9.2 General Set-up Photograph

The following photograph shows basic EUT set-up:

9.3 Measurement software

Where applicable, the following software was used to perform measurements contained within this report.

Rohde and Schwarz EMC32 V8.53 Rohde and Schwarz EMC32 V9.21 Element Emissions R5 (See Note) Element Transmitter Bench Test (See Note) ETS Lindgren EMPower V1.0.4.2

Note:

The version of the Element software used is recorded in the results sheets contained within this report.

11.5 Test Set-up Photograph

11.6 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
3115	EMCO	1-18GHz Horn	U223	2019-10-25
8449B	Agilent	Pre Amp	L572	2019-10-12
CBL611/A	Chase	Bilog	U573	2019-08-02
6201-69	Watkins Johnson	PreAmp	U372	2020-02-25
FSU26	R&S	Spectrum Analyser	U405	2019-09-21

12.4 Test Method

With the EUT setup in a screened room, as per section 9 of this report and connected as per Figure ii, the power line emissions were measured on a spectrum analyzer / EMI receiver.

AC power line conducted emissions from the EUT are checked first by preview scans with peak and average detectors covering both live and neutral lines. A spectrum analyzer is used to determine if any periodic emissions are present.

Formal measurements using the correct detector(s) and bandwidth are made on frequencies identified from the preview scans. Final measurements were performed with EUT set at its maximum duty in transmit and receive modes.

Figure ii Test Setup

12.5 Test Set-up Photograph

