

FCC Report (Bluetooth)

Applicant:	Opis Health LLC
Address of Applicant:	819 S Ferry Drive, Lake Mills WI, 53551, USA
Manufacturer:	MOKO TECHNOLOGY LTD.
Address of Manufacturer:	2-3F, 1st BLD, Shenlan Industrial Park, Fuqian Rd #240, Guanlan Str., Shenzhen 518110, China.
Equipment Under Test (E	UT)
Product Name:	STICKBeacon
Model No.:	S1
FCC ID:	2AP3T-S1
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	June 04, 2018
Date of Test:	June 04, 2018 - June 09, 2018
Date of report issued:	June 09, 2018
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	June 09 2018	Original

Prepared By:

handlu

Date:

June 09, 2018

Project Engineer

Check By:

M

Date:

June 09, 2018

Reviewer

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
3		
4	TEST SUMMARY	4
_		_
5		
	5.1 GENERAL DESCRIPTION OF EUT	-
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	
	5.4 TEST FACILITY	
	5.5 TEST LOCATION	
	5.6 Additional Instructions	8
6	TEST INSTRUMENTS LIST	9
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	10
	7.2 CONDUCTED EMISSIONS	
	7.3 CONDUCTED OUTPUT POWER	
	7.4 CHANNEL BANDWIDTH	
	7.5 Power Spectral Density	
	7.6 BAND EDGES	
	7.6.1 Conducted Emission Method	-
	7.6.2 Radiated Emission Method	
	7.7 Spurious Emission	
	7.7.1 Conducted Emission Method	
	7.7.2 Radiated Emission Method	
8	TEST SETUP PHOTO	31
_		
9	EUT CONSTRUCTIONAL DETAILS	32

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	N/A
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2014 and ANSI C63.10:2013.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	5%.

5 General Information

5.1 General Description of EUT

Product Name:	STICKBeacon
Model No.:	S1
Serial No.:	OpheS1
Test sample(s) ID:	GTS201806000117-1
Sample(s) Status	Engineer sample
Operation Frequency:	2402MHz-2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	1.8dBi
Power Supply:	DC 3V

Operation F	requency eac	h of channe					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
•		•	•			•	•
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.2 Test mode

	Transmitting mode Keep the EUT in continuously transmitting mode.				
	5	the test voltage was tuned from 85% to 115% of the nominal rated supply we worst case was under the nominal rated supply condition. So the report just ta.			
5.3	Description of Supp	oort Units			
	None				
5.4	Test Facility				
	• FCC — Registration No Global United Technology	zed, certified, or accredited by the following organizations: o.: 381383 / Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully			

described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) — Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

All tests were performed at: Global United Technology Services Co., Ltd. Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480

Fax: 0755-27798960

5.6 Additional Instructions

EUT Software Settings:

Mode	Special software is used. The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.
------	---

Power level setup in softwa	re		
Test Software Name	nRFgo Studio		
Mode	Channel	Frequency (MHz)	Soft Set
GFSK	CH01	2402	
	CH21	2442	TX level : default
	CH40	2480	

Run Software

eatures	× Direct Test Lode	UART interface	
TX carrier wave output	^ Set up on	•	Program
RX constant carrier/LO leal TX/RX channel sweep		▼ Refresh list	
RX sensitivity	Com port None found	▼ Refresh list	of com ports
* Bluetooth	Mode		
nRF8001 Configuration	Transmit	O Receive	
Dispatcher	Channel		
Trace Translator			
Direct Test Mode	Single	🔘 Sweep	
nRF8002	Channel	0	\$
	•	0	•
evice Manager	×	-	
Motherboards	Payload model	Constant carr	ier 🔻
nRF5x Programming	Payload length	1 bytes	÷
nRF5x Bootloader	Packets received	N/A	
nRF24LU1+ Bootloaders		Start test	
		Statt test	

(c) Nordic Semiconductor ASA 2008-2015

6 Test Instruments list

ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 03 2015	July 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June 28 2017	June 27 2018
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 28 2017	June 27 2018
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 28 2017	June 27 2018
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 28 2017	June 27 2018
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 28 2017	June 27 2018
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
9	Coaxial Cable	GTS	N/A	GTS213	June 28 2017	June 27 2018
10	Coaxial Cable	GTS	N/A	GTS211	June 28 2017	June 27 2018
11	Coaxial cable	GTS	N/A	GTS210	June 28 2017	June 27 2018
12	Coaxial Cable	GTS	N/A	GTS212	June 28 2017	June 27 2018
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 28 2017	June 27 2018
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 28 2017	June 27 2018
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 28 2017	June 27 2018
16	Band filter	Amindeon	82346	GTS219	June 28 2017	June 27 2018
17	Power Meter	Anritsu	ML2495A	GTS540	June 28 2017	June 27 2018
18	Power Sensor	Anritsu	MA2411B	GTS541	June 28 2017	June 27 2018
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	June 28 2017	June 27 2018
Con	ducted Emission:					
Iter	n Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June 28 2017	June 27 2018
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 28 2017	June 27 2018
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June 28 2017	June 27 2018
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June 28 2017	June 27 2018

Gen	General used equipment:						
lte m	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	ChangChun	DYM3	GTS257	June 28 2017	June 27 2018	

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7 Test results and Measurement Data

7.1 Antenna requirement

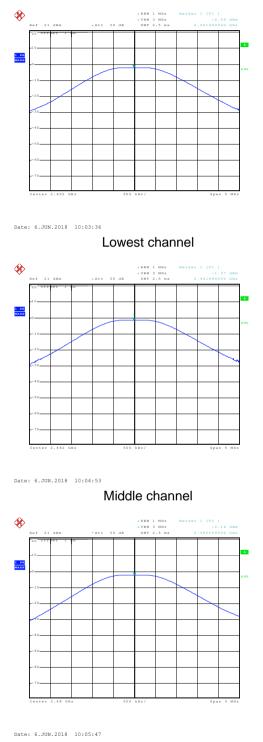
Standard requirement:	FCC Part15 C Section 15.203 /247(c)					
15.203 requirement:						
responsible party shall be use antenna that uses a unique c						
15.247(c) (1)(i) requirement	:					
operations may employ trans	2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point mitting antennas with directional gain greater than 6dBi provided the power of the intentional radiator is reduced by 1 dB for every 3 dB that the a exceeds 6dBi.					
E.U.T Antenna:						
The antenna is PCB antenna, th	ne best case gain of the antenna is 1.8dBi					

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto			
Limit:		Limit (dBuV)			
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithn	n of the frequency.			
Test setup:	Reference Plane		_		
	AUX E.U.T Equipment E.U.T Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	EMI Receiver	/er		
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed 				
Test Instruments:	according to ANSI C63.10:		asurement.		
Test mode:	Refer to section 5.2 for details				
Test results:	N/A	,			
16311630113.					

7.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		


Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result	
Lowest	-2.09	30.00		
Middle	-1.37		Pass	
Highest	-2.16			

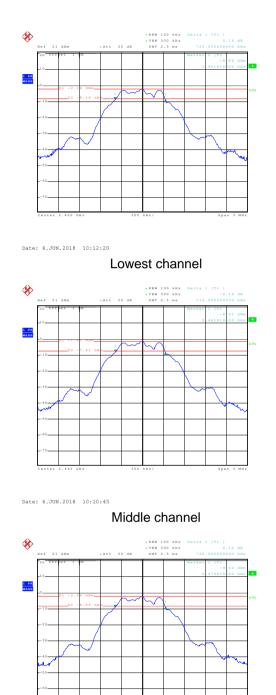
Test plot as follows:

Report No.: GTS201806000117F01

Highest channel

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.4 Channel Bandwidth


Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04
Limit:	>500KHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result	
Lowest	0.720			
Middle	0.716	>500	Pass	
Highest	0.720			

Test plot as follows:

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Date: 6.JUN.2018 10:07:22

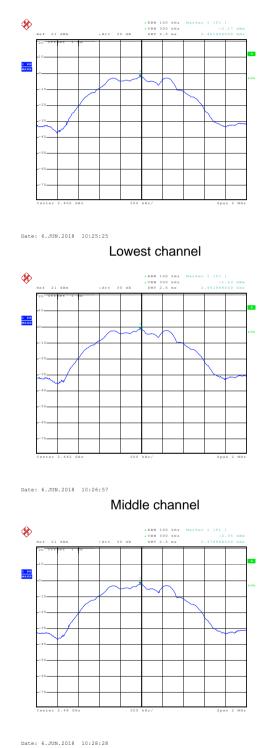
Highest channel

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04
Limit:	8dBm/3kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Test channel	Power Spectral Density (dBm/3KHz)	Limit(dBm/3kHz)	Result	
Lowest	-17.40	8.00		
Middle	-16.75		Pass	
Highest	-17.67			


Remark:

Power Spectral Density (dBm/3kHz)=PSD value(RBW=100kHz)-10log(100kHz/3kHz)

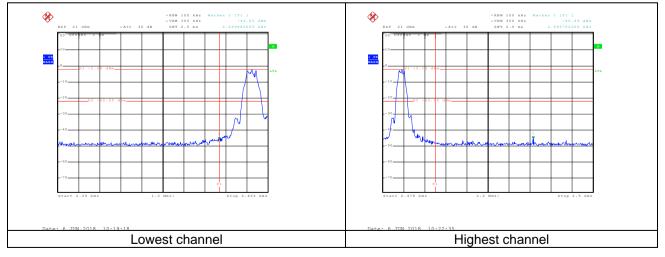
Test plot as follows:

Report No.: GTS201806000117F01

UN.2018 10:28:28

Highest channel

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Test plot as follows:

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.10:20	ANSI C63.10:2013				
Test Frequency Range:	All of the restric 2390MHz, 2483				nd's (2310MHz to	
Test site:	Measurement D		,			
Receiver setup:	Frequency					
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	RMS	1MHz	3MHz	Average	
Limit:	Freque		Limit (dBuV/		Value	
			54.00		Average	
	Above 1	GHz –	74.0		Peak	
	<pre>< 3m >+/ Test Antenna+/ < 1m 4m >-/ <150cm >+/ < 150cm >+/ < Receiver+/ Preamplifier+/</pre>					
Test Procedure:	 Receiver- Preamplifier- Preampl					
		ode is recorde				
Test Instruments:	Refer to section	0.0 IOLOPIAIS				
Test Instruments: Test mode:	Refer to section Refer to section					

7.6.2 Radiated Emission Method

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test	channel:	• •		Low	est					
Peak	Peak value:									
	Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
	2390.00	57.27	-15.05	42.22	74.00	-31.78	Horizontal			
	2400.00	75.41	-15.01	60.40	74.00	-13.60	Horizontal			
	2390.00	53.81	-15.05	38.76	74.00	-35.24	Vertical			
	2400.00	75.56	-15.01	60.55	74.00	-13.45	Vertical			

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	45.43	-15.05	30.38	54.00	-23.62	Horizontal
2400.00	58.81	-15.01	43.80	54.00	-10.20	Horizontal
2390.00	46.39	-15.05	31.34	54.00	-22.66	Vertical
2400.00	55.54	-15.01	40.53	54.00	-13.47	Vertical

Test channel:

Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	72.13	-14.68	57.45	74.00	-16.55	Horizontal
2500.00	53.37	-14.60	38.77	74.00	-35.23	Horizontal
2483.50	72.19	-14.68	57.51	74.00	-16.49	Vertical
2500.00	52.06	-14.60	37.46	74.00	-36.54	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	53.17	-14.68	38.49	54.00	-15.51	Horizontal
2500.00	47.26	-14.60	32.66	54.00	-21.34	Horizontal
2483.50	51.16	-14.68	34.48	54.00	-17.52	Vertical
2500.00	45.38	-14.60	30.78	54.00	-23.22	Vertical

Remark:

1. Final Level =Receiver Read level + Correct factor

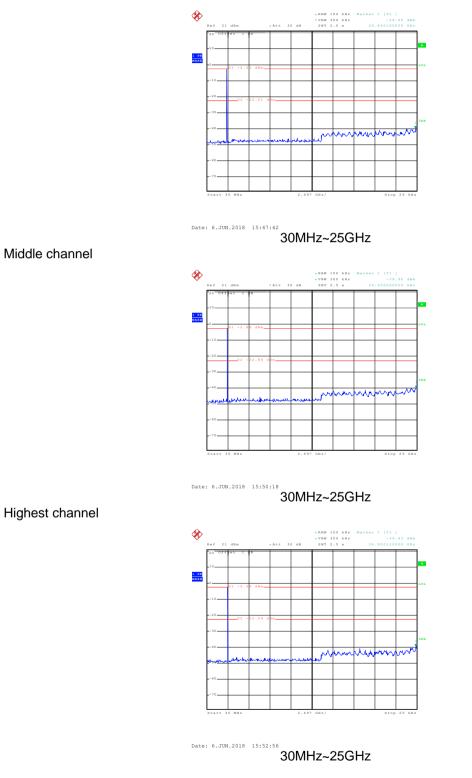
2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. Correct factor= Antenna Factor + Cable Loss – Preamplifier Factor

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.7 Spurious Emission

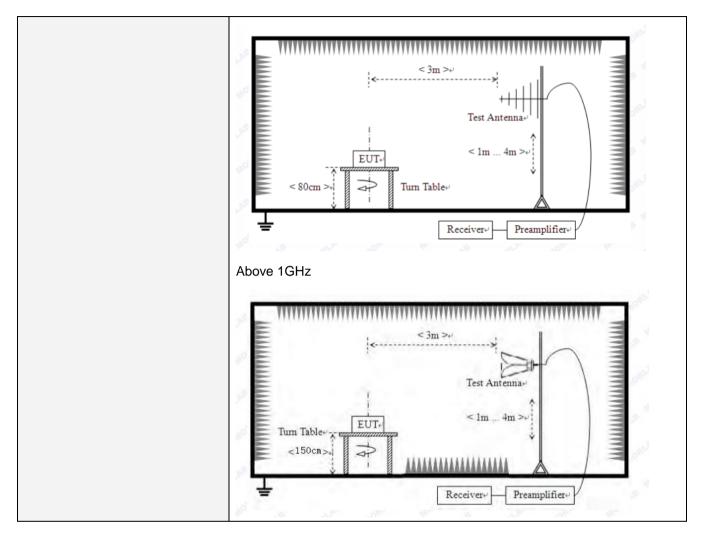

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Test plot as follows:

Lowest channel

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



Test Requirement:	FCC Part15 C Section	on 18	5.209						
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distar	nce: 3	3m						
Receiver setup:	Frequency	[Detector	tector RBV		W VBW		Value	
	9KHz-150KHz	Q	uasi-peak	200	Hz	600H;	z	Quasi-peak	
	150KHz-30MHz	Q	uasi-peak	9KH	Ηz	30KH:	z	Quasi-peak	
	30MHz-1GHz	Q	uasi-peak	100k	Ήz	300KH	łz	Quasi-peak	
	Above 1GHz		Peak	1Mł	Ηz	3MHz	z	Peak	
	Above ronz	Peak 1MHz		Ηz	10Hz	2	Average		
Limit:	Frequency	Limit (u\	//m)	V	alue/	N	leasurement Distance		
	0.009MHz-0.490M	0.009MHz-0.490MHz		(Hz)		QP		300m	
	0.490MHz-1.705M	0.490MHz-1.705MHz		(KHz)		QP		300m	
	1.705MHz-30MH	1.705MHz-30MHz				QP		30m	
	30MHz-88MHz		100		QP				
	88MHz-216MHz	2	150			QP		3m	
	216MHz-960MH	Z	200		QP				
	960MHz-1GHz		500		QP				
	Above 1GHz		500		Average				
			5000)	Peak				
Test setup:	Below 30MHz								
	Turntable EUT 0.8 m Ground Plane Coaxial Cable								
	Below 1GHz								

7.7.2 Radiated Emission Method

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test Procedure:	1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	 The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data

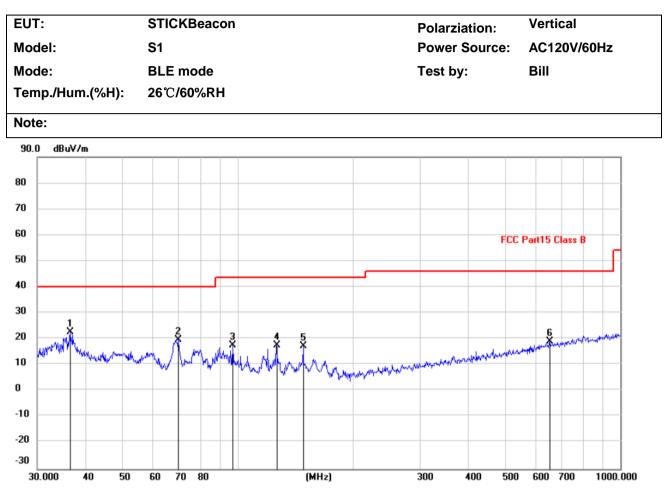
■ 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz

Horizontal:

EUT:	STICKBeacon		Polarzia Power S		Horiz		
Model:	S1	S1			AC120V/60Hz		
Node:	BLE mode		Test by:		Bill		
ſemp./Hum.(%H)	26℃/60%RH						
Note:							
0.0 dBu∀/m							
				FCC P	art15 Class	: B	
I							
·							
1			hunter and the second		6	and the second	
When the the stranger on		4	5	and a service	stowner		
	man when the prover of the prover of the providence of the provide	wwwww	handburgenessing				
0							
0							
o							
30.000 40 5	60 70 80	(MHz)	300 40	0 500	600 700	1000.00	


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	31.7313	49.88	-32.94	16.94	40.00	-23.06	QP
2		69.3568	52.70	-37.32	15.38	40.00	-24.62	QP
3		97.1148	53.75	-38.74	15.01	43.50	-28.49	QP
4		148.4410	48.34	-34.72	13.62	43.50	-29.88	QP
5		330.1949	45.73	-34.11	11.62	46.00	-34.38	QP
6		687.1507	46.26	-26.64	19.62	46.00	-26.38	QP

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	36.5092	55.82	-33.19	22.63	40.00	-17.37	QP
2		70.0903	57.25	-37.45	19.80	40.00	-20.20	QP
3		97.1148	56.33	-38.74	17.59	43.50	-25.91	QP
4		126.3286	53.83	-36.13	17.70	43.50	-25.80	QP
5		148.4410	52.01	-34.72	17.29	43.50	-26.21	QP
6		654.2318	46.04	-27.07	18.97	46.00	-27.03	QP

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Above 1	GHz					
Test channel	:		Lowest			
Peak value:			1 1		1	Γ
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	53.34	-7.43	45.91	74.00	-28.09	Vertical
7206.00	52.16	-2.42	49.74	74.00	-24.26	Vertical
9608.00	51.78	-2.38	49.40	74.00	-24.60	Vertical
12010.00	*			74.00		Vertical
14412.00	*			74.00		Vertical
4804.00	53.47	-7.43	46.04	74.00	-27.96	Horizontal
7206.00	52.85	-2.42	50.43	74.00	-23.57	Horizontal
9608.00	53.01	-2.38	50.63	74.00	-23.37	Horizontal
12010.00	*			74.00		Horizontal
14412.00	*			74.00		Horizontal
Average val	ue:					1
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	43.39	-7.43	35.96	54.00	-18.04	Vertical
7206.00	44.71	-2.42	42.29	54.00	-11.71	Vertical
9608.00	43.06	-2.38	40.68	54.00	-13.32	Vertical
12010.00	*			54.00		Vertical
14412.00	*			54.00		Vertical
4804.00	44.22	-7.43	36.79	54.00	-17.21	Horizontal
7206.00	43.75	-2.42	41.33	54.00	-12.67	Horizontal
9608.00	44.18	-2.38	41.80	54.00	-12.20	Horizontal
12010.00	*			54.00		Horizontal
14412.00	*			54.00		Horizontal

Remark:

Final Level =Receiver Read level +Correct factor
 "*", means this data is the too weak instrument of signal is unable to test.

3. Correct factor = Antenna Factor + Cable Loss – Preamplifier Factor

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test channel	:		Middle			
Peak value:						
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	53.34	-7.49	45.85	74.00	-28.15	Vertical
7326.00	52.51	-2.40	50.11	74.00	-23.89	Vertical
9768.00	53.36	-2.38	50.98	74.00	-23.02	Vertical
12210.00	*			74.00		Vertical
14652.00	*			74.00		Vertical
4884.00	53.44	-7.49	45.95	74.00	-28.05	Horizontal
7326.00	52.19	-2.40	49.79	74.00	-24.21	Horizontal
9768.00	52.06	-2.38	49.68	74.00	-24.32	Horizontal
12210.00	*			74.00		Horizontal
14652.00	*			74.00		Horizontal
Average val	ue:					I
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	45.32	-7.49	37.83	54.00	-16.17	Vertical
7326.00	43.34	-2.40	40.94	54.00	-13.06	Vertical
9768.00	42.28	-2.38	39.90	54.00	-14.10	Vertical
12210.00	*			54.00		Vertical
14652.00	*			54.00		Vertical
4884.00	44.19	-7.49	36.70	54.00	-17.30	Horizontal
7326.00	45.23	-2.40	42.83	54.00	-11.17	Horizontal
9768.00	44.46	-2.38	42.08	54.00	-11.92	Horizontal
12210.00	*			54.00		Horizontal
14652.00	*			54.00		Horizontal

Remark:

1. Final Level =Receiver Read level +Correct factor

2. "*", means this data is the too weak instrument of signal is unable to test.

3. Correct factor = Antenna Factor + Cable Loss – Preamplifier Factor

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

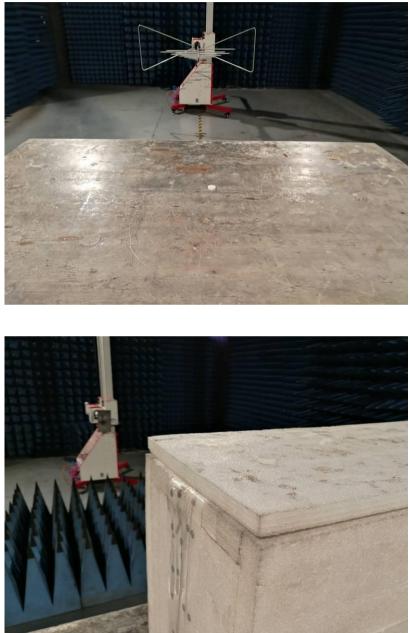
Test channel: Highest						
Peak value:						
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	53.37	-7.47	45.90	74.00	-28.10	Vertical
7440.00	52.55	-2.45	50.10	74.00	-23.90	Vertical
9920.00	53.64	-2.37	51.27	74.00	-22.73	Vertical
12400.00	*			74.00		Vertical
14880.00	*			74.00		Vertical
4960.00	52.74	-7.47	45.27	74.00	-28.73	Horizontal
7440.00	53.13	-2.45	50.68	74.00	-23.32	Horizontal
9920.00	52.28	-2.37	49.91	74.00	-24.09	Horizontal
12400.00	*			74.00		Horizontal
14880.00	*			74.00		Horizontal
Average valu	ie:					
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	45.39	-7.47	37.92	54.00	-16.08	Vertical
7440.00	44.15	-2.45	41.70	54.00	-12.30	Vertical
9920.00	43.76	-2.37	41.39	54.00	-12.61	Vertical
12400.00	*			54.00		Vertical
14880.00	*			54.00		Vertical
4960.00	42.28	-7.47	34.81	54.00	-19.19	Horizontal
7440.00	44.62	-2.45	42.17	54.00	-11.83	Horizontal
9920.00	43.27	-2.37	40.90	54.00	-13.10	Horizontal
12400.00	*			54.00		Horizontal
14880.00	*			54.00		Horizontal

Remark:

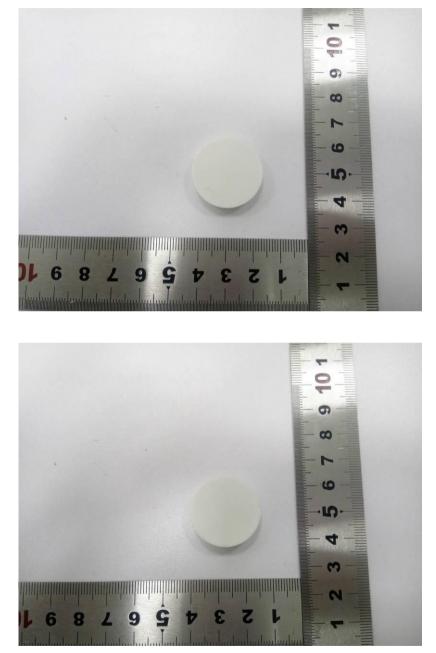
1. Final Level =Receiver Read level + Correct factor

2. "*", means this data is the too weak instrument of signal is unable to test.

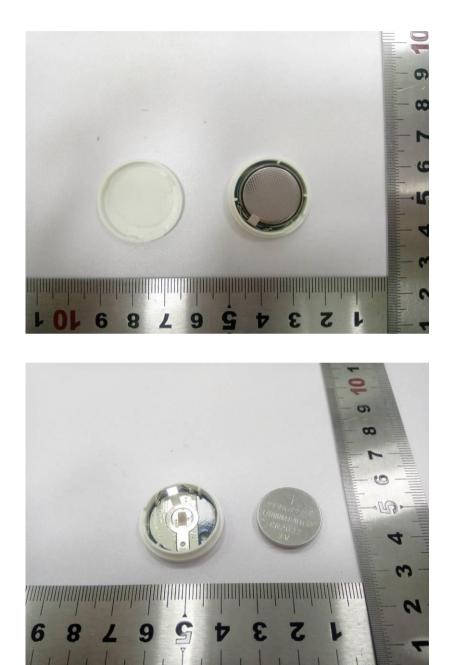
3. Correct factor = Antenna Factor + Cable Loss – Preamplifier Factor


Global United Technology Services Co., Ltd.

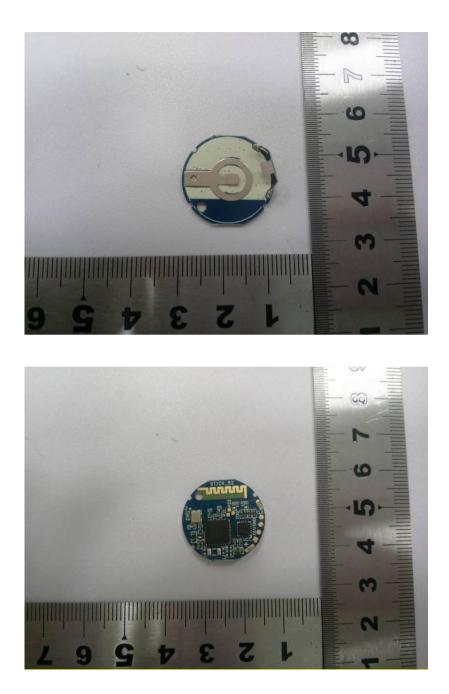
No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

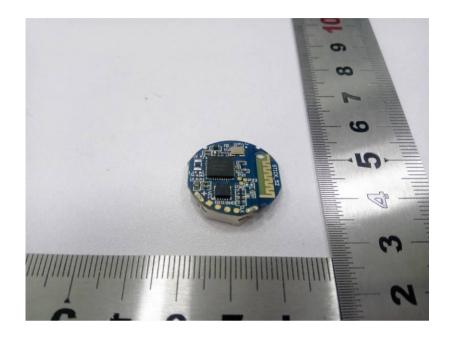

8 Test Setup Photo

Radiated Emission



9 EUT Constructional Details





-----End-----