASK							
Antenna:	Type: Gain: Connector:	Ferrite antenna n/a □ external □ temporary	☐ internal⊠ none (integral antenna)					
3.3 Photo docum	e EUT see annex B, for i							
Photos taken during testi	ng including EUT positio	ns can be found in anne	х A.					

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

4 Test configuration and mode of operation

4.1 Test configuration

Device	Type designation	Serial or inventory no.	Manufacturer						
EUT									
RFID-Reader	LFP USB Reader	1806HAG01858	HERMOS AG						
	Support equ	ipment							
PC ¹	ESPRIMO E900	O00500	Fujitsu						
Monitor ¹	TFT B22T-7 Pro	O00857	Fujitsu						
Notebook ²	LIFEBOOK U772	O00632	Fujitsu						
Power supply of Notebook ²	AC ADAPTER	A11-100P3A	Fujitsu Limited						
USB2.0 Extender	Transmitter	UA0267	LogiLink						
USB 2.0 Extender	Receiver	UA0267	LogiLink						

Table 1: Devices used for testing

4.2 Mode of operation

4.2.1 Test modes applied

During the pre-tests it was observed that the "continuous-tag-reading-mode" is the respective worst- case. Therefore this mode was selected for final testing. The device was configured by manufacturer to activate the RFID reader for continuous transmission via RFID card.

² Was placed outside of test chambers.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany HERMOS AG RFID-Reader LFP USB Reader

180412-AU01+W02

Page 10 of 42

¹ Only used for conducted emissions test.

5 Test procedures

5.1 General specifications

5.1.1 Test setups

Tabletop devices are placed on a non-conductive table with a height of 0.8 m. In case of AC power-line conducted emissions test, the rear of the EUT is located 40 cm to the vertical wall of the RF-shielded (screened) room which is used as vertical conducting plane. For radiated emission measurements above 1 GHz, tabletop devices are placed at a height of 1.5 m above the floor using a support made of styrene placed on top of the non-conductive table.

Floor-standing devices are placed either directly on the reference ground-plane or on insulating material (see clause 6.3.3 of ANSI C63.4-2014 for more details).

All other surfaces of tabletop or floor-standing EUTs are at least 80 cm from any other grounded conducting surface. This includes the case or cases of one or more LISNs when performing an AC power-line conducted emissions test.

Radiated emission measurements of equipment that can be used in multiple orientations (e.g. portable or handheld devices) are performed with the EUT in each of three orthogonal axis positions.

5.2 AC power line conducted emission

AC power-line conducted emissions are measured according to clause 6.2 of ANSI C63.10 over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from all of the EUT current-carrying power input terminals that are directly (or indirectly via separate transformers or power supplies) connected to a public power network. The tests are performed in a shielded room.

If the EUT normally receives power from another device that in turn connects to the public utility ac power lines, measurements are made on that device with the EUT in operation to demonstrate that the device continues to comply with the appropriate limits while providing the EUT with power. If the EUT is operated only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines (600 VAC or less) to operate the EUT (such as an adapter), then ac power-line conducted measurements are not required.

For direct current (dc) powered devices where the ac power adapter is not supplied with the device, an "off-the-shelf" unmodified ac power adapter is used. If the device is supposed to be installed in a host (e.g., the device is a module or PC card), then it is tested in a typical compliant host.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

Frequency (f)	Measurement	Step size	Detector type		
	receiver bandwidth		Prescan Prescan with FFT Final scan		Final scan
150 kHz ≤ f < 30 MHz	9 kHz	≤ 4.5 kHz	Peak, Average	Quasi-peak, Average	Quasi-peak, Average

Table 2: Bandwidth and detector type for AC power-line conducted emissions test

The AC power-line conducted emissions test is performed in the following steps:

- a) The EUT is arranged as tabletop or floor-standing equipment, as applicable, and connected to a line impedance stabilization network (LISN) with 50 μ H / 50 Ω . If required, a second LISN of the same type and terminated by 50 Ω is used for peripheral devices. The EUT is switched on.
- b) The measurement equipment is connected to the LISN for the EUT and set-up according to the specifications of the test (see table 2). At the LISN, the neutral line is selected to be tested.
- c) The prescan is performed with both detectors activated at the same time. If the test receiver is capable of FFT analysis, it is used for prescan, but not for final scan.
- d) When the prescan is completed, maximum levels with less margin than 10 dB or exceeding the limit are determined and collected in a list.
- e) With the first frequency of the list selected, a frequency zoom over a range of ten times of the measurement receiver bandwidth around this frequency is performed. If the EUT has no significant drift in frequency, the frequency zoom can be skipped.
- f) For final scan, the emission level is measured and the maximum is recorded.
- g) Steps e) to f) are repeated for all other frequencies in the list. At least the six highest EUT emissions relative to the limit have to be recorded.
- h) Steps c) to g) are repeated for all current-carrying conductors of all of the power cords of EUT, i.e. all phase and (if used) neutral line(s).

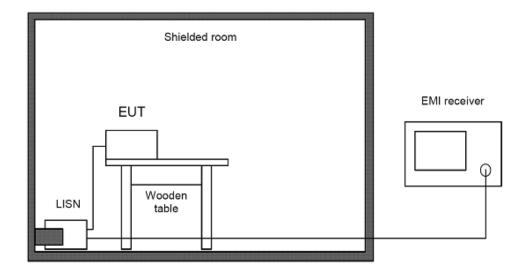


Figure 1: Setup for AC power-line conducted emissions test from 150 kHz to 30 MHz

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

5.3 Radiated emissions below 30 MHz

Radiated emissions below 30 MHz are measured according to clause 6.4 of ANSI C63.10 using an inductive shielded loop antenna. As this antenna measures the magnetic field only, its antenna factors are converted to electric field strength values assuming a free space impedance of 377 Ω as described in clause 4.3.1 of ANSI C63.10. This results in an additional correction of 51.53 dB.

According to clause 6.4.3 of ANSI C63.10, at frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the requirements. In this case, the results are extrapolated to the specified distance by using a recalculation factor determined according to one of the methods described in clause 6.4.4 of ANSI C63.10, provided that the maximum dimension of the device is equal to or less than 0.625 times the wavelength at the frequency being measured. As the minimum wavelength is 10 meters corresponding to the maximum frequency of 30 MHz, this requirement is fulfilled if the maximum dimension of the device is equal to or less than 6.25 meters.

Unless otherwise stated, the recalculation factor is determined according to clause 6.4.4.2 "Extrapolation from the measurement of a single point" of ANSI C63.10:

 $d_{near field}$ = 47.77 / f_{MHz} , or f_{MHz} = 47.77 / $d_{near field}$

The frequency f_{MHz} at which the near field distance is equal to the limit and/or test distance is important for selection of the right formula to determine the recalculation factor:

 $f_{MHz}(300 \text{ m})$ $\approx 0.159 \text{ MHz}$ $f_{MHz}(30 \text{ m})$ $\approx 1.592 \text{ MHz}$ $f_{MHz}(3 \text{ m})$ $\approx 15.923 \text{ MHz}$

Based on the test distances for the general radiated emission limits as specified in §15.209 of 47 CFR Part 15, the following formulas are used to determine the recalculation factor:

Frequency (f)	d _{limit}	d _{measure}	Formula for recalculation factor
9 kHz ≤ f ≤ 159 kHz 490 kHz < f ≤ 1.592 MHz	300 m 30 m	3 m	-40 log(d _{limit} / d _{measure})
159 kHz < f ≤ 490 kHz 1.592 MHz < f ≤ 15.923 MHz	300 m 30 m	3 m	-40 log(d _{near field} / d _{measure}) - 20 log(d _{limit} / d _{near field})
f > 15.923 MHz	30 m	3 m	-20 log(d _{limit} / d _{measure})

Table 3: Recalculation factors for extrapolation

Prescans for radiated measurements below 30 MHz are performed in a fully anechoic room (called "CDC"). The measurement distance is 3 meters. The emissions of the EUT are recorded with an EMI test receiver configured as described in table 4.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany HERMOS AG RFID-Reader LFP USB Reader

180412-AU01+W02

Page 13 of 42

Frequency (f)	Measurement receiver bandwidth	Step size	Detector type Prescan Prescan with FFT Final s		Final agan
	receiver barrarriatir		Prescari	Prescan with FFT	Final scan
9 kHz ≤ f < 150 kHz	200 Hz	≤ 100 Hz	Peak, Average	Peak Quasi-peak, Average	Peak Quasi-peak, Average
150 kHz ≤ f < 30 MHz	9 kHz	≤ 4.5 kHz	Peak, Average	Peak Quasi-peak, Average	Peak Quasi-peak, Average

Table 4: Bandwidth and detector type for radiated emissions test below 30 MHz

Prescans are performed with all detectors activated at the same time. If the test receiver is capable of FFT analysis, it is used for prescans, but not for final scans. If no limit is specified for certain detectors, final scan measurement with these detectors may be omitted.

The radiated emissions test below 30 MHz is performed in the following steps:

- a) The loop antenna is positioned with its plane perpendicular to the ground with the lowest height of the antenna 1 m above the ground.
- b) The EUT is placed in its standard position on a turntable capable of rotation through 360° in the horizontal plane and arranged as tabletop or floor-standing equipment, as applicable. The EUT is switched on.
- c) The measurement equipment is connected to the loop antenna and set-up according to the specifications of the test (see table 4).
- d) The EUT is turned to a position likely to get the maximum and the test antenna is rotated to detect the maximum of the fundamental in this EUT position.
- e) Then the EUT is rotated in a horizontal plane through 360° in steps of 45°. Starting at 0°, at each table position the spectrum for the full frequency range is recorded. If the emission at a certain frequency is higher than the levels already recorded, the current table position is noted as the maximum position.
- f) After the last prescan, the significant maximum emissions and their table positions are determined and collected in a list.
- g) With the test receiver set to the first frequency of the list, the EUT is rotated by ±45° around the table position found during prescans while measuring the emission level continuously. For final scan, the worst-case table position is set and the maximum emission level is recorded.
- h) Step g) is repeated for all other frequencies in the list.
- i) Finally, for frequencies with critical emissions the loop antenna is rotated again to find the maximum of emission. At least, frequency and level of the six highest emissions relative to the limit have to be recorded. However, emissions more than 20 dB below the limit do not need to be reported.

If the EUT may be used in various positions, steps a) to i) are repeated in two other orthogonal positions. If the EUT may be used in one position only, steps a) to i) are repeated in one orthogonal position.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

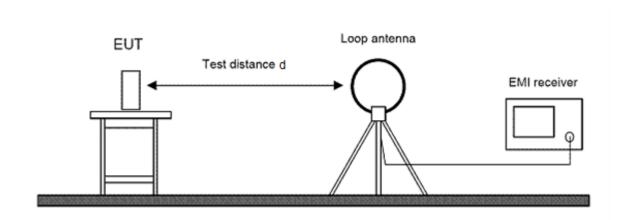


Figure 2: Setup for radiated emissions test below 30 MHz

5.4 Radiated emissions from 30 MHz to 1 GHz

Radiated emissions in the frequency range 30 MHz to 1 GHz are measured according to clause 6.5 of ANSI C63.10 using a semi-anechoic chamber (SAC) with a ground plane on the floor. The measurement distance is 3 meters. The emissions of the EUT are recorded with an EMI test receiver configured as described in table 5.

Frequency (f)	Measurement	Step size	Detector type		
	receiver bandwidth		Prescan Prescan with FFT Final scan		
30 MHz ≤ f ≤ 1 GHz	120 kHz	≤ 60 kHz	Peak	Quasi-peak	Quasi-peak

Table 5: Bandwidth and detector type for radiated emissions test from 30 MHz to 1 GHz

The measurement antenna is a combination of a biconical antenna and a logarithmic-periodic dipole array antenna. It is mounted on a support capable of allowing the antenna to be used in either horizontal or vertical polarization and in a height between 1 m and 4 m above the ground plane.

If the test receiver is capable of FFT analysis, it is used for prescans, but not for final scans.

The radiated emissions test from 30 MHz to 1 GHz is performed in the following steps:

- a) The measurement antenna is oriented initially for vertical polarization.
- b) The EUT is placed in its standard position on a turntable capable of rotation through 360° in the horizontal plane and arranged as tabletop or floor-standing equipment, as applicable. The EUT is switched on.
- c) The measurement equipment is connected to the measurement antenna and set-up according to the specifications of the test (see table 5).
- d) The table position is set to 0°.
- e) The antenna height is set to 1 m.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany HERMOS AG RFID-Reader LFP USB Reader

180412-AU01+W02

Page 15 of 42

- f) The spectrum for the full frequency range is recorded. If the emission at a certain frequency is higher than the levels already recorded, the polarization and height of the measurement antenna as well as the current table position are noted as the maximum position.
- g) The antenna height is increased to 4 m in steps of 50 cm. At each height, step f) is repeated.
- h) The polarization of the measurement antenna is changed to horizontal.
- i) The antenna height is decreased from 4 m to 1 m in steps of 50 cm. At each height, step f) is repeated.
- j) The EUT is rotated in a horizontal plane through 360° in steps of 60°. At each table position, steps e) to i) are repeated.
- k) After the last prescan, the significant maximum emissions with their polarizations and heights of the measurement antenna as well as their table positions are determined and collected in a list.
- I) With the test receiver set to the first frequency of the list, the measurement antenna is set to the polarization and height and the table is moved to the position as determined during prescans.
- m) The antenna is moved by ±50 cm around this height and the EUT is rotated by ±60° around this table position while measuring the emission level continuously.
- n) For final scan, the worst-case positions of antenna and table are set and the maximum emission level is recorded.
- o) Steps I) to n) are repeated for all other frequencies in the list. At least, frequency and level of the six highest emissions relative to the limit have to be recorded. However, emissions more than 20 dB below the limit do not need to be reported.

If the EUT may be used in various positions, steps a) to o) are repeated in two other orthogonal positions.

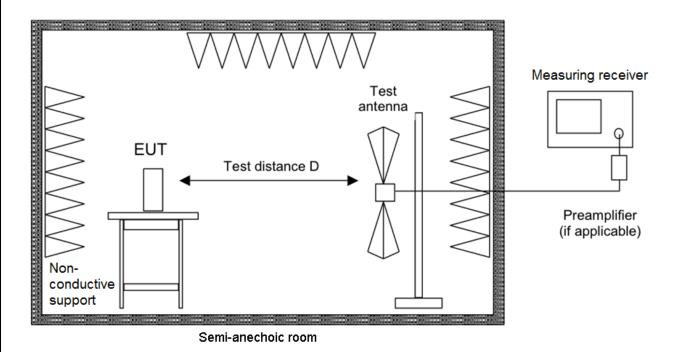


Figure 3: Setup for radiated emissions test from 30 MHz to 1 GHz

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany HERMOS AG RFID-Reader LFP USB Reader

180412-AU01+W02

Page 16 of 42

5.5 Radiated emissions above 1 GHz

Radiated emissions above 1 GHz are measured according to clause 6.6 of ANSI C63.10 by conducting exploratory and final radiated emission tests. According to clause 6.6.4.1 of ANSI C63.10, measurements may be performed at a distance closer than that specified in the requirements. However, an attempt shall be made to avoid making final measurements in the near field of both the measurement antenna and the EUT.

For measurement of radiated emissions above 1 GHz, horn antennas are used.

5.5.1 Exploratory radiated emissions measurements

Exploratory radiated emissions above 1 GHz are measured in a semi-anechoic chamber with RF absorbing material on the floor or a fully anechoic room. They are performed by moving the receiving antenna over all sides of the EUT at a closer distance (e.g. 0.5 or 1 m) while observing the display of the test receiver to find the emissions to be re-tested during final radiated emission measurements.

According to clause 5.3.3 of ANSI C63.10, when performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade of distance (inverse of linear distance for field-strength measurements). To simplify testing and documentation, the limits are increased accordingly instead of decreasing the results.

The emissions of the EUT are displayed and recorded with an EMI test receiver operating in the spectrum analyzer mode using the settings as described in table 6.

Frequency (f)	Resolution bandwidth	Video bandwidth	Sweep time	Trace detector(s)	Trace mode(s)	Test
f≥1 GHz	1 MHz 3 MHz	AUTO	May Dook Averege	Clear Write	Searching	
12 I GHZ	I IVITIZ	3 MHz AUTO Max Peak, Average		Max Hold	Recording	

Table 6: Bandwidth and trace settings for exploratory radiated emissions test above 1 GHz

If during exploratory radiated emissions measurements no levels to be re-tested are found, the final radiated emissions measurement may be omitted. In this case, the chart of the exploratory radiated emissions measurements has to be reported.

5.5.2 Final radiated emissions measurements

Final radiated emissions above 1 GHz are measured in a semi-anechoic chamber (SAC) with RF absorbing material on the floor between measurement antenna and EUT. The measurement

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany HERMOS AG RFID-Reader LFP USB Reader

180412-AU01+W02

Page 17 of 42

distance is 3 meters. The emissions of the EUT are recorded with an EMI test receiver configured as described in table 7.

Frequency (f)	Measurement	Step size	Detector type	
	receiver bandwidth		Prescan Final scan	
f≥1 GHz	1 MHz	≤ 500 kHz	Peak, Average Peak, Average	

Table 7: Bandwidth and detector type for final radiated emissions test above 1 GHz

Prescans are performed with both detectors activated at the same time. If the test receiver is capable of FFT analysis, it is used for prescans, but not for final scans.

The horn antenna is mounted on a support capable of allowing the antenna to be used in either horizontal or vertical polarization and to be moved in a scan height range between 1 m and the scan height upper range defined in clause 6.6.3.3 of ANSI C63.10. When the EUT is manipulated through three different orientations, the scan height upper range for the measurement antenna is limited to 2.5 m above the ground plane.or 0.5 m above the top of the EUT, whichever is higher. Otherwise, the scan height upper range is 4 m above the ground plane.

To keep the emission signal within the illumination area of the 3 dB beamwidth of the measurement antenna, the automatic tilt function of the antenna support device is used to point the antenna at an angle toward the source of the emission.

The final radiated emissions test above 1 GHz is performed in the following steps:

- a) The measurement antenna is oriented initially for vertical polarization.
- b) The EUT is placed in its standard position on a turntable capable of rotation through 360° in the horizontal plane and arranged as tabletop or floor-standing equipment, as applicable. The EUT is switched on.
- c) The measurement equipment is connected to the measurement antenna and set-up according to the specifications of the test (see table 7).
- d) The table position is set to 0°.
- e) The antenna height is set to 1 m.
- f) The spectrum for the full frequency range is recorded. If the emission at a certain frequency is higher than the levels already recorded, the polarization and height of the measurement antenna as well as the current table position are noted as the maximum position.
 - g) The antenna height is increased to the scan height upper range in steps of 50 cm. At each height, step f) is repeated.
- h) The polarization of the measurement antenna is changed to horizontal.
- i) The antenna height is decreased from the scan height upper range to 1 m in steps of 50 cm. At each height, step f) is repeated.
- j) The EUT is rotated in a horizontal plane through 360° in steps of 30°. At each table position, steps e) to i) are repeated.
- k) After the last prescan, the significant maximum emissions with their polarizations and heights of the measurement antenna as well as their table positions are determined and collected in a list.
- I) With the test receiver set to the first frequency of the list, the measurement antenna is set to the polarization and height and the table is moved to the position as determined during prescans.
- m) The antenna is moved by ±50 cm around this height and the EUT is rotated by ±30° around this table position while measuring the emission level continuously.
- n) For final scan, the worst-case positions of antenna and table are set and the maximum emission level is recorded.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany HERMOS AG RFID-Reader LFP USB Reader

180412-AU01+W02

Page 18 of 42

o) Steps I) to n) are repeated for all other frequencies in the list. At least, frequency and level of the six highest emissions relative to the limit have to be recorded. However, emissions more than 20 dB below the limit do not need to be reported.

If the EUT may be used in various positions, steps a) to o) are repeated in two other orthogonal positions.

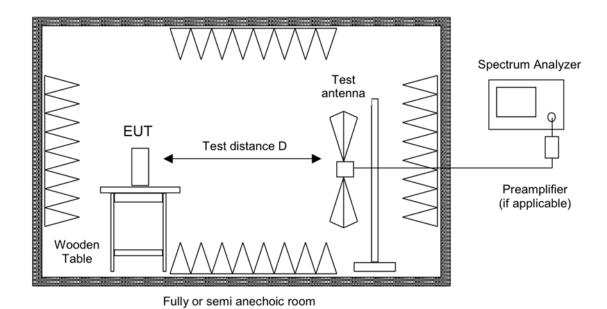


Figure 4: Setup for radiated emissions test above 1 GHz

5.6 Bandwidth measurements

5.6.1 99 % occupied bandwidth

The span of the spectrum analyzer is set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

The resolution bandwidth is in the range of 1 % to 5 % of the occupied bandwidth and the video bandwidth is not smaller than three times the resolution bandwidth. Video averaging is not permitted.

If possible, the detector of the spectrum analyzer is set to "Sample". However, if the device is not transmitting continuously, a peak, or peak hold is used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement).

To measure the 99 % emission bandwidth, the OBW function of the test receiver is used with the power bandwidth set to 99 %. This function indicates the lowest frequency (starting from the left side of the span) and the highest frequency (starting from the right side of the span) where 0.5% of

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany HERMOS AG RFID-Reader LFP USB Reader

180412-AU01+W02

Page 19 of 42

the total sum is reached. The difference between the two frequencies is the 99 % occupied bandwidth. 5.7 **Restricted bands of operation** The EUT was placed in a fully anechoic chamber and the testing was performed in accordance with ANSI C63.10 and 47 CFR Part 15, section 15.35. The measurement distance was 3 m. To find the closest margin of the spectrum to the limit mask adapted to the test distance the EUT was rotated by 360 degrees with detector of the test receiver set to peak. The loop antenna placed in a fixed height of 1 meter was rotated by 360 degrees to get the maximum of emission. In case of exceeding the limits the detector is switched to quasi peak for final testing in position of maximum emission.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

6 Test results				
This clause gives details about the test results as collected in the summary of test results on page 6.				
	UEDMOG AG			

6.1 AC power line conducted emissions 150 kHz to 30 MHz Section(s) in 47 CFR Part 15: Requirement(s): 15.207 Reference(s): ANSI C63.10, clause 6.2 Result³ ☐ Test not passed

6.1.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
Shielded room Shi	P92007	Siemens Matsushita	E00107
☐ EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
⋈ EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
☐ EMI test receiver	ESCS 30	Rohde & Schwarz	E00003
☐ EMI test receiver	ESR 7	Rohde & Schwarz	E00739
☐ EMI test receiver	ESU 26	Rohde & Schwarz	W00002
☐ EMI test receiver	ESW 44	Rohde & Schwarz	E00895
☐ Field probe	RF-R 400-1	Langer EMV-Technik	E00270
	ESH2-Z5	Rohde & Schwarz	E00004
	ESH2-Z5	Rohde & Schwarz	E00005
	50FHB-010-10	JFW Industries	E00471
☐ Cable set CDC	RF cable(s)	Huber + Suhner	E00741 E00804
☐ Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
☐ Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

 $^{^{3}}$ For information about measurement uncertainties see page 85.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany HERMOS AG RFID-Reader LFP USB Reader

180412-AU01+W02

Page 22 of 42

6.1.2 Limits

As specified in section 15.209 of 47 CFR Part 15, the emissions from an intentional radiator shall not exceed the conducted limits as specified in table 8.

	Conducted limit		
Frequency of emission [MHz]	Quasi-peak [dBµV]	Average [dBμV]	
0.15 – 0.5	66 to 56*	56 to 46*	
0.5 – 5.0	56	46	
5 – 30	60	50	

Table 8: AC power-line conducted limits

6.1.3 Test procedure

AC power line conducted emissions are measured using the test procedure as described in clause 5.2.

Remark: The AC power line conducted emissions were measured at the AC-power input port of the PC. The nominal input supply was 120 V / 60 Hz.

^{*} Decreases with the logarithm of the frequency.

6.1.4 Test results

Performed by:	Andreas Menacher	Date(s) of test:	July 4, 2018
Climatic conditions:	Ambient temperature 27 °C	Relative humidity 44 %	Barometric pressure 976 hPa

Frequency range	Step size	IF	Detector		Measure	ement Time	Preamplifier
		Bandwidth	Prescan	Final scan	Prescan	Final scan	
150 kHz – 30 MHz	≤ 4.5 kHz	9 kHz	PK, AV	QP, AV	10 ms	1 s	Off

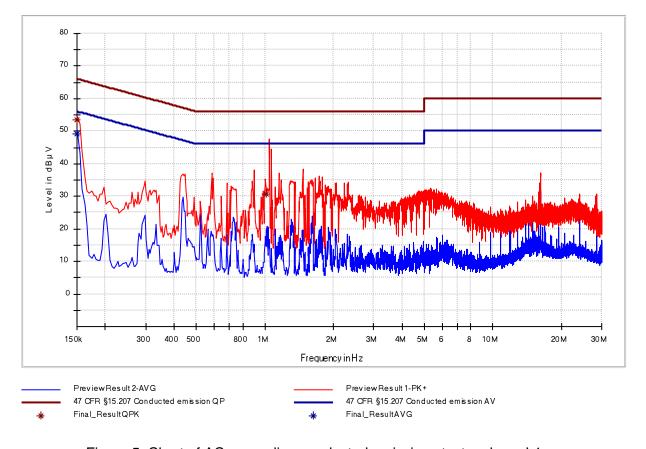


Figure 5: Chart of AC power-line conducted emissions test - phase L1

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	PE
0.150000		49.18	56.00	6.82	L1	GND
0.150000	53.63		66.00	12.37	L1	GND
1.009000	30.57		56.00	25.43	L1	GND

Figure 6: Final results of AC power-line conducted emissions test - phase L1

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany HERMOS AG RFID-Reader LFP USB Reader

180412-AU01+W02

Page 24 of 42

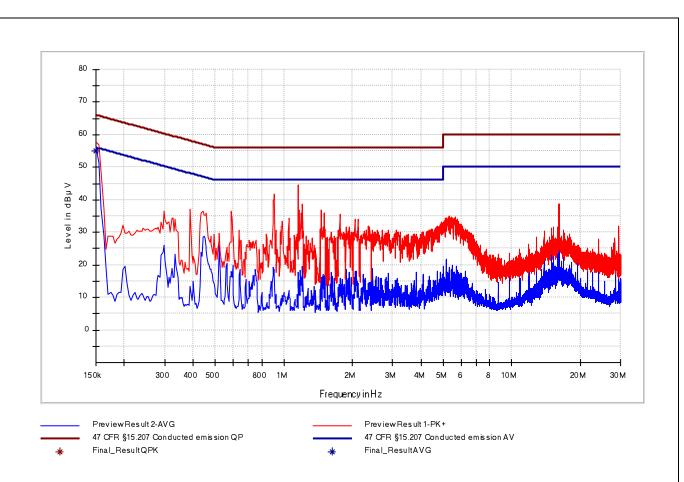


Figure 7: Chart of AC power-line conducted emissions test – phase N

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	PE
0.150000		55.04	56.00	0.96	N	GND

Figure 8: Final results of AC power-line conducted emissions test – phase N

6.2 Occupied bandwidth

Section(s) in 47 CFR Part 15: Requirement(s): 2.202(a)

Reference(s): ANSI C63.10, clause 6.9

Performed by:	Andreas Menacher	Date(s) of test:	July 4, 2018
Climatic conditions:	Ambient temperature 27 °C	Relative humidity 44 %	Barometric pressure 976 hPa
Result ⁴ :		☐ Test not passed	

6.2.1 Test equipment

Туре	Designation	Manufacturer	Inventory no.
☐ EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
⋈ EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
☐ EMI test receiver	ESR 7	Rohde & Schwarz	E00739
☐ EMI test receiver	ESU 26	Rohde & Schwarz	W00002
☐ EMI test receiver	ESW 44	Rohde & Schwarz	E00895
⊠ Field probe	RF-R 400-1	Langer EMV-Technik	E00270

⁴ For information about measurement uncertainties see page 76.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

6.2.2	Limits	
Although	there is no limit specified, the occupied bandv	vidth has to be recorded and reported.
6.2.3	Test procedure	
The occureferring	upied bandwidth is measured using the test proto to the	ocedure as described in clause 5.6.1 and
		HERMOS AG

6.2.4 Test results

Final measurement was performed without tag, because this is the worst case.

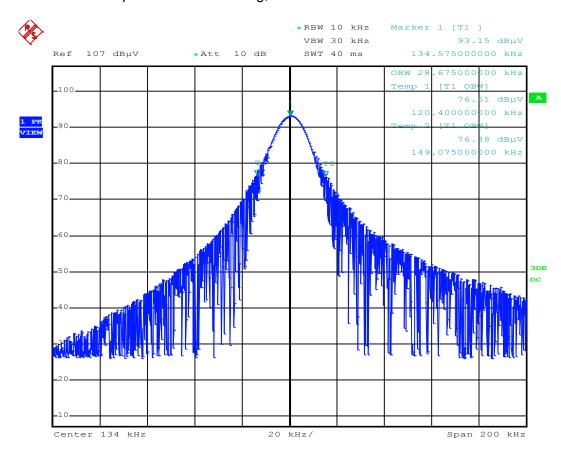


Figure 9: Chart of occupied bandwidth test

99% bandwidth	Band edge left		Band edge right		Result
	Frequency	Limit	Frequency	Limit	
[kHz]	[kHz]	[MHz]	[MHz]	[MHz]	
28.675	120.400		149.075		Recorded

Table 9: Results of occupied bandwidth test

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany HERMOS AG RFID-Reader LFP USB Reader

180412-AU01+W02

Page 28 of 42

6.3 Restricted band of operation from 0.090 MHz to 0.110 MHz

Section(s) in 47 CFR Part 15: Requirement(s): 15.205(a)-(c)

Reference(s): ANSI C63.10, section 12.7.2

Performed by:	Andreas Menacher	Date(s) of test:	July 4, 2018
Climatic conditions:	Ambient temperature 27 °C	Relative humidity 44 %	Barometric pressure 976 hPa
Result ⁵ :		☐ Test not passed	

6.3.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
	VK041.0174	Albatross Projects	E00026
☐ Open area test site (OATS)		EMV TESTHAUS	E00354
☐ Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
☐ EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
☐ EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
⋈ EMI test receiver	ESR 7	Rohde & Schwarz	E00739
☐ EMI test receiver	ESU 26	Rohde & Schwarz	W00002
☐ EMI test receiver	ESW 44	Rohde & Schwarz	E00895
☐ Field probe	RF-R 400-1	Langer EMV-Technik	E00270
	HFH2-Z2	Rohde & Schwarz	E00060
☐ Cable set CDC	RF cable(s)	Huber + Suhner AME HF-Technik AME HF-Technik Stabo	E00446 E00920 E00921 E01215
☐ Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
☐ Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

 $^{^{\}rm 5}$ For information about measurement uncertainties see page 76.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany HERMOS AG RFID-Reader LFP USB Reader

180412-AU01+W02

Page 29 of 42

6.3.2 Limits

As specified in section 15.205(a)-(c) of 47 CFR Part 15:

Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

In case of measurements are performed at other distances than that specified in the requirements, the limits in the charts and tables reported with the test results are derived from the general radiated emission limits as listed above using the recalculation factor as described in clause 5.3.

6.3.3 Test procedure

The emission within the restricted band of operation from 0.090 MHz – 0.110 MHz is measured using the test procedure as described in clause 5.7.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

6.3.4 Test results

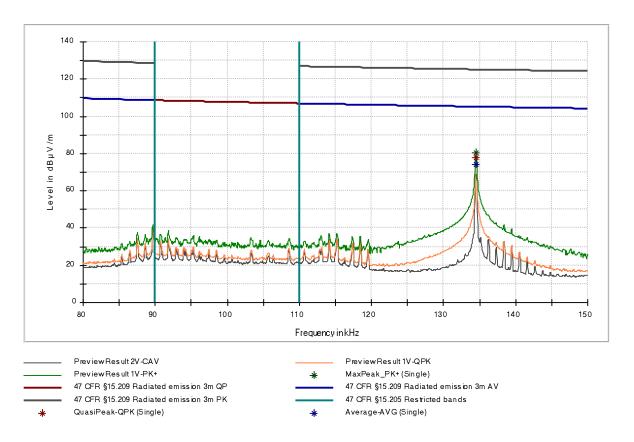


Figure 10: Restricted band of operation @ 3m distance

Recalculation factor is determined according to ANSI C63.10, section 6.4.4.2 "Extrapolation from the measurement of a single point":

Recalculation factor = $-40 \log(d_{limit} / d_{measure})$

f _{MHz}	d _{measure}	d _{limit}	Recalculation
[MHz]	[m]	[m]	factor [dB]
0.134	3.000	300.000	-80

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany HERMOS AG RFID-Reader LFP USB Reader

180412-AU01+W02

Page 31 of 42

6.4 Radiated emissions

6.4.1 Emissions below 30 MHz

Section(s) in 47 CFR Part 15: Requirement(s): 15.209

Reference(s): ANSI C63.10, clause 6.4

Result⁶: \square Test passed \square Test not passed

6.4.1.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
	VK041.0174	Albatross Projects	E00026
☐ Open area test site (OATS)		EMV TESTHAUS	E00354
☐ Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
☐ EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
☐ EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
⋈ EMI test receiver	ESR 7	Rohde & Schwarz	E00739
☐ EMI test receiver	ESU 26	Rohde & Schwarz	W00002
☐ EMI test receiver	ESW 44	Rohde & Schwarz	E00895
☐ Field probe	RF-R 400-1	Langer EMV-Technik	E00270
	HFH2-Z2	Rohde & Schwarz	E00060
☐ Cable set CDC	RF cable(s)	Huber + Suhner AME HF-Technik AME HF-Technik Stabo	E00446 E00920 E00921 E01215
☐ Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
☐ Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

 $^{^{\}rm 6}$ For information about measurement uncertainties see page 92.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany HERMOS AG RFID-Reader LFP USB Reader

180412-AU01+W02

Page 32 of 42

6.4.1.2 Limits

Frequency	Field s	Measurement distance	
[MHz]	[μV/m] [dBμV/m]		[m]
0.009 – 0.490	2400/F(kHz) (266.67 – 4.90)	48.52 – 13.80	300
0.490 – 1.705	24000/F(kHz) (48.98 – 14.08)	33.80 – 22.97	30
1.705 – 30	30	29.54	30

Table 10: General radiated emission limits up to 30 MHz according to §15.209

In case of measurements are performed at other distances than that specified in the requirements, the limits in the charts and tables reported with the test results are derived from the general radiated emission limits as listed in table 10 using the recalculation factor as described in clause 5.3.

6.4.1.3 Test procedure

The emissions below 30 MHz are measured using the

6.4.1.4 Test results

Performed by:	Andreas Menacher	Date(s) of test:	July 4, 2018
Climatic conditions:	Ambient temperature 27°C	Relative humidity 44.0 %	Barometric pressure 976 hPa
Test distance:	⊠ 3 m	□ 10 m	□ m
Antenna alignment:	⊠ in parallel	☐ in line	□ angle °
EUT position ⁷ :	□ Position 1	⊠ Position 2	□ Position 3

Frequency range	Step	IF	Detector		Measure	ment Time	Preamplifier
	size	Bandwidth	Prescan	Final scan	Prescan	Final scan	
9 kHz – 150 kHz	50 Hz	200 Hz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off
150 kHz – 30 MHz	2.25 kHz	9 kHz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off

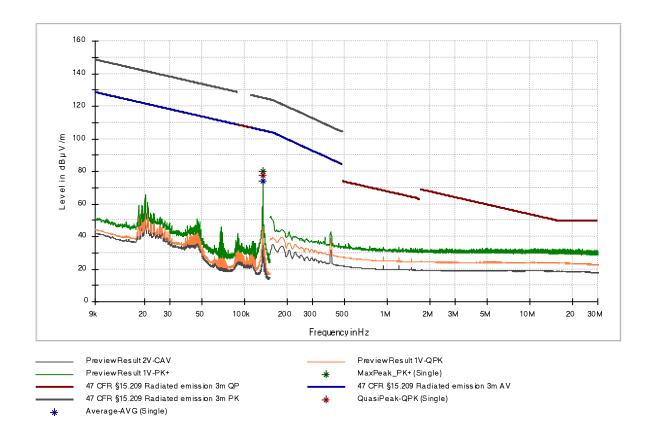


Figure 11: Chart of emissions test below 30 MHz without tag in position 2

⁷ Exploratory measurements are performed in all positions as indicated. However, the figures and result tables within this test report show the worst case position, only.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany HERMOS AG RFID-Reader LFP USB Reader

180412-AU01+W02

Page 34 of 42

Frequency [MHz]	Measured value [dBµV/m]	Detector	Recalculation factor [dB]	Field strength [dBµV/m]	Limit [dBµV/m]	Margin	Result
0.13450	74.04	AV	-80.0	-5.96	25.05	31.01	Pass
0.13450	77.82	QP	-80.0	-2.18			
0.13450	80.25	PK	-80.0	0.25	45.05	44.80	Pass

Table 11: Final results of emissions test below 30 MHz without tag in position 2

Recalculation factor is determined according to ANSI C63.10, section 6.4.4.2 "Extrapolation from the measurement of a single point":

Recalculation factor = $-40 \log(d_{limit} / d_{measure})$

f _{MHz}	d _{measure}	d _{limit}	Recalculation
[MHz]	[m]	[m]	factor [dB]
0.134	3.000	300.000	-80

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

6.4.2 Emissions from 30 MHz to 1 GHz Section(s) in 47 CFR Part 15: Requirement(s): 15.209

Reference(s):

ANSI C63.10, clause 6.5

Result⁸: \square Test passed \square Test not passed

6.4.2.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
⊠ Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
☐ Free space semi-anechoic chamber (FS-SAC)	FS-SAC	EMV TESTHAUS	E00100
☐ EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
☐ EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
☐ EMI test receiver	ESR 7	Rohde & Schwarz	E00739
☐ EMI test receiver	ESU 26	Rohde & Schwarz	W00002
⋈ EMI test receiver	ESW 44	Rohde & Schwarz	E00895
☐ Preamplifier (1 GHz - 18 GHz)	ALS05749	Aldetec	W01007
☐ TRILOG broadband antenna (CDC)	VULB 9160	Schwarzbeck	E00011
☐ TRILOG broadband antenna (OATS)	VULB 9163	Schwarzbeck	E00013
	VULB 9162	Schwarzbeck	E00643
☐ Horn antenna	BBHA 9120D	Schwarzbeck	W00052
☐ Horn antenna	BBHA 9170	Schwarzbeck	W00054
□ Cable set SAC	RF cable(s)	Huber + Suhner	E00755 E01033 E01034
☐ Cable set FS-SAC	RF cable(s)	Teledyne Reynolds Huber + Suhner Teledyne Reynolds	E00435 E00307 E00433
	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
☐ Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
☐ Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

 $^{^{\}rm 8}$ For information about measurement uncertainties see page 92.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany HERMOS AG RFID-Reader LFP USB Reader

180412-AU01+W02

Page 36 of 42

6.4.2.2 Limits

Frequency	Field s	Measurement distance	
[MHz]	[μV/m] [dBμV/m]		[m]
30 – 88	100	40.00	3
88 – 216	150	43.52	3
216 - 960	200	46.02	3
Above 960	500	53.98	3

Table 12: General radiated emission limits ≥ 30 MHz according to §15.209

6.4.2.3 Test procedure

The emissions from 30 MHz to 1 GHz are measured using the

⊠ test procedure for radiated measurements as described in clause 5.4.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

6.4.2.4 Test results

Performed by:	Andreas Menacher	Date(s) of test:	July 3, 2018
Climatic conditions:	Ambient temperature 26 °C	Relative humidity 42%	Barometric pressure 976 hPa
Test distance:	⊠ 3 m	□ 10 m	□ m
EUT position ⁹ :	□ Position 1		□ Position 3

Frequency range	Step	IF	Detector		Measurement Time		Preamplifier
	size	Bandwidth	Prescan	Final scan	Prescan	Final scan	
30 MHz – 1 GHz	30 kHz	120 kHz	QP	QP	1 s	1 s	20 dB

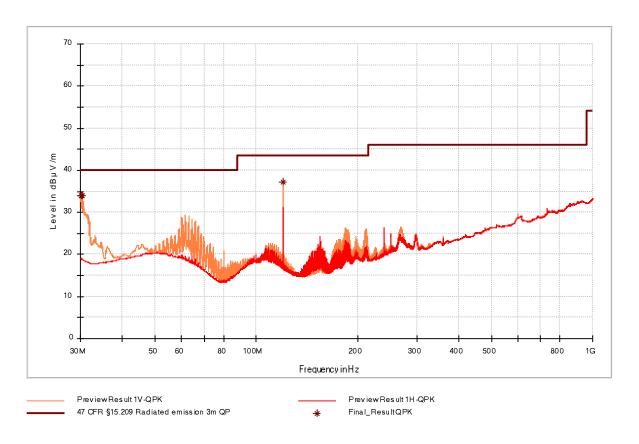


Figure 12: Chart of emissions test from 30 MHz to 1 GHz with tag in position 3

⁹ Exploratory measurements are performed in all positions as indicated. However, the figures and result tables within this test report show the worst case position, only.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany HERMOS AG RFID-Reader LFP USB Reader

180412-AU01+W02

Page 38 of 42

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)
30.120000	34.03	40.00	5.97	100.0	٧	153.0
30.390000	33.99	40.00	6.01	100.0	٧	140.0
120.000000	37.27	43.50	6.23	100.0	٧	205.0

Table 13: Final results of emissions test from 30 MHz to 1 GHz with tag in position 3

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

7 Equipment calibration status

Description	Modell number	Serial number	Inventory number(s)	Last calibration	Next calibration
EMI test receiver	ESW44	101538	E00895	2018-04	2019-04
EMI test receiver	ESR7	101059	E00739	2018-05	2019-05
EMI test receiver	ESCI 3	100013	E00001	2018-05	2020-05
Loop antenna	HFH2-Z2	871398/0050	E00060	2016-09	2018-09
TRILOG broadband antenna (SAC3)	VULB 9162	9162-041	E00643	2018-03	2021-03
Magnetic field probe	RF-R 400-1	02.2030	E00270	N/A (see note 2)	
LISN	ESH2-Z5	881362/037	E00004	2016-10	2018-10
LISN	ESH2-Z5	893406/009	E00005	2016-02	2018-08
Shielded room	P92007	B 83117 C 1109 T 211	E00107	N/A	
Compact diagnostic chamber (CDC)	VK041.0174	D62128-A502- A69-2-0006	E00026	N/A	
Semi-anechoic chamber (SAC)	SAC3	C62128-A520- A643-x-0006	E00716	2018-03	2021-03
Cable set CDC	RG214/U		E00446	2018-04	2019-04
	LCF12-50J		E01215	2018-04	2019-04
	LMR400	1718020006	E00920	2018-01	2019-01
	RG214 Hiflex	171802007	E00921	2018-01	2019-01
Cable set of semi-anechoic chamber SAC3	SF104EA/11PC35 /11PC35/10000M M	501347/4EA	E00755	2017-12	2018-12
	SF104E/11PC35/1 1PC35/2000MM	507410/4E	E01033	2017-12	2018-12
	SF104E/11PC35/1 1PC35/2000MM	507411/4E	E01034	2017-09	2018-09

Note 1: Expiration date of test firm accreditation for SAC:

FCC test firm type "accredited": 2019-05

Note 2: Used for relative measurements only (see test instruments for "Occupied bandwidth"

clause 6.2)

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

8 Measurement uncertainties

Description	Uncertainty	k=
AC power line conducted emission	± 4.1 dB	2
Bandwidth tests	± 2.0 %	
Radiated emissions in semi-anechoic chamber		
9 kHz to 30 MHz	± 4.8 dB	2
30 MHz to 300 MHz	± 5.4 dB	2
300MHz to 1 GHz	± 4.7 dB	2

Comment: The uncertainty stated is the expanded uncertainty obtained by multiplying the

standard uncertainty by the coverage factor k. For a confidence level of 95 % the

coverage factor k is 2.

Test related measurement uncertainties have to be taken into consideration when evaluating the test results. All used test instrument as well as the test accessories are calibrated at regular intervals.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany HERMOS AG RFID-Reader LFP USB Reader

180412-AU01+W02

Page 41 of 42

9 Revision history

Revision	Date	Issued by	Description of modifications
0	2018-07-19	Andreas Menacher	First edition

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany