	BU REAU VERITAS
	FCC Test Report
Report No.:	RF181205C09
FCC ID:	2AP3D-CT001
Test Model:	CT001
Received Date:	Dec. 05, 2018
Test Date:	Feb. 22, 2019 ~ Mar. 03, 2019
Issued Date:	Mar. 08, 2019
Applicant:	Spotify USA, Inc.
Address:	45 West 18th Street, New York, NY 10011, USA
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
-	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
Test Location:	(R.O.C) No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan, R.O.C.
FCC Registration /	
Designation Number:	788550 / TW0003
	TAF Tac-MRA Tac - MRA Tac - MRA Testing Laboratory 2021
only with our prior written permission. The report are not indicative or representative unless specifically and expressly noted. provided to us. You have 60 days from however, that such notice shall be in writt shall constitute your unqualified acceptane mention, the uncertainty of measurement	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted is report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this e of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product Our report includes all of the tests requested by you and the results thereof based upon the information that you date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, ing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time ce of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report oduct certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Re	eleas	e Control Record	4		
1	Cer	tificate of Conformity	5		
2	Sun	nmary of Test Results	6		
		Measurement Uncertainty			
		Modification Record			
3	Ger	neral Information	7		
	3.2				
	~ ~				
	3.3				
	3.4				
4					
	4.1	A 1.1 Limits of Radiated Emission and Bandedge Measurement	13		
		4.1.5 Test Set Up	16		
	4.2				
		4.2.7 Test Results	28		
	4.3				
			02		
	4.4				
		4.4.2 Test Setup	34		
	1 E				
	4.5				
	4.6				
3.1 General Description of TEUT 3.2 Description of Test Modes 3.3 Description of Support Units 3.3 Description of System under Test 3.4 General Description of Applied Standards 4 Test Types and Results 4 Test Types and Results 4.1 Radiated Emission and Bandedge Measurement 4.1.2 Test Instruments 4.1.3 Test Procedures 4.1.4 Deviation from Test Standard 4.1.5 Test Status 4.1.6 EUT Operating Conditions. 4.1.7 Test Results 4.2.1 Test Instruments 4.2.2 Test Instruments 4.2.3 Test Results 4.2.4 Deviation from Test Standard 4.2.5 Test Stept					

	4.9.6 Test Results	45
	4.9.4 Deviation from Test Standard4.9.5 EUT Operating Condition	
	4.9.3 Test Procedure	
	4.9.2 Test Instruments	45
	4.9.1 Limits Of Conducted Out of Band Emission Measurement	
4.9	Conducted Out of Band Emission Measurement	
	4.8.7 Test Results	
	4.8.6 EUT Operating Condition	
	4.8.5 Deviation from Test Standard	
	4.8.3 Test Instruments4.8.4 Test Procedure	
	4.8.2 Test Setup	
	4.8.1 Limits of Maximum Output Power Measurement	
4.8	Maximum Output Power	
	4.7.6 Test Results	
	4.7.5 Deviation from Test Standard	
	4.7.4 Test Procedure	
	4.7.3 Test Instruments	
	4.7.2 Test Setup	
	4.7.1 Limits of Hopping Channel Separation Measurement	
47	Hopping Channel Separation	
	4.6.6 Test Results	
	4.6.5 EUT Operating Conditions	
	4.6.3 Test Procedure 4.6.4 Deviation from Test Standard	
	4.6.2 Test Instruments	

Release Control Record Issue No. Description Date Issued Original Release Mar. 08, 2019 RF181205C09

1 Certificate of Conformity

Product:	Music Streaming Device
Brand:	Spotify
Test Model:	CT001
Sample Status:	Engineering Sample
Applicant:	Spotify USA, Inc.
Test Date:	Feb. 22, 2019 ~ Mar. 03, 2019
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

num

Ivonne Wu / Supervisor

Date: Mar. 08, 2019

Date: Mar. 08, 2019

-

Approved by :

phi ca

Dylan Chiou / Project Engineer

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.247)							
FCC Clause	Test Item	Result	Remarks					
15.207	AC Power Conducted Emission		Meet the requirement of limit. Minimum passing margin is -24.67 dB at 23.89844 MHz.					
15.247(a)(1) (iii)	Number of Hopping Frequency Used	Pass	Meet the requirement of limit.					
15.247(a)(1) (iii)	Dwell Time on Each Channel	Pass	Meet the requirement of limit.					
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	Pass	Meet the requirement of limit.					
15.247(a)(1)	Maximum Peak Output Power	Pass	Meet the requirement of limit.					
	Occupied Bandwidth Measurement	Pass	Reference only					
15.205 & 209 Radiated Emissions		Pass	Meet the requirement of limit. Minimum passing margin is -8.83 dB at 44.55 MHz.					
15.247(d)	Band Edge Measurement	Pass	Meet the requirement of limit.					
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.					
15.203	Antenna Requirement	Pass	No antenna connector is used.					

Note:

- If the Frequency Hopping System operating in 2400-2483.5 MHz band and the output power less than 125 mW. The hopping channel carrier frequencies separated by a minimum of 25 kHz or two-thirds of the 20 dB bandwidth of hopping channel whichever is greater.
- 2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.44 dB
Radiated Emissions up to 1 GHz	30 MHz ~ 200 MHz	2.93 dB
	200 MHz ~ 1000 MHz	2.95 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	2.26 dB
	18 GHz ~ 40 GHz	1.94 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Music Streaming Device		
Brand	Spotify		
Test Model	CT001		
Status of EUT	Engineering Sample		
Dower Supply Doting	2.4 Vdc (battery)		
Power Supply Rating	5.0 Vdc (host equipment)		
Modulation Type GFSK, π/4-DQPSK, 8DPSK			
Transfer Rate	1/2/3 Mbps		
Operating Frequency	2402 ~ 2480 MHz		
Number of Channel	79		
Output Power	4.831 mW		
Antenna Type	PIFA antenna with 0.4 dBi gain		
Antenna Connector	N/A		
Accessory Device	Refer to Note as below		
Data Cable Supplied	Refer to Note as below		

Note:

1. <u>The EUT contains following accessory devices.</u>

Product	Brand	Model	Description
12V to 5V car power supply	KYOHAYA	KC-D53	18W
Battery	Varta	V500HT	1.2 Vdc, 500 mAh
LCD Panel	AUO	H140QVT01.0	
eMMC (=ROM)	Samsung	KMFE60012M-B214	16Gbyte
RAM	Samsung	KMFE60012M-B214	8Gbit LPDDR3
CPU	Qualcomm	MSM8909-4-504NSP	
Docking station	In house design	N/A	P/N: 22222

2. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

79 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configur	e	Applica	able To		
Mode	RE≥1G	RE<1G	PLC	APCM	Description
А	\checkmark	\checkmark	\checkmark	\checkmark	NB Mode
В	-	-	\checkmark	-	Adapter Mode
Where RE≥1G: Radiated Emission above 1 GHz R				RE<1G: Ra	adiated Emission below 1 GHz
PLC: Power Line Conducted Emission APC				APCM: Ant	tenna Port Conducted Measurement

Note:

1. For Radiated emission test, pre-tested GFSK, π/4-DQPSK, 8DPSK modulation type and found GFSK was the worse, therefore chosen for the final test and presented in the test report.

2. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Z-plane**.

3. "-" means no effect.

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
	0 to 78	0, 39, 78	FHSS	GFSK	DH5
A	0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
А	0 to 78	78	FHSS	GFSK	DH5

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode Available Channel		Tested Channel	Fested Channel Modulation Technology		Packet Type	
А, В	0 to 78	78	FHSS	GFSK	DH5	

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
A	0 to 78	0, 39, 78	FHSS	GFSK	DH5
	0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

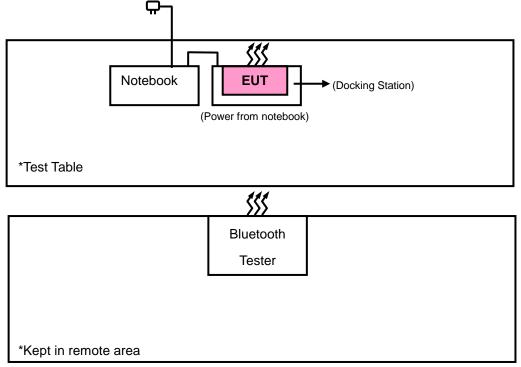
Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested by	
RE≥1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Thomas Wei	
RE<1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Thomas Wei	
PLC	25 deg. C, 65 % RH	120 Vac, 60 Hz	Jisyong Wang	
APCM	APCM 25 deg. C, 65 % RH		Vincent Huang	

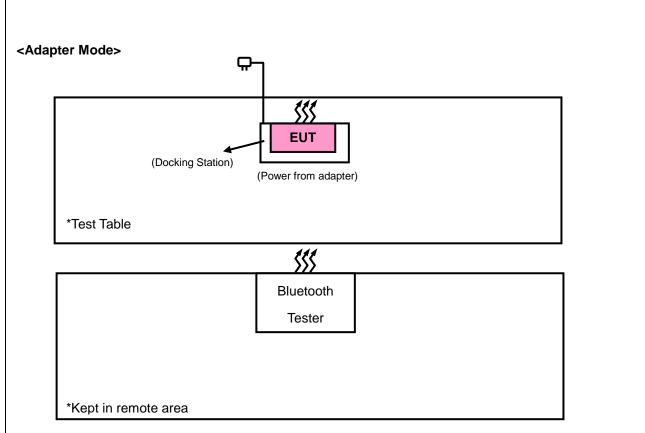
3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID
1.	Adapter	HTC	TC U250	100980	N/A
2.	Notebook	DELL	Inspiron 14R	8LRKKW1	N/A


No.	Signal Cable Description Of The Above Support Units
1.	N/A
2.	N/A

Note:


1. All power cords of the above support units are non-shielded (1.8m).

3.3.1 Configuration of System under Test

<NB Mode>

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247)

KDB 558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- a. The lower limit shall apply at the transition frequencies.
- b. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- c. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent	N9038A	MY51210203	Mar. 16, 2018	Mar. 15, 2019
Spectrum Analyzer Agilent	N9010A	MY52220314	Dec. 13, 2018	Dec. 12, 2019
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	100115	Jan. 21, 2019	Jan. 20, 2020
Broadband Horn Antenna SCHWARZBECK	BBHA 9170	148	Nov. 25, 2018	Nov. 24, 2019
HORN Antenna SCHWARZBECK	BBHA 9120D	9120D-969	Nov. 25, 2018	Nov. 24, 2019
BILOG Antenna SCHWARZBECK	VULB 9168	9168-472	Nov. 23, 2018	Nov. 22, 2019
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 16, 2018	Apr. 15, 2019
Loop Antenna	EM-6879	269	Sep. 07, 2018	Sep. 06, 2019
Preamplifier EMCI	EMC001340	980201	Oct. 12, 2018	Oct. 11, 2019
Bluetooth Tester	CBT	100946	Aug. 09, 2018	Aug. 08, 2020
Preamplifier EMCI	EMC 012645	980115	Oct. 12, 2018	Oct. 11, 2019
Preamplifier EMCI	EMC 184045	980116	Oct. 12, 2018	Oct. 11, 2019
Preamplifier EMCI	EMC 330H	980112	Oct. 12, 2018	Oct. 11, 2019
Power Meter Anritsu	ML2495A	1012010	Sep. 05, 2018	Sep. 04, 2019
Power Sensor Anritsu	MA2411B	1315050	Sep. 04, 2018	Sep. 03, 2019
RF Coaxial Cable HUBER+SUHNNER	EMC104-SM-SM-8 000&3000	140811+170717	Oct. 12, 2018	Oct. 11, 2019
RF Coaxial Cable HUBER+SUHNNER	SUCOFLEX 104	EMC104-SM-SM-1 000(140807)	Oct. 12, 2018	Oct. 11, 2019
RF Coaxial Cable WOKEN	8D-FB	Cable-Ch10-01	Oct. 12, 2018	Oct. 11, 2019
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Software BV ADT	E3 6.120103	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 / 24 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 10.
- 3. The horn antenna and preamplifier (model: EMC 184045) are used only for the measurement of emission frequency above 1 GHz if tested.
- 4. The IC Site Registration No. is 7450F-10.

4.1.3 Test Procedures

For Radiated Emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

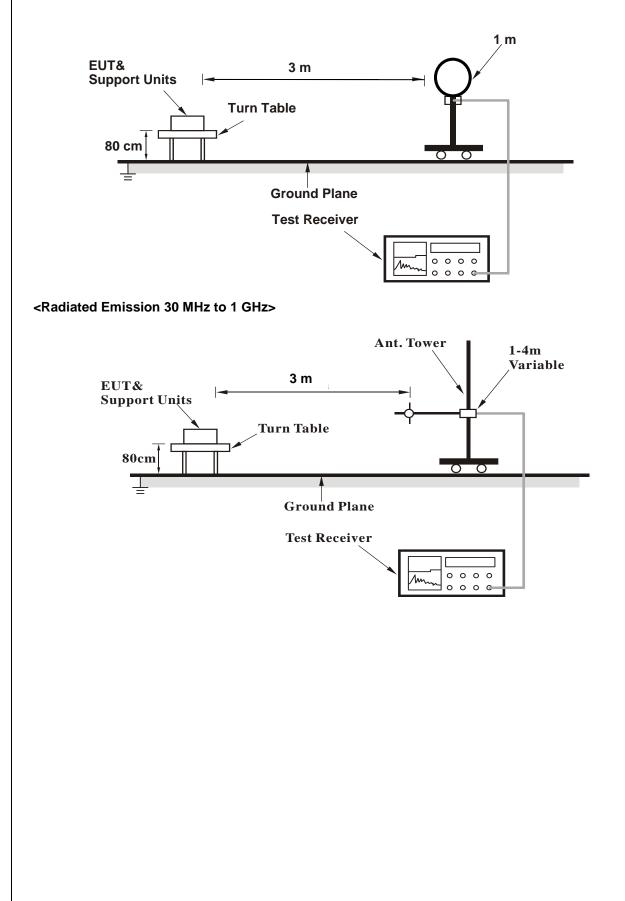
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz.

For Radiated Emission above 30 MHz

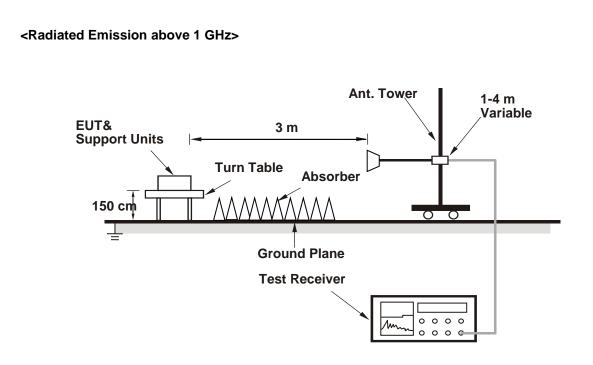
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30 MHz ~ 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) or Peak detection (PK) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98 %) or 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz. (RBW = 1 MHz, VBW = 1 kHz)
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Set Up

<Radiated Emission below 30 MHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1 GHz Data:

GFSK

EUT Test Condition		Measurement Detail		
Channel	Channel 0	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Thomas Wei	

	Antenna Polarity & Test Distance: Horizontal at 3 m								
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
2354.1	36.16	42.32	-6.16	54	-17.84	132	28	Average	
2354.1	45.92	52.08	-6.16	74	-28.08	132	28	Peak	
2402	93.23	99.22	-5.99			132	28	Average	
2402	93.77	99.76	-5.99			132	28	Peak	
4804	33.86	48.83	-14.97	54	-20.14	185	221	Average	
4804	43.72	58.69	-14.97	74	-30.28	185	221	Peak	
		Antenna	a Polarity 8	Test Dista	nce: Vertica	l at 3 m			
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
2389.8	36.64	42.64	-6	54	-17.36	141	149	Average	
2389.8	46.45	52.45	-6	74	-27.55	141	149	Peak	
2402	94.04	100.03	-5.99			141	149	Average	
2402	93.53	99.52	-5.99			141	149	Peak	
4804	33.46	48.43	-14.97	54	-20.54	146	207	Average	
4804	43.76	58.73	-14.97	74	-30.24	146	207	Peak	

Remarks:

1. Emission Level = Read Level + Factor

Margin value = Emission level – Limit value

2. 2402 MHz: Fundamental frequency.

3. The emission levels of other frequencies were very low against the limit.

EUT Test Condition		Measurement Detail		
Channel	Channel 39	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Thomas Wei	

	Antenna Polarity & Test Distance: Horizontal at 3 m								
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
2384.34	36.29	42.36	-6.07	54	-17.71	151	212	Average	
2384.34	46.3	52.37	-6.07	74	-27.7	151	212	Peak	
2441	94.88	100.49	-5.61			151	212	Average	
2441	95.35	100.96	-5.61			151	212	Peak	
2488.96	38.22	43.5	-5.28	54	-15.78	151	212	Average	
2488.96	46.82	52.1	-5.28	74	-27.18	151	212	Peak	
4880	34.05	48.8	-14.75	54	-19.95	127	151	Average	
4880	44.21	58.96	-14.75	74	-29.79	127	151	Peak	
	Antenna Polarity & Test Distance: Vertical at 3 m								
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
0077.0	27.04	42.00	6.00	E A	16.00	100	140	Average	

(IVIHZ)	(dBuV/m)	(abuv)	(ab/m)	(abuv/m)		Height (cm)	(Degree)	
2377.2	37.01	43.09	-6.08	54	-16.99	138	149	Average
2377.2	46.51	52.59	-6.08	74	-27.49	138	149	Peak
2441	94.58	100.19	-5.61			138	149	Average
2441	95.02	100.63	-5.61			138	149	Peak
2488.96	38.8	44.08	-5.28	54	-15.2	138	149	Average
2488.96	47.21	52.49	-5.28	74	-26.79	138	149	Peak
4880	33.8	48.55	-14.75	54	-20.2	161	205	Average
4880	44.53	59.28	-14.75	74	-29.47	161	205	Peak

1. Emission Level = Read Level + Factor

- 2. 2441 MHz: Fundamental frequency.
- 3. The emission levels of other frequencies were very low against the limit.

EUT Test Condition		Measurement Detail		
Channel	Channel 78	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz		Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Thomas Wei	

		Antenna	Polarity & 1	Test Distan	ce: Horizon	tal at 3 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	95.86	101.22	-5.36			146	213	Average
2480	96.33	101.69	-5.36			146	213	Peak
2483.56	37.1	42.46	-5.36	54	-16.9	146	213	Average
2483.56	46.9	52.26	-5.36	74	-27.1	146	213	Peak
4960	34.31	48.93	-14.62	54	-19.69	149	205	Average
4960	44.54	59.16	-14.62	74	-29.46	149	205	Peak
		Antenna	a Polarity &	Test Dista	nce: Vertica	l at 3 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	95.16	100.52	-5.36			139	150	Average
2480	95.66	101.02	-5.36			139	150	Peak
2483.96	37.53	42.89	-5.36	54	-16.47	139	150	Average
2483.96	47.54	52.9	-5.36	74	-26.46	139	150	Peak
4960	34.78	49.4	-14.62	54	-19.22	152	185	Average
4960	44.65	59.27	-14.62	74	-29.35	152	185	Peak

4. Emission Level = Read Level + Factor

- 5. 2480 MHz: Fundamental frequency.
- 6. The emission levels of other frequencies were very low against the limit.

8DPSK

ODPSK				
EUT Test Condition		Measurement Detail		
Channel	Channel 0	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Thomas Wei	

		Antenna	Polarity &	Test Distan	ce: Horizont	tal at 3 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2354.38	36.23	42.39	-6.16	54	-17.77	134	28	Average
2354.38	45.74	51.9	-6.16	74	-28.26	134	28	Peak
2402	91.37	97.36	-5.99			134	28	Average
2402	94.55	100.54	-5.99			134	28	Peak
4804	33.58	48.55	-14.97	54	-20.42	152	147	Average
4804	44.05	59.02	-14.97	74	-29.95	152	147	Peak
		Antenna	a Polarity &	Test Dista	nce: Vertica	l at 3 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2353.82	36.77	42.93	-6.16	54	-17.23	141	149	Average
2353.82	46.47	52.63	-6.16	74	-27.53	141	149	Peak
2402	92.03	98.02	-5.99			141	149	Average
2402	94.85	100.84	-5.99			141	149	Peak
4804	33.54	48.51	-14.97	54	-20.46	169	203	Average
4804	43.9	58.87	-14.97	74	-30.1	169	203	Peak

Remarks:

1. Emission Level = Read Level + Factor

- 2. 2402 MHz: Fundamental frequency.
- 3. The emission levels of other frequencies were very low against the limit.

EUT Test Condition		Measurement Detail		
Channel	Channel 39	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Thomas Wei	

		Antenna	Polarity & 1	Fest Distan	ce: Horizon	tal at 3 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2383.36	36.23	42.3	-6.07	54	-17.77	151	212	Average
2383.36	45.89	51.96	-6.07	74	-28.11	151	212	Peak
2441	92.69	98.3	-5.61			151	212	Average
2441	95.68	101.29	-5.61			151	212	Peak
2489.16	38.12	43.4	-5.28	54	-15.88	151	212	Average
2489.16	47.37	52.65	-5.28	74	-26.63	151	212	Peak
4880	33.9	48.65	-14.75	54	-20.1	138	277	Average
4880	44.38	59.13	-14.75	74	-29.62	138	277	Peak
	Antenna Polarity & Test Distance: Vertical at 3 m							
Frequency	Emission Level	Read Level	Factor	Limit	Margin (dB)	Antenna	Table Angle	Remark

Frequency (MHz)	Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2376.64	36.57	42.65	-6.08	54	-17.43	138	148	Average
2376.64	46.6	52.68	-6.08	74	-27.4	138	148	Peak
2441	92.26	97.87	-5.61			138	148	Average
2441	95.04	100.65	-5.61			138	148	Peak
2489	38.36	43.64	-5.28	54	-15.64	138	148	Average
2489	47.71	52.99	-5.28	74	-26.29	138	148	Peak
4880	33.64	48.39	-14.75	54	-20.36	148	283	Average
4880	44.12	58.87	-14.75	74	-29.88	148	283	Peak

1. Emission Level = Read Level + Factor

- 2. 2441 MHz: Fundamental frequency.
- 3. The emission levels of other frequencies were very low against the limit.

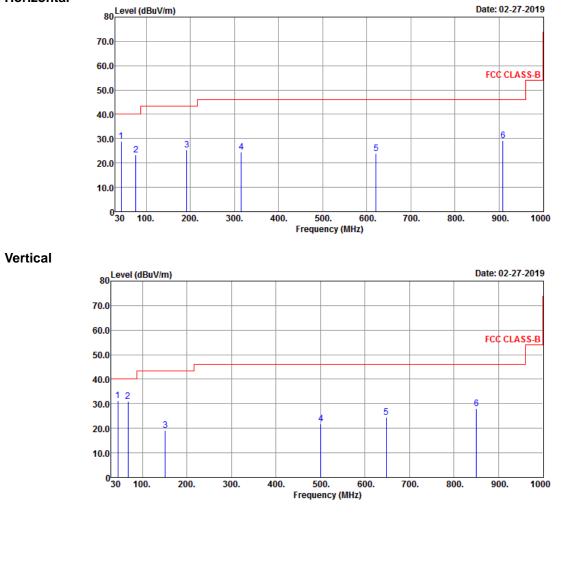
EUT Test Condition		Measurement Detail		
Channel	Channel 78	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz		Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Thomas Wei	

		Antenna	Polarity &	Fest Distan	ce: Horizon	tal at 3 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	93.46	98.82	-5.36			147	212	Average
2480	96.06	101.42	-5.36			147	212	Peak
2483.52	37.07	42.43	-5.36	54	-16.93	147	212	Average
2483.52	46.85	52.21	-5.36	74	-27.15	147	212	Peak
4960	33.75	48.37	-14.62	54	-20.25	158	301	Average
4960	44.17	58.79	-14.62	74	-29.83	158	301	Peak
		Antenna	a Polarity &	Test Dista	nce: Vertica	l at 3 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	92.76	98.12	-5.36			140	148	Average
2480	95.75	101.11	-5.36			140	148	Peak
2483.56	37.5	42.86	-5.36	54	-16.5	140	148	Average
2483.56	47.46	52.82	-5.36	74	-26.54	140	148	Peak
4960	33.9	48.52	-14.62	54	-20.1	138	322	Average
4960	44.45	59.07	-14.62	74	-29.55	138	322	Peak

 Emission Level = Read Level + Factor Margin value = Emission level – Limit value

2. 2480 MHz: Fundamental frequency.

3. The emission levels of other frequencies were very low against the limit.


9 kHz ~ 30 MHz Data:

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

30 MHz ~ 1 GHz Worst-Case Data:

EUT Test Condition		Measurement Detail		
Channel	Channel 78	Frequency Range	30 MHz ~ 1 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Quasi-peak (QP)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Thomas Wei	

Horizontal

		Antonna	Polarity 8	Tost Distan	ce: Horizon	al at 2 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
43.58	28.98	46	-17.02	40	-11.02	152	231	Peak
76.56	23.22	45.09	-21.87	40	-16.78	165	295	Peak
191.99	25.43	46.03	-20.6	43.5	-18.07	147	185	Peak
315.18	24.61	41.49	-16.88	46	-21.39	195	265	Peak
620.73	24.04	33.36	-9.32	46	-21.96	147	152	Peak
908.82	29.14	33.55	-4.41	46	-16.86	132	265	Peak
		Antenn	a Polarity &	Test Dista	nce: Vertica	l at 3 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
44.55	31.17	48.2	-17.03	40	-8.83	111	132	Peak
67.83	30.99	51.09	-20.1	40	-9.01	165	251	Peak
151.25	19.19	37.14	-17.95	43.5	-24.31	184	174	Peak
500.45	21.81	33.58	-11.77	46	-24.19	165	295	Peak
647.89	24.42	33.16	-8.74	46	-21.58	132	258	Peak
850.62	27.99	33.14	-5.15	46	-18.01	165	231	Peak

1. Emission Level = Read Level + Factor

Margin value = Emission level – Limit value

2. The emission levels of other frequencies were very low against the limit.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-Peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

4.2.2 Test Instruments

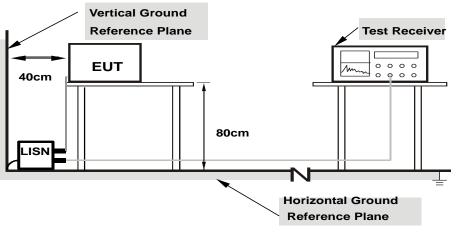
Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Dec. 10, 2018	Dec. 09, 2019
RF signal cable Woken	5D-FB	Cable-cond1-01	Sep. 05, 2018	Sep. 04, 2019
LISN/AMN ROHDE & SCHWARZ (EUT)	ENV216	101826	Feb. 21, 2019	Feb. 20, 2020
LISN/AMN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Aug. 19, 2018	Aug. 18, 2019
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 1.

3. The VCCI Site Registration No. is C-2040.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz - 30 MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Set the EUT under transmission condition continuously at specific channel frequency.

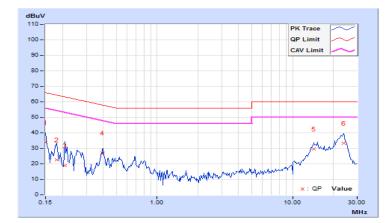

4.2.7 Test Results

CONDUCTED WORST-CASE DATA : GFSK <NB Mode>

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Jisyong Wang		

	Phase Of Power : Line (L)													
	Frequency Correction Reading Value			Emission Level		Lir	nit	Margin						
No		Factor	(dB	uV)	(dB	uV)	(dB	(dBuV)		B)				
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.				
1	0.18906	0.25	25.40	6.59	25.65	6.84	64.08	54.08	-38.43	-47.24				
2	0.26719	0.24	26.94	12.81	27.18	13.05	61.20	51.20	-34.02	-38.15				
3	0.40391	0.23	24.58	11.84	24.81	12.07	57.77	47.77	-32.96	-35.70				
4	0.68516	0.24	22.17	5.98	22.41	6.22	56.00	46.00	-33.59	-39.78				
5	14.66797	5.51	26.79	5.29	32.30	10.80	60.00	50.00	-27.70	-39.20				
6	23.89844	6.85	28.48	5.42	35.33	12.27	60.00	50.00	-24.67	-37.73				

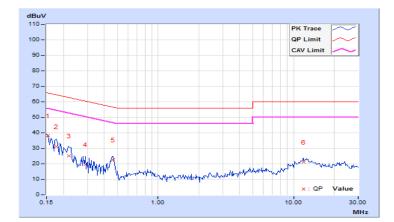
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Jisyong Wang		

	Phase Of Power : Neutral (N)													
	Frequency	Correction	Readin	Reading Value		on Level	Lir	nit	Margin					
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(d	B)				
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.				
1	0.15000	0.27	33.56	15.85	33.83	16.12	66.00	56.00	-32.17	-39.88				
2	0.18125	0.25	22.37	5.38	22.62	5.63	64.43	54.43	-41.81	-48.80				
3	0.20859	0.24	18.57	5.73	18.81	5.97	63.26	53.26	-44.45	-47.29				
4	0.39609	0.24	26.96	6.89	27.20	7.13	57.93	47.93	-30.73	-40.80				
5	14.39453	4.42	25.06	5.81	29.48	10.23	60.00	50.00	-30.52	-39.77				
6	23.87891	5.05	28.12	5.13	33.17	10.18	60.00	50.00	-26.83	-39.82				

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

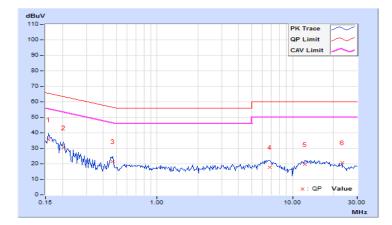


<Adapter Mode>

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Jisyong Wang		

	Phase Of Power : Line (L)													
	Frequency Correction Reading Value				Emissic	Emission Level		nit	Margin					
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(d	B)				
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.				
1	0.15391	0.27	37.71	18.09	37.98	18.36	65.79	55.79	-27.81	-37.43				
2	0.17734	0.26	30.88	14.89	31.14	15.15	64.61	54.61	-33.47	-39.46				
3	0.22031	0.24	24.95	9.59	25.19	9.83	62.81	52.81	-37.62	-42.98				
4	0.29063	0.24	19.52	7.23	19.76	7.47	60.51	50.51	-40.75	-43.04				
5	0.46250	0.23	22.19	5.08	22.42	5.31	56.65	46.65	-34.23	-41.34				
6	11.84766	4.46	16.77	1.74	21.23	6.20	60.00	50.00	-38.77	-43.80				

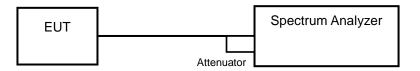
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Jisyong Wang		

	Phase Of Power : Neutral (N)													
	Frequency	Correction	Readin	g Value	Emissic	on Level	Lir	nit	Mai	Margin				
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(d	B)				
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.				
1	0.15781	0.27	35.33	17.42	35.60	17.69	65.58	55.58	-29.98	-37.89				
2	0.20469	0.24	30.18	14.36	30.42	14.60	63.42	53.42	-33.00	-38.82				
3	0.47031	0.24	21.30	5.17	21.54	5.41	56.51	46.51	-34.97	-41.10				
4	6.78125	2.06	15.76	1.40	17.82	3.46	60.00	50.00	-42.18	-46.54				
5	12.40234	3.88	15.85	1.47	19.73	5.35	60.00	50.00	-40.27	-44.65				
6	23.14063	5.00	15.74	1.09	20.74	6.09	60.00	50.00	-39.26	-43.91				

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 Number of Hopping Frequency Used

4.3.1 Limits of Hopping Frequency Used Measurement

At least 15 channels frequencies, and should be equally spaced.

4.3.2 Test Setup

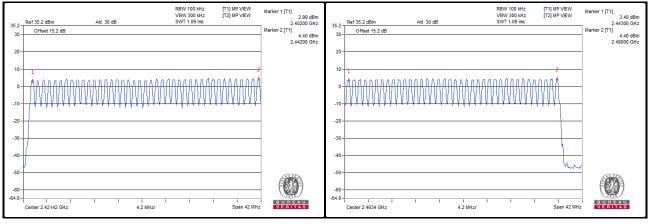
4.3.3 Test Instruments

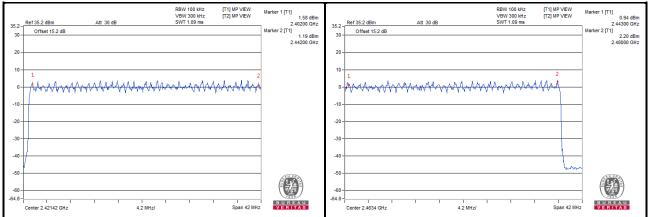
Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.3.5 Deviation from Test Standard

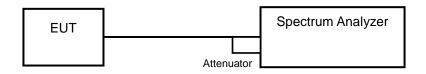

No deviation.


4.3.6 Test Results

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

<GFSK>

<8DPSK>



4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 Test Setup

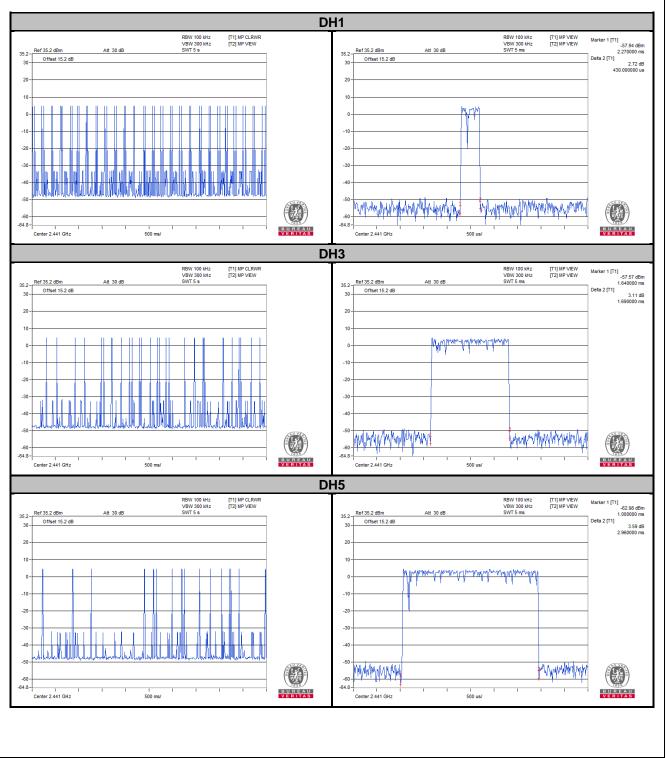
4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.
- 4.4.5 Deviation from Test Standard

No deviation.

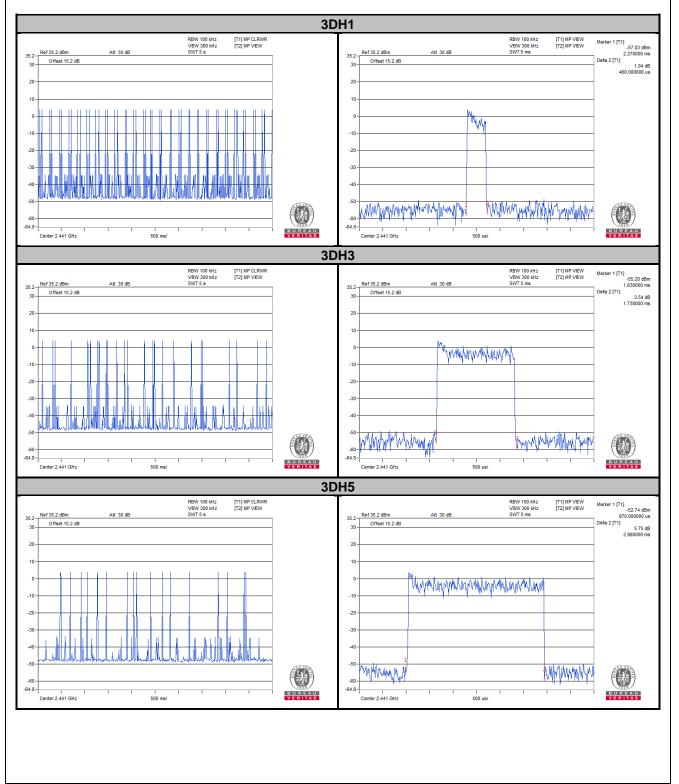


4.4.6 Test Results

GFSK

Mode	Number of Transmission in a 31.6 (79 Hopping*0.4)	Length of Transmission Time (msec)	Result (msec)	Limit (msec)
DH1	50 (times / 5 sec) * 6.32 = 316 times	0.43	135.88	400
DH3	27 (times / 5 sec) * 6.32 = 170.64 times	1.69	288.38	400
DH5	16 (times / 5 sec) * 6.32 = 101.12 times	2.96	299.32	400

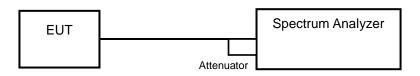
Note: Test plots of the transmitting time slot are shown as below.



8DPSK

Mode	Number of Transmission in a 31.6 (79 Hopping*0.4)	Length of Transmission Time (msec)	Result (msec)	Limit (msec)
3DH1	50 (times / 5 sec) * 6.32 = 316 times	0.46	145.36	400
3DH3	25 (times / 5 sec) * 6.32 = 158 times	1.73	273.34	400
3DH5	17 (times / 5 sec) * 6.32 = 107.44 times	2.98	320.17	400

Note: Test plots of the transmitting time slot are shown as below.



4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

For frequency hopping system operating in the 2400-2483.5 MHz, if the 20 dB bandwidth of hopping channel is greater than 25 kHz, two-thirds 20 dB bandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 Test Setup

4.5.3 Test Instruments

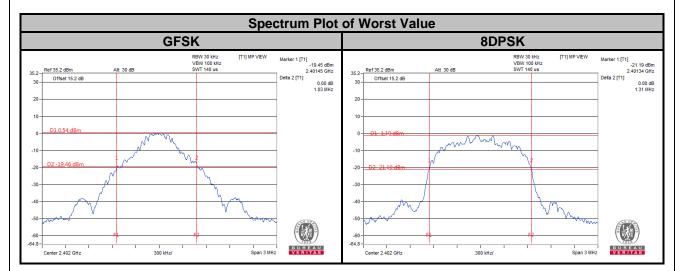
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

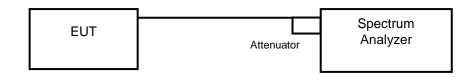
4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results


Channel	Frequency	20 dB Bandwidth (MHz)				
Channel	(MHz)	GFSK	8DPSK			
0	2402	1.03	1.31			
39	2441	1.04	1.32			
78	2480	1.04	1.32			

4.6 Occupied Bandwidth Measurement

4.6.1 Test Setup

4.6.2 Test Instruments

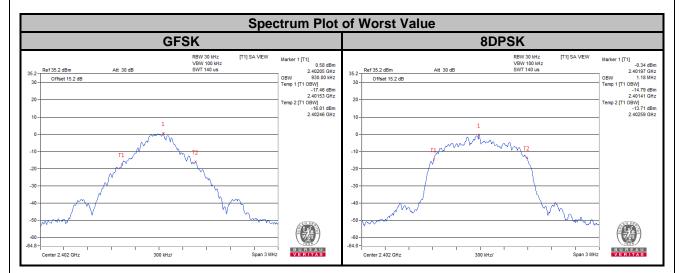
Refer to section 4.1.2 to get information of above instrument

4.6.3 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with resolution bandwidth in the range of 1 % to 5 % of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth and set the detector to PEAK. The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

4.6.4 Deviation from Test Standard

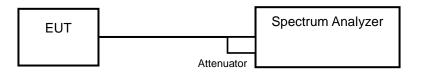
No deviation.


4.6.5 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.6.6 Test Results

Channal	Frequency	Occupied Bandwidth (MHz)				
Channel	(MHz)	GFSK	8DPSK			
0	2402	0.93	1.18			
39	2441	0.93	1.18			
78	2480	0.93	1.18			



4.7 Hopping Channel Separation

4.7.1 Limits of Hopping Channel Separation Measurement

At least 25 kHz or two-third of 20 dB hopping channel bandwidth (whichever is greater).

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

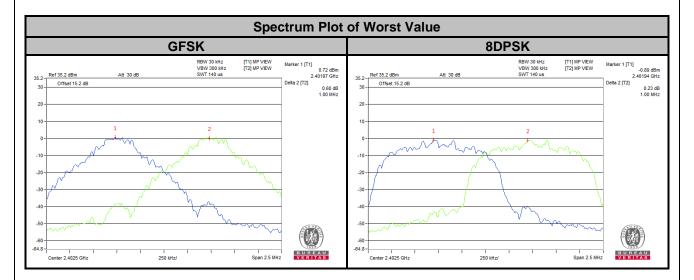
4.7.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.7.5 Deviation from Test Standard

No deviation.

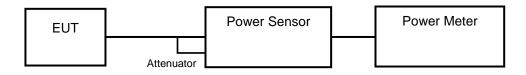


4.7.6 Test Results

Channel	Freq. (MHz)	Separ	Adjacent Channel 20 dB Separation (MHz) Bandwidth (M			Minimum Limit (MHz)		Pass / Fail
		GFSK	8DPSK	GFSK	8DPSK	GFSK	8DPSK	
0	2402	1.00	1.00	1.03	1.31	0.69	0.88	Pass
39	2441	1.00	1.00	1.04	1.32	0.7	0.88	Pass
78	2480	1.00	1.00	1.04	1.32	0.7	0.88	Pass

Note:

1. The minimum limit is two-third 20 dB bandwidth.



4.8 Maximum Output Power

4.8.1 Limits of Maximum Output Power Measurement

Refer to Regulation 15.247 (a)(1), the Maximum Output Power Measurement is 125 mW.

4.8.2 Test Setup

4.8.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.8.4 Test Procedure

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

4.8.5 Deviation from Test Standard

No deviation.

4.8.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.7 Test Results

<GFSK>

Channel	Freq. (MHz)	Output Power (mW)	Output Power (dBm)	Power Limit (mW)	Pass / Fail
0	2402	2.838	4.53	125	Pass
39	2441	3.243	5.11	125	Pass
78	2480	3.396	5.31	125	Pass

<8DPSK>

Channel	Freq. (MHz)	Output Power (mW)	Output Power (dBm)	Power Limit (mW)	Pass / Fail
0	2402	4.13	6.16	125	Pass
39	2441	4.667	6.69	125	Pass
78	2480	4.831	6.84	125	Pass

4.9 Conducted Out of Band Emission Measurement

4.9.1 Limits Of Conducted Out of Band Emission Measurement

Below –20 dB of the highest emission level of operating band (in 100 kHz RBW).

4.9.2 Test Instruments

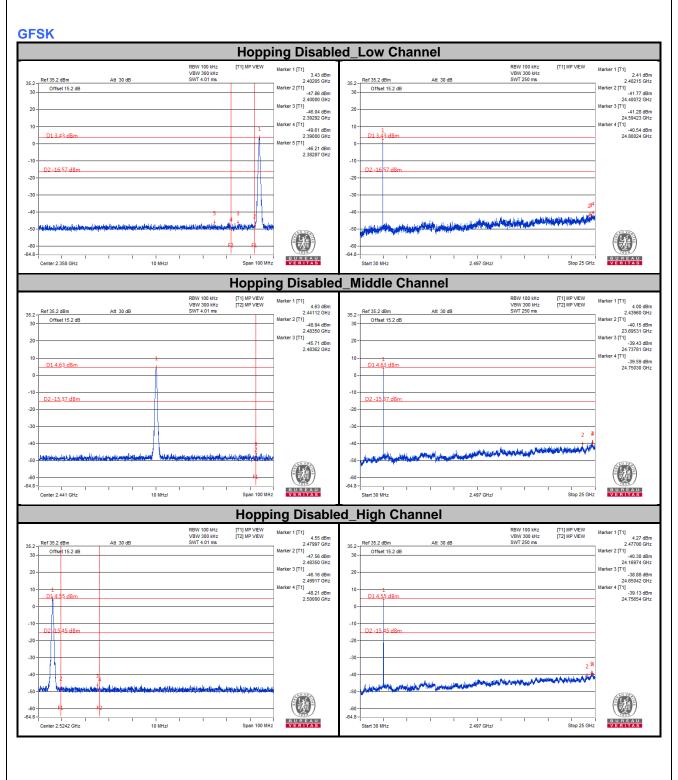
Refer to section 4.1.2 to get information of above instrument.

4.9.3 Test Procedure

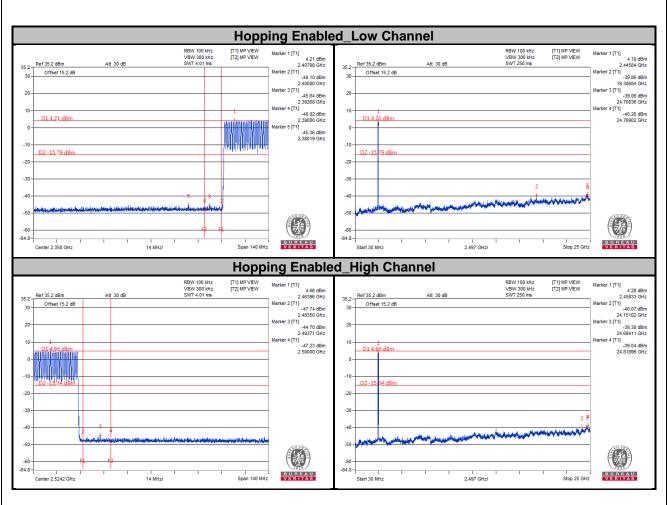
The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.9.4 Deviation from Test Standard

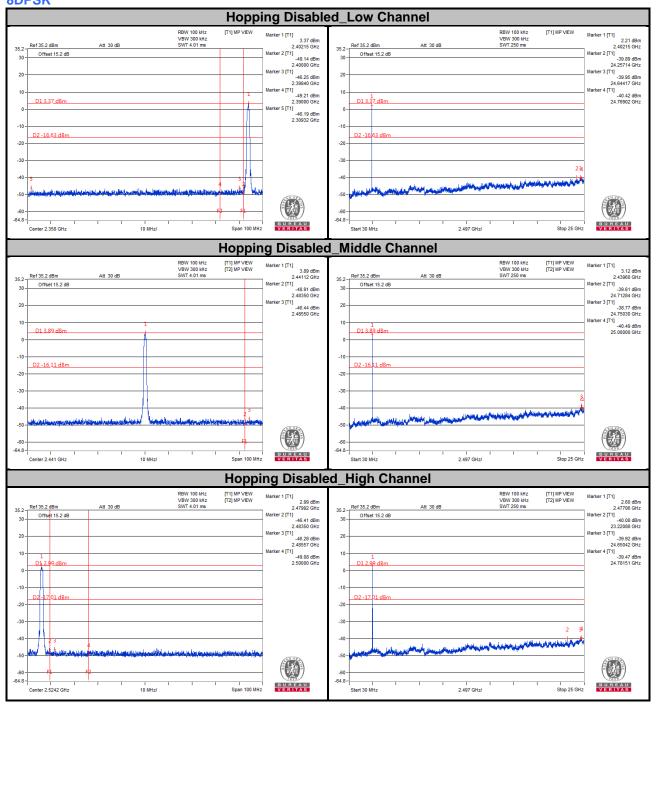
No deviation.


4.9.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.


4.9.6 Test Results

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20 dB offset below D1. It shows compliance with the requirement.



			Норр	oing Enable	ed_Low (Channel			
f 35.2 dBm	Att 30 dB	RBW 100 kHz VBW 300 kHz SWT 4.01 ms	[T1] MP VIEW [T2] MP VIEW	Marker 1 [T1] 3.63 dBm	Ref 35.2 dBm	Att 30 dB	RBW 1 VBW 3 SWT 2	00 kHz [T2] MP VIEW	Marker 1 [T1]
Offset 15.2 dB	All 30 db	3111 4.01 ms		2.42100 GHz Marker 2 [T1]	35.2 - Offset 15		51112	50 115	2.4 Marker 2 [T1]
				-47.42 dBm 2.40000 GHz	30 -				24.
				Marker 3 [T1] -45.12 dBm	20 -				Marker 3 [T1]
				2.39422 GHz Marker 4 [T1]	10-				24.3 Marker 4 [T1]
D1 3.63 dBm			Mindinkallikk	-46.70 dBm 2.39000 GHz	D1 3.63 d	lBm			24.
			AUDITAL	-44.26 dBm	0				-
				2.38932 GHz	-10				_
<u>2 -16.37 dBm</u>				-	<u>D2 -16 37</u>	dBm			
					-20				
				-	-30				. 3
					-40 -				1
ووالمارية إستروا أواريها ومراجعا والمتراجع	animican Marketer and Marketer with	ant the lift out of the tare.	1		a share a	-	فالمحمولة المراجع المتحود والمحمد	and the second states of the	
					-50				A 1.5
		F2 F			-60				- (Ž
ter 2.358 GHz	1 I I 1 14 MHz/	1 1	Span 140 MH	BUREAU	-64.8 - Start 30 MHz	1 1 1	1 I I 2.497 GHz/	Stop 25 (
					L				
			норр	ing Enable	ea_High G	Channel			
		RBW 100 kHz VBW 300 kHz	IT11 MP VIEW	Marker 1 IT11	ea_High (Channel	RBW 11 VBW 3		Marker 1 [T1]
f 35.2 dBm	Att 30 dB			Marker 1 [T1] 4.17 dBm 2.47912 GHz	35.2 - Ref 35.2 dBm	Att 30 dB		00 kHz [T2] MP VIEW	2.4
f 35.2 dBm Offset 15.2 dB	Att 30 dB	VBW 300 kHz	IT11 MP VIEW	Marker 1 [T1] 4.17 dBm 2.47912 GHz Marker 2 [T1] -48.01 dBm	Pat 25 2 dBm	Att 30 dB	VBW 3	00 kHz [T2] MP VIEW	2.4 Marker 2 [T1]
	Att 30 dB	VBW 300 kHz	IT11 MP VIEW	Marker 1 [T1] 4.17 dBm 2.47912 GHz Marker 2 [T1] -48.01 dBm 2.48350 GHz Marker 3 [T1]	35.2 - Ref 35.2 dBm	Att 30 dB	VBW 3	00 kHz [T2] MP VIEW	2. Marker 2 [T1] 24. Marker 3 [T1]
	Att 30 dB	VBW 300 kHz	IT11 MP VIEW	Marker 1 [T1] 4.17 dBm 2.47912 GHz Marker 2 [T1] -48.01 dBm 2.48350 GHz Marker 3 [T1] -45.28 dBm 2.49077 GHz	35.2 - Ref 35.2 dBm 30 - Offset 15 20 -	Att 30 dB	VBW 3	00 kHz [T2] MP VIEW	2. Marker 2 [T1] 24.: Marker 3 [T1] 24.:
0 ffset 15.2 dB	Att 30 dB	VBW 300 kHz	IT11 MP VIEW	Marker 1 [T1] 4.17 dBm 2.47912 GHz Marker 2 [T1] -48.01 dBm 2.48350 GHz Marker 3 [T1] -45.28 dBm 2.49077 GHz 2.49077 GHz	35.2 - Ref 35.2 dBm 30 - Offset 15	Att 30 dB	VBW 3	00 kHz [T2] MP VIEW	2. Marker 2 [T1] 24.: Marker 3 [T1] 24.: Marker 4 [T1]
0 ffset 15.2 dB	Att 30 dB	VBW 300 kHz	IT11 MP VIEW	Marker 1 [T1] 4.17 dBm 2.47912 GHz Marker 2 [T1] -48.01 dBm 2.48350 GHz Marker 3 [T1] -45.28 dBm 2.49077 GHz Marker 4 [T1]	35.2 - Ref 35.2 dBm 30 - Offset 15 20	Att 30 dB	VBW 3	00 kHz [T2] MP VIEW	2. Marker 2 [T1] 24.3 Marker 3 [T1] 24.3 Marker 4 [T1]
Offset 15.2 dB	Aft 30 dB	VBW 300 kHz	IT11 MP VIEW	Marker 1 [T1] 4.17 dBm 2.47912 GHz Marker 2 [T1] -48.01 dBm 2.48350 GHz Marker 3 [T1] -45.28 dBm 2.49077 GHz 2.49077 GHz	35.2-Ref 35.2 dBm 30-Offset 15 20- 10- 0- D14.17 d	Att 30 dB	VBW 3	00 kHz [T2] MP VIEW	2. Marker 2 [T1] 24.: Marker 3 [T1] 24.: Marker 4 [T1]
0ffset 15.2 dB	Alt 30 dB	VBW 300 kHz	IT11 MP VIEW	Marker 1 [T1] 4.17 dBm 2.47912 GHz Marker 2 [T1] -48.01 dBm 2.48350 GHz Marker 3 [T1] -45.28 dBm 2.49077 GHz 2.49077 GHz	35.2-Ref 35.2 dBm 30-Offset 15 20- 10- <u>11417 d</u>	Att 30 dB	VBW 3	00 kHz [T2] MP VIEW	2. Marker 2 [T1] 24.: Marker 3 [T1] 24.: Marker 4 [T1]
0 ffset 15.2 dB	Alt 30 dB	VBW 300 kHz	IT11 MP VIEW	Marker 1 [T1] 4.17 dBm 2.47912 GHz Marker 2 [T1] -48.01 dBm 2.48350 GHz Marker 3 [T1] -45.28 dBm 2.49077 GHz 2.49077 GHz	35.2-Ref 35.2 dBm 30-Offset 15 20- 10- 10- 10- 10- 10- 10- 10- 10- 10- 1	Att 30 dB	VBW 3	00 kHz [T2] MP VIEW	2. Marker 2 [T1] 24.: Marker 3 [T1] 24.: Marker 4 [T1]
0ffset 15.2 dB	AE 30 dB	VBW 300 kHz	IT11 MP VIEW	Marker 1 [T1] 4.17 dBm 2.47912 GHz Marker 2 [T1] -48.01 dBm 2.48350 GHz Marker 3 [T1] -45.28 dBm 2.49077 GHz 2.49077 GHz	35.2 Ref 35.2 dBm 30 Offset 15 20 D1 4.17 d 0 D1 4.17 d 0 D2 -15 83.	Att 30 dB	VBW 3	00 kHz [T2] MP VIEW	2. Marker 2 [T1] 24.: Marker 3 [T1] 24.: Marker 4 [T1]
0ffset 15.2 dB	AE 30 dB	VBW 300 kHz	IT11 MP VIEW	Marker 1 [T1] 4.17 dBm 2.47912 GHz Marker 2 [T1] -48.01 dBm 2.48350 GHz Marker 3 [T1] -45.28 dBm 2.49077 GHz 2.49077 GHz	35.2 Ref 35.2 dBm 30 Offset 15 20	. Att 30 dB 12 dB 18m dBm	VBW 3 SWT 21	00 kHz [T2] MP VEW	2. Marker 2 [11] 24. Marker 3 [11] 24. Marker 3 [11] 24. Marker 4 [11] 24. 24.
0ffset 15.2 dB	3	VBW 300 Hrz SWT 4.01 ma	[T1] MP VIEW [T2] MP VIEW	Marker 1 [T1] 4.17 dBm 2.47912 GHz Marker 2 [T1] -48.01 dBm 2.48350 GHz Marker 3 [T1] -45.28 dBm 2.49077 GHz 2.49077 GHz	36.2 Ref 35.2 dBm 30 Offset 15 20 - 10	. Att 30 dB 12 dB 18m dBm	VBW 3 SWT 21	00 kHz [T2] MP VEW	2. Marker 2 [11] 24. Marker 3 [11] 24. Marker 3 [11] 24. Marker 4 [11] 24. 24.
0ffset 15.2 dB	Att 30 dB	VBW 300 Hrz SWT 4.01 ma	[T1] MP VIEW [T2] MP VIEW	Marker 1 [T1] 4.17 dBm 2.47912 GHz Marker 2 [T1] -48.01 dBm 2.48350 GHz Marker 3 [T1] -45.28 dBm 2.49077 GHz 2.49077 GHz	35.2 Ref 35.2 dBm 30 Offset 15 20	. Att 30 dB 12 dB 18m dBm	VBW 3	00 kHz [T2] MP VEW	2. Marker 2 [11] 24. Marker 3 [11] 24. Marker 3 [11] 24. Marker 4 [11] 24. 24.
0ffset 15.2 dB	3	VBW 300 Hrz SWT 4.01 ma	[T1] MP VIEW [T2] MP VIEW	Marker 1 [T1] 4.17 dBm 2.47912 GHz Marker 2 [T1] -48.01 dBm 2.48350 GHz Marker 3 [T1] -45.28 dBm 2.49077 GHz 2.49077 GHz	362 Ref 35.2 dBm 30 Offset 15 20 D14.17.d 0 D14.17.d 0 D2-15.83. -20	. Att 30 dB 12 dB 18m dBm	VBW 3 SWT 21	00 kHz [T2] MP VEW	2. Marker 2 [11] 24. Marker 3 [11] 24. Marker 3 [11] 24. Marker 4 [11] 24. 24.
0ffset 15.2 dB	3	VBW 300 Hrz SWT 4.01 ma	[T1] MP VIEW [T2] MP VIEW	Marker 1 [T1] 4.17 dBm 2.47912 GHz Marker 2 [T1] -48.01 dBm 2.48350 GHz Marker 3 [T1] -45.28 dBm 2.49077 GHz 2.49077 GHz	35 2 Ref 35 2 dBm 30 Offset 15 20 D1 417 d 0 D1 417 d 0 D2 -15 83 -20 -30 -40 -	. Att 30 dB 12 dB 18m dBm	VBW 3 SWT 21	00 kHz [T2] MP VEW	2. Marker 2 [11] 24. Marker 3 [11] 24. Marker 3 [11] 24. Marker 4 [11] 24. 24.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---