

# FCC TEST REPORT FCC ID: 2AP3A-OPTIMA

On Behalf of A-Technology Ltd. POS-terminal Model No.: Optima

| Prepared for | : A-Technology Ltd.                                               |
|--------------|-------------------------------------------------------------------|
| Address      | Bld 1, Butyrskaya street 67, Moscow, Russian Federation<br>127015 |

| Prepared By | : Shenzhen Alpha Product Testing Co., Ltd.            |  |  |  |  |  |
|-------------|-------------------------------------------------------|--|--|--|--|--|
| Address     | . Building i, No.2, Lixin Road, Fuyong Street, Bao'an |  |  |  |  |  |
|             | District, 518103, Shenzhen, Guangdong, China          |  |  |  |  |  |

| Report Number   | : | T1880563 10                  |
|-----------------|---|------------------------------|
| Date of Receipt | : | April 13, 2018               |
| Date of Test    | : | April 13, 2018-June 22, 2018 |
| Date of Report  | : | June 22, 2018                |
| Version Number  | : | REV0                         |

# Contents

|   |            |                                                              | Page |
|---|------------|--------------------------------------------------------------|------|
| 1 | TES        | T SUMMARY                                                    | 5    |
|   |            |                                                              |      |
| 2 | GEN        | ERAL INFORMATION                                             | 6    |
|   | 2.1        | GENERAL DESCRIPTION OF EUT                                   |      |
|   | 2.2        |                                                              |      |
|   | 2.3        | TEST FACILITY<br>OTHER INFORMATION REQUESTED BY THE CUSTOMER |      |
|   | 2.4<br>2.5 | DESCRIPTION OF SUPPORT UNITS                                 |      |
|   | 2.5        | Additional instructions                                      |      |
|   | -          |                                                              | -    |
| 3 | TES        | T INSTRUMENTS LIST                                           | 10   |
| 4 | TEO        | T RESULTS AND MEASUREMENT DATA                               | 44   |
| 4 | IES        |                                                              |      |
|   | 4.1        | ANTENNA REQUIREMENT                                          |      |
|   | 4.2        | CONDUCTED EMISSIONS                                          |      |
|   | 4.3        | CONDUCTED PEAK OUTPUT POWER                                  |      |
|   | 4.4        | 20DB EMISSION BANDWIDTH                                      |      |
|   | 4.5        | CARRIER FREQUENCIES SEPARATION                               |      |
|   | 4.6        | HOPPING CHANNEL NUMBER                                       |      |
|   | 4.7<br>4.8 | DWELL TIME<br>PSEUDORANDOM FREQUENCY HOPPING SEQUENCE        |      |
|   | 4.8<br>4.9 | BAND EDGE                                                    |      |
|   | 4.9.1      | -                                                            |      |
|   | 4.9.2      |                                                              |      |
|   | 4.10       | SPURIOUS EMISSION                                            |      |
|   | 4.10       |                                                              |      |
|   | 4.10       | 2 Radiated Emission Method                                   |      |
| 5 | TES        | Т SETUP PHOTO                                                | 51   |
| 6 | EUT        | CONSTRUCTIONAL DETAILS                                       | 53   |

# TEST REPORT DECLARATION

| Applicant       | : | A-Technology Ltd.                                              |
|-----------------|---|----------------------------------------------------------------|
| Address         | : | Bld 1, Butyrskaya street 67, Moscow, Russian Federation 127015 |
| Manufacturer    | : | A-Technology Ltd.                                              |
| Address         | : | Bld 1, Butyrskaya street 67, Moscow, Russian Federation 127015 |
| EUT Description | : | POS-terminal                                                   |
|                 |   | (A) Model No. : Optima                                         |

(B) Trademark : N/A

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247: 2016, ANSI C63.10-2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

| Tested by (name + signature):   | Reak Yang<br>Project Engineer  | Reak Yang |
|---------------------------------|--------------------------------|-----------|
| Approved by (name + signature): | Simple Guan<br>Project Manager | Supe G-   |
| Date of issue                   | June 22, 2018                  |           |

| Revision | Issue Date    | Revisions              | Revised By     |
|----------|---------------|------------------------|----------------|
| 00       | June 22, 2018 | Initial released Issue | Simple<br>Guan |

#### **Test Item** Section in CFR 47 Result Antenna Requirement 15.203/15.247 (c) Pass AC Power Line Conducted Emission 15.207 Pass Conducted Peak Output Power 15.247 (b)(1) Pass 20dB Occupied Bandwidth 15.247 (a)(1) Pass **Carrier Frequencies Separation** 15.247 (a)(1) Pass Hopping Channel Number 15.247 (a)(1) Pass **Dwell Time** 15.247 (a)(1) Pass **Pseudorandom Frequency Hopping** 15.247(b)(4) Pass Sequence **Radiated Emission** 15.205/15.209 Pass 15.247(d) Band Edge Pass

# 1 Test Summary

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013

## **Measurement Uncertainty**

| Test Item                           | Frequency Range | Measurement Uncertainty | Notes |
|-------------------------------------|-----------------|-------------------------|-------|
| Radiated Emission                   | 9kHz ~ 30MHz    | ± 4.34dB                | (1)   |
| Radiated Emission                   | 30MHz ~ 1000MHz | ± 4.24dB                | (1)   |
| Radiated Emission                   | 1GHz ~ 26.5GHz  | ± 4.68dB                | (1)   |
| AC Power Line Conducted<br>Emission | 0.15MHz ~ 30MHz | ± 3.45dB                | (1)   |

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

# 2 General Information

# 2.1 General Description of EUT

| Product Name:                                                                                                                                                             | POS-terminal                            |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|
| Model No.:                                                                                                                                                                | Optima                                  |  |  |
| Test Model No:                                                                                                                                                            | Optima                                  |  |  |
| Remark: All above models are identical in the same PCB layout, interior structure and electrical cill<br>The differences are color and model name for commercial purpose. |                                         |  |  |
| Quantity of tested samples                                                                                                                                                | 1                                       |  |  |
| Serial No.:                                                                                                                                                               | N/A                                     |  |  |
| Tested Sample(s) ID:                                                                                                                                                      | N/A                                     |  |  |
| Hardware Version:                                                                                                                                                         | V1.1                                    |  |  |
| Software Version:                                                                                                                                                         | V1.0                                    |  |  |
| Operation Frequency:                                                                                                                                                      | 2402MHz~2480MHz                         |  |  |
| Bluetooth Version                                                                                                                                                         | Bluetooth V4.0 (This Report for BT 3.0) |  |  |
| Channel numbers:                                                                                                                                                          | 79                                      |  |  |
| Channel separation:                                                                                                                                                       | 1MHz                                    |  |  |
| Modulation type:                                                                                                                                                          | GFSK, Pi/4 QPSK, 8DPSK                  |  |  |
| Antenna Type:                                                                                                                                                             | PIFA Antenna                            |  |  |
| Antenna gain:                                                                                                                                                             | 2.0dBi                                  |  |  |
| Power supply:                                                                                                                                                             | 12V                                     |  |  |

| operation | Frequency eac | h of channel |           |         |           |         |           |
|-----------|---------------|--------------|-----------|---------|-----------|---------|-----------|
| Channel   | Frequency     | Channel      | Frequency | Channel | Frequency | Channel | Frequency |
| 1         | 2402MHz       | 21           | 2422MHz   | 41      | 2442MHz   | 61      | 2462MHz   |
| 2         | 2403MHz       | 22           | 2423MHz   | 42      | 2443MHz   | 62      | 2463MHz   |
| 3         | 2404MHz       | 23           | 2424MHz   | 43      | 2444MHz   | 63      | 2464MHz   |
| 4         | 2405MHz       | 24           | 2425MHz   | 44      | 2445MHz   | 64      | 2465MHz   |
| 5         | 2406MHz       | 25           | 2426MHz   | 45      | 2446MHz   | 65      | 2466MHz   |
| 6         | 2407MHz       | 26           | 2427MHz   | 46      | 2447MHz   | 66      | 2467MHz   |
| 7         | 2408MHz       | 27           | 2428MHz   | 47      | 2448MHz   | 67      | 2468MHz   |
| 8         | 2409MHz       | 28           | 2429MHz   | 48      | 2449MHz   | 68      | 2469MHz   |
| 9         | 2410MHz       | 29           | 2430MHz   | 49      | 2450MHz   | 69      | 2470MHz   |
| 10        | 2411MHz       | 30           | 2431MHz   | 50      | 2451MHz   | 70      | 2471MHz   |
| 11        | 2412MHz       | 31           | 2432MHz   | 51      | 2452MHz   | 71      | 2472MHz   |
| 12        | 2413MHz       | 32           | 2433MHz   | 52      | 2453MHz   | 72      | 2473MHz   |
| 13        | 2414MHz       | 33           | 2434MHz   | 53      | 2454MHz   | 73      | 2474MHz   |
| 14        | 2415MHz       | 34           | 2435MHz   | 54      | 2455MHz   | 74      | 2475MHz   |
| 15        | 2416MHz       | 35           | 2436MHz   | 55      | 2456MHz   | 75      | 2476MHz   |
| 16        | 2417MHz       | 36           | 2437MHz   | 56      | 2457MHz   | 76      | 2477MHz   |
| 17        | 2418MHz       | 37           | 2438MHz   | 57      | 2458MHz   | 77      | 2478MHz   |
| 18        | 2419MHz       | 38           | 2439MHz   | 58      | 2459MHz   | 78      | 2479MHz   |
| 19        | 2420MHz       | 39           | 2440MHz   | 59      | 2460MHz   | 79      | 2480MHz   |
| 20        | 2421MHz       | 40           | 2441MHz   | 60      | 2461MHz   |         |           |

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2402MHz   |
| The middle channel  | 2441MHz   |
| The Highest channel | 2480MHz   |

# 2.2 Test mode

| Transmitting mode          | Turn off the WiFi and keep the Bluetooth in continuously transmitting mode                                                                               |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| voltage, and found that th | he test voltage was tuned from 85% to 115% of the nominal rated supply<br>we worst case was under the nominal rated supply condition. So the report just |
| shows that condition's da  |                                                                                                                                                          |

# 2.3 Test Facility

Shenzhen Alpha Product Testing Co., Ltd

Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission Registration Number: 293961

July 25, 2017 Certificated by IC Registration Number: 12135A

# 2.4 Other Information Requested by the Customer

| None.                            |   |                                            |  |  |  |  |  |
|----------------------------------|---|--------------------------------------------|--|--|--|--|--|
| 2.5 Description of Support Units |   |                                            |  |  |  |  |  |
| Accessories1                     | • | AC/DC ADAPTER                              |  |  |  |  |  |
| Manufacturer                     | • | SHAN SHUNDE GUANYUDA POWER SUPPLY CO., LTD |  |  |  |  |  |
| Model                            | • | GM42-120300-D                              |  |  |  |  |  |
|                                  |   | Input: AC 100-240V, 50/60Hz, 1.5A          |  |  |  |  |  |
| Power supply                     | • | Output: 12V-, 3.0A                         |  |  |  |  |  |

# 2.6 Additional instructions

Software (Used for test) from client

|      | Special software is used.                                            |
|------|----------------------------------------------------------------------|
| Mode | The software provided by client to enable the EUT under transmission |
| Modo | condition continuously at specific channel frequencies individually. |

| Power level setup in software |               |                 |                          |  |  |  |  |  |
|-------------------------------|---------------|-----------------|--------------------------|--|--|--|--|--|
| Test Software Name            | MP_Kit_RTL11n | MP_Kit_RTL11n   |                          |  |  |  |  |  |
| Test Software Version         | v0.04         |                 |                          |  |  |  |  |  |
| Support Units                 | Description   | Manufacturer    | Model                    |  |  |  |  |  |
| (Software installation media) | Laptop        | Apple           | A1278                    |  |  |  |  |  |
| Mode                          | Channel       | Frequency (MHz) | Soft Set                 |  |  |  |  |  |
| GFSK, Pi/4 QPSK, 8DPSK        | CH1           | 2402            | TX LEVEL is built-in set |  |  |  |  |  |
|                               | CH40          | 2441            | parameters and cannot    |  |  |  |  |  |
|                               | CH79          | 2480            | be changed and           |  |  |  |  |  |
|                               |               |                 | selected.                |  |  |  |  |  |

# Run Software

| Interface       COM UART       Port = 4       Baudrate=11520       Non Link Mode       Hopping       RW       Efuse       LE Test       LED                                                                                         | Do pen                                               | Close DL Patch                      | Hot Key                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------|--------------------------------------------------------|
| Packet Type       DH1         Payload Type       ALL'0         Tx Packet Count       0         Tx Gain Index       6         Tx Gain Value       0xCE         Parameter 1       Parameter 2       Parameter 3       Table       Cal | Item<br>T x bits<br>T x Pkt Count<br>T X Report RX F | Value<br>000000<br>000000<br>Report | Test Mode<br>Patch code<br>GetChipInfo<br>Get BT Stage |
| Message<br>>>Load RtlBluetoothMP.dll SuccessII                                                                                                                                                                                      |                                                      |                                     | Load Script<br>Read Thermal                            |

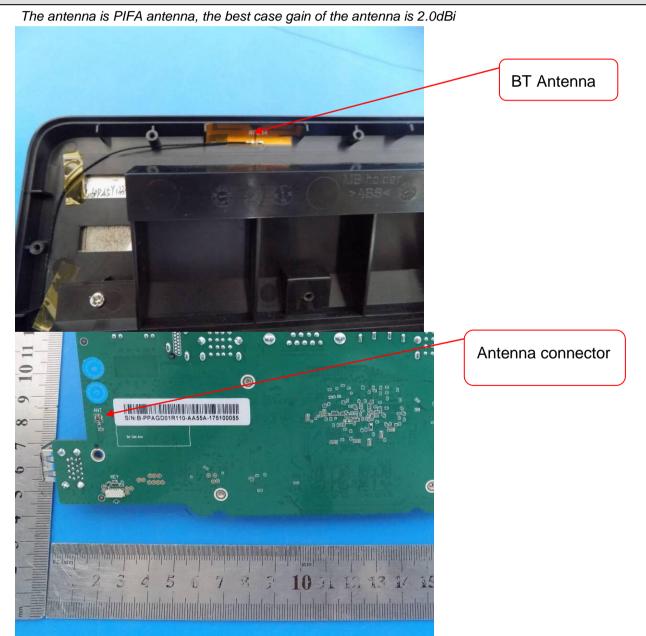
| Equipment              | Manufacture       | Model No.                       | Serial No.            | Last cal.  | Cal Interval |  |  |  |  |  |
|------------------------|-------------------|---------------------------------|-----------------------|------------|--------------|--|--|--|--|--|
| 3m Semi-<br>Anechoic   | ETS-<br>LINDGREN  | N/A                             | SEL0017               | 2017.09.22 | 1Year        |  |  |  |  |  |
| Spectrum<br>analyzer   | Agilent           | E4407B                          | MY46185649            | 2017.09.22 | 1Year        |  |  |  |  |  |
| Receiver               | R&S               | ESCI                            | 1166.5950K03-<br>1011 | 2017.09.22 | 1Year        |  |  |  |  |  |
| Receiver               | R&S               | ESCI                            | 101202                | 2017.09.22 | 1Year        |  |  |  |  |  |
| Bilog Antenna          | Schwarzbeck       | VULB 9168                       | VULB9168-438          | 2016.09.30 | 2Year        |  |  |  |  |  |
| Horn Antenna           | EMCO              | 3115                            | 640201028-06          | 2016.09.30 | 2Year        |  |  |  |  |  |
| Active Loop<br>Antenna | Beijing Daze      | ZN30900A                        | SEL0097               | 2016.09.30 | 2Year        |  |  |  |  |  |
| Cable                  | Resenberger       | N/A                             | No.1                  | 2017.09.22 | 1Year        |  |  |  |  |  |
| Cable                  | SCHWARZB<br>ECK   | N/A                             | No.2                  | 2017.09.22 | 1Year        |  |  |  |  |  |
| Cable                  | SCHWARZB<br>ECK   | N/A                             | No.3                  | 2017.09.22 | 1Year        |  |  |  |  |  |
| Pre-amplifier          | Schwarzbeck       | BBV9743                         | 9743-019              | 2017.09.22 | 1Year        |  |  |  |  |  |
| Pre-amplifier          | R&S               | AFS33-<br>18002650-30-<br>8P-44 | SEL0080               | 2017.09.22 | 1Year        |  |  |  |  |  |
| Temperature controller | Terchy            | MHQ                             | 120                   | 2017.09.22 | 1Year        |  |  |  |  |  |
| L.I.S.N.#1             | Schwarzbeck       | NSLK8126                        | 8126466               | 2017.09.22 | 1Year        |  |  |  |  |  |
| L.I.S.N.#2             | ROHDE&SC<br>HWARZ | ENV216                          | 101043                | 2017.09.22 | 1 Year       |  |  |  |  |  |
| 20db<br>Attenuator     | ICPROBING         | IATS1                           | 82347                 | 2017.09.22 | 1 Year       |  |  |  |  |  |
| 18-40 Horn<br>Antenna  | 18-40G<br>antenna | Sas-574                         | 571                   | 2018-3-15  | 3 Year       |  |  |  |  |  |

# 3 Test Instruments list

# 4 Test results and Measurement Data

# 4.1 Antenna requirement

| Standard requirement: | CC Part15 C Section 15.203 /247(c) |
|-----------------------|------------------------------------|
| Standard requirement: | CC Part15 C Section 15.203 /247(c  |

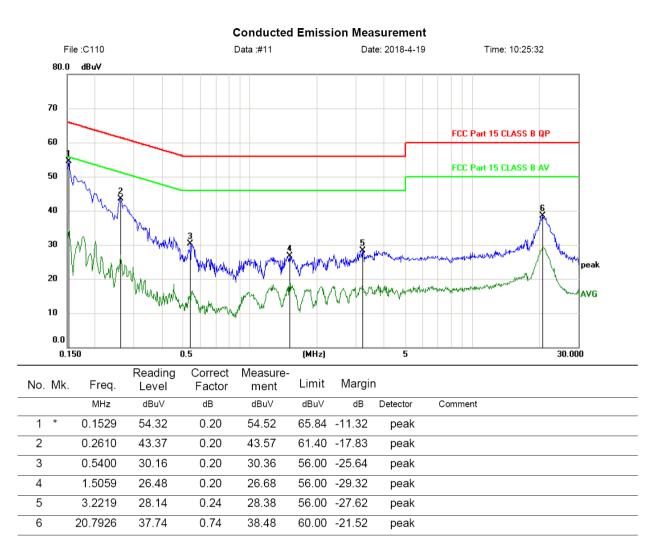

## 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

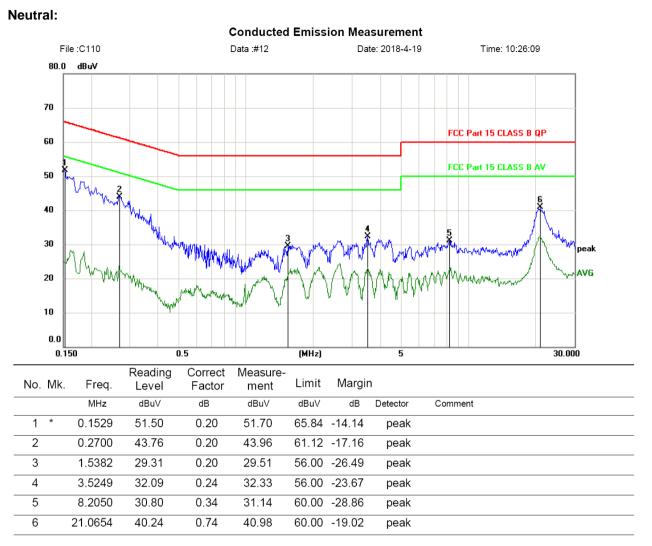
# 15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

## E.U.T Antenna:




| 4.2 Conducted Emissio | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |           |  |  |  |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|--|--|--|--|--|--|
| Test Requirement:     | FCC Part15 C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FCC Part15 C Section 15.207 |           |  |  |  |  |  |  |
| Test Method:          | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |           |  |  |  |  |  |  |
| Test Frequency Range: | 150KHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |           |  |  |  |  |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Class B                     |           |  |  |  |  |  |  |
| Receiver setup:       | RBW=9KHz, VBW=30KHz, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | weep time=auto              |           |  |  |  |  |  |  |
| Limit:                | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit (d                    | BuV)      |  |  |  |  |  |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Quasi-peak                  | Average   |  |  |  |  |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66 to 56*                   | 56 to 46* |  |  |  |  |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56                          | 46        |  |  |  |  |  |  |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60                          | 50        |  |  |  |  |  |  |
| Test setup:           | * Decreases with the logarithr<br>Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |           |  |  |  |  |  |  |
| Test procedure:       | LISN       40cm       80cm       Filter       AC power         Full       E.U.T       Filter       AC power         Equipment       E.U.T       EMI<br>Receiver         Remark:       E.U.T: Equipment Under Test         LISN: Line Impedence Stabilization Network         Test table height=0.8m                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |           |  |  |  |  |  |  |
|                       | <ol> <li>The E.U.T and simulators are connected to the main power through a<br/>line impedance stabilization network (L.I.S.N.). This provides a<br/>50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a<br/>LISN that provides a 50ohm/50uH coupling impedance with 50ohm<br/>termination. (Please refer to the block diagram of the test setup and<br/>photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted<br/>interference. In order to find the maximum emission, the relative<br/>positions of equipment and all of the interface cables must be changed<br/>according to ANSI C63.10:2013 on conducted measurement.</li> </ol> |                             |           |  |  |  |  |  |  |
| Test Instruments:     | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                           |           |  |  |  |  |  |  |
| Test mode:            | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S                           |           |  |  |  |  |  |  |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |           |  |  |  |  |  |  |


#### Conducted Emissions 1 2

#### Measurement data:

Test result for BT3.0 (GFSK: 2441MHz), AC 120V/ 60Hz Line:



\*:Maximum data x:Over limit !:over margin Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable Test result for BT3.0 (GFSK: 2441MHz), AC 120V/ 60Hz



\*:Maximum data x:Over limit !:over margin

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. Pre-scan all modes and recorded the worst case results in this report

# Test Requirement: FCC Part15 C Section 15.247 (b)(3) **Test Method:** ANSI C63.10:2013 Limit: 30dBm(for GFSK),20.97dBm(for EDR) Test setup: Spectrum Analyzer E.U.T c. Non-Conducted Table **Ground Reference Plane** Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass

# 4.3 Conducted Peak Output Power

# **Measurement Data**

| Mode     | Test channel | Peak Output Power<br>(dBm) | Limit (dBm) | Result |  |
|----------|--------------|----------------------------|-------------|--------|--|
|          | Lowest       | 0.814                      |             |        |  |
| GFSK     | Middle       | 1.395                      | 30.00       | Pass   |  |
|          | Highest      | -0.330                     |             |        |  |
|          | Lowest       | 0.509                      |             |        |  |
| Pi/4QPSK | Middle       | 1.069                      | 20.97       | Pass   |  |
|          | Highest      | -0.589                     |             |        |  |
|          | Lowest       | 0.700                      |             |        |  |
| 8DPSK    | Middle       | 1.324                      | 20.97       | Pass   |  |
|          | Highest      | -0.416                     |             |        |  |



## Test plot as follows:

#### Lowest channel

| Agilent Spectr        | r <mark>um Analyzer - Swe</mark><br>RF 50 Ω |         |                  | CEN        | SE:INT |    | ALIGNAUTO | 02-02-24 0          | 4 May 18, 2018        |                                               |
|-----------------------|---------------------------------------------|---------|------------------|------------|--------|----|-----------|---------------------|-----------------------|-----------------------------------------------|
| Center F              | req 2.44100                                 | 0000 GH | IZ<br>NO: Fast 🗔 |            |        |    | : Log-Pwr | TRAC                | E 1 2 3 4 5 6<br>E M  | Frequency                                     |
| 10 dB/div<br>Log      | Ref Offset 1 d<br>Ref 20.00 d               | IF(     | Gain:Low         | #Atten: 40 |        | 01 |           | 2.440 8             | 35 GHz<br>95 dBm      | Auto Tui                                      |
| 10.0                  |                                             |         |                  | 1          |        |    |           |                     |                       | <b>Center Fre</b><br>2.441000000 Gi           |
| -10.0                 |                                             |         |                  |            |        |    |           |                     |                       | <b>Start Fre</b><br>2.439500000 Gi            |
| -20.0                 |                                             |         |                  |            |        |    |           |                     |                       | <b>Stop Fro</b><br>2.442500000 GI             |
| -40.0                 |                                             |         |                  |            |        |    |           |                     |                       | <b>CF Ste</b><br>300.000 ki<br><u>Auto</u> Mi |
| -50.0                 |                                             |         |                  |            |        |    |           |                     |                       | Freq Offs<br>01                               |
| -70.0                 |                                             |         |                  |            |        |    |           |                     |                       |                                               |
| Center 2.4<br>#Res BW | 441000 GHz<br>1.0 MHz                       |         | #VBW             | 3.0 MHz    |        |    | Sweep 1   | Span 3<br>.000 ms ( | .000 MHz<br>1001 pts) |                                               |
| MSG                   | G STATUS                                    |         |                  |            |        |    |           |                     |                       |                                               |

Middle channel

| Agilent Spectru          |                               |    |                       |                            |         |           |                        |                   |                                            |      |                                   |
|--------------------------|-------------------------------|----|-----------------------|----------------------------|---------|-----------|------------------------|-------------------|--------------------------------------------|------|-----------------------------------|
| Center Fre               | RF 50 Ω<br>eq 2.48000         |    | Z                     |                            | ISE:INT | Avg Type  | ALIGNAUTO<br>: Log-Pwr | TRAC              | May 18, 2018<br>E <mark>1 2 3 4 5 6</mark> | Fi   | requency                          |
|                          |                               | PN | l0: Fast 🕞<br>ain:Low | ) Trig: Free<br>#Atten: 40 |         | Avg Hold: | >100/100               | TYI               | PE M <del>WWWWW</del><br>ET P N N N N N    |      |                                   |
|                          | Ref Offset 1 d<br>Ref 20.00 d |    |                       |                            |         |           | Mkr1                   | 1 2.480 0<br>-0.3 | 63 GHz<br>30 dBm                           |      | Auto Tune                         |
| 10.0                     |                               |    |                       |                            | .1      |           |                        |                   |                                            |      | <b>Center Freq</b><br>0000000 GHz |
| -10.0                    |                               |    |                       |                            | •       |           |                        |                   |                                            | 2.47 | Start Freq<br>8500000 GHz         |
| -20.0                    |                               |    |                       |                            |         |           |                        |                   |                                            | 2.48 | Stop Freq<br>1500000 GHz          |
| -40.0                    |                               |    |                       |                            |         |           |                        |                   |                                            | Auto | CF Step<br>300.000 kHz<br>Man     |
| -50.0                    |                               |    |                       |                            |         |           |                        |                   |                                            |      | Freq Offset<br>0 Hz               |
| -70.0                    |                               |    |                       |                            |         |           |                        |                   |                                            |      | 0112                              |
| Center 2.43<br>#Res BW 1 |                               |    | #\/B\M                | 3.0 MHz                    |         |           | Swaan                  |                   | .000 MHz                                   |      |                                   |
|                          |                               |    | #VDVV                 | 3.0 WINZ                   |         |           | Sweep<br>Со втати      |                   | roor pts)                                  |      |                                   |



Pi/4QPSK mode



Lowest channel

| LXI L                     | um Analyzer - Swept SA<br>RF 50 Ω AC<br>req 2.441000000 | GHz<br>PN0: Fast | SENSE:I       | Avg T | ALIGNAUTO<br>ype: Log-Pwr<br>old:>100/100 | TRAC                                                                                                             | 4 May 18, 2018<br>E <b>1 2 3 4 5 6</b><br>E M <del>WWWW</del> | Frequency                                |
|---------------------------|---------------------------------------------------------|------------------|---------------|-------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|
| 10 dB/div                 | Ref Offset 1 dB<br>Ref 20.00 dBm                        | IFGain:Low       | #Atten: 40 dB |       | Mkr1                                      | 2.441 0                                                                                                          | 78 GHz<br>69 dBm                                              | Auto Tune                                |
| 10.0                      |                                                         |                  |               | 1     |                                           |                                                                                                                  |                                                               | Center Fred<br>2.441000000 GHz           |
| -10.0                     |                                                         |                  |               |       |                                           | and the second | Margan Margan                                                 | Start Free<br>2.439500000 GHz            |
| -20.0                     |                                                         |                  |               |       |                                           |                                                                                                                  |                                                               | <b>Stop Fred</b><br>2.442500000 GH:      |
| -40.0                     |                                                         |                  |               |       |                                           |                                                                                                                  |                                                               | CF Step<br>300.000 kH<br><u>Auto</u> Mar |
| -60.0                     |                                                         |                  |               |       |                                           |                                                                                                                  |                                                               | Freq Offse<br>0 H                        |
|                           | 441000 GHz                                              |                  |               |       |                                           |                                                                                                                  | .000 MHz                                                      |                                          |
| #Res BW<br><sup>MSG</sup> | 1.0 MHz                                                 | #VBW             | 3.0 MHz       |       | Sweep 1                                   | .000 ms (                                                                                                        | 1001 pts)                                                     |                                          |

Middle channel

| Agilen | t Spectru |                         |               |    |                         |         |                      |         |           |                        |            |                                        |      |                    |
|--------|-----------|-------------------------|---------------|----|-------------------------|---------|----------------------|---------|-----------|------------------------|------------|----------------------------------------|------|--------------------|
| Cen    | ter Fr    | <sub>RF</sub><br>ea 2.4 | 50 Ω<br>48000 | AC | GHz                     |         |                      | ISE:INT | Avg Type  | ALIGNAUTO<br>: Log-Pwr | TRAC       | 4 May 18, 2018<br>E <b>1 2 3 4 5 6</b> | Fi   | requency           |
|        |           |                         |               |    | PNO: Fast<br>IFGain:Lov |         | ig: Free<br>tten: 40 |         | Avg Hold: | >100/100               | TYI<br>Di  |                                        |      |                    |
|        |           | Bof O                   | ffset1o       | 10 |                         |         |                      |         |           | Mkr                    | 1 2.480 1  | 14 GHz                                 |      | Auto Tune          |
| 10 dE  | 3/div     |                         | 20.00         |    |                         |         |                      |         |           |                        | -0.5       | 89 dBm                                 |      |                    |
| Log    |           |                         |               |    |                         |         |                      |         |           |                        |            |                                        |      | Center Freq        |
| 10.0   |           |                         |               |    |                         |         |                      |         |           |                        |            |                                        |      | 0000000 GHz        |
|        |           |                         |               |    |                         |         |                      | ▲1      |           |                        |            |                                        |      |                    |
| 0.00   |           |                         |               |    |                         |         |                      |         |           |                        |            |                                        |      | Start Freq         |
| -10.0  |           |                         |               |    |                         |         |                      |         |           |                        |            |                                        | 2.47 | 8500000 GHz        |
| 10.0   | ,         |                         |               |    |                         |         |                      |         |           |                        |            | man and a second                       |      |                    |
| -20.0  |           |                         |               |    |                         |         |                      |         |           |                        |            |                                        |      | Stop Freq          |
|        |           |                         |               |    |                         |         |                      |         |           |                        |            |                                        | 2.48 | 1500000 GHz        |
| -30.0  |           |                         |               |    |                         |         |                      |         |           |                        |            |                                        |      |                    |
| -40.0  |           |                         |               |    |                         |         |                      |         |           |                        |            |                                        |      | CF Step            |
|        |           |                         |               |    |                         |         |                      |         |           |                        |            |                                        | Auto | 300.000 kHz<br>Man |
| -50.0  |           |                         |               |    |                         |         |                      |         |           |                        |            |                                        |      |                    |
| ~~ ~   |           |                         |               |    |                         |         |                      |         |           |                        |            |                                        |      | Freq Offset        |
| -60.0  |           |                         |               |    |                         |         |                      |         |           |                        |            |                                        |      | 0 Hz               |
| -70.0  |           |                         |               |    |                         |         |                      |         |           |                        |            |                                        |      |                    |
|        |           |                         |               |    |                         |         |                      |         |           |                        |            |                                        |      |                    |
| Cen    | ter 2.4   | 80000                   | ) GHz         |    |                         |         |                      |         |           |                        | Span 3     | .000 MHz                               |      |                    |
|        | s BW 1    |                         |               |    | #V                      | 'BW 3.0 | MHz                  |         |           | Sweep                  | 1.000 ms ( | 1001 pts)                              |      |                    |
| MSG    |           |                         |               |    |                         |         |                      |         |           |                        | US         |                                        |      |                    |



8DPSK mode



Lowest channel

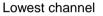
| a<br>Center F | RF 50 Ω AC<br>req 2.441000000                                                                                    | GHz<br>PNO: Fast | SENSE:INT<br>Trig: Free Run<br>#Atten: 40 dB | ALIGN AUTO<br>Avg Type: Log-Pw<br>Avg Hold>100/100 |                               | Frequency                                    |
|---------------|------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------|----------------------------------------------------|-------------------------------|----------------------------------------------|
| 10 dB/div     | Ref Offset 1 dB<br>Ref 20.00 dBm                                                                                 | IFGain:Low       | Pricelli, 40 dib                             | Mk                                                 | r1 2.441 018 GHz<br>1.324 dBm | Auto Tun                                     |
| - <b>og</b>   |                                                                                                                  |                  | 1                                            |                                                    |                               | <b>Center Fre</b><br>2.441000000 GH          |
| 10.00         | and the second | www.ele          | ,                                            |                                                    |                               | <b>Start Fre</b><br>2.439500000 GF           |
| 20.0          |                                                                                                                  |                  |                                              |                                                    |                               | <b>Stop Fre</b><br>2.442500000 GH            |
| 40.0          |                                                                                                                  |                  |                                              |                                                    |                               | <b>CF Ste</b><br>300.000 ki<br><u>Auto</u> M |
| 50.0          |                                                                                                                  |                  |                                              |                                                    |                               | Freq Offs                                    |
| 70.0          | 441000 GHz                                                                                                       |                  |                                              |                                                    | Span 3.000 MHz                |                                              |
| #Res BW       |                                                                                                                  | #VBW             | / 3.0 MHz                                    | Sweep                                              | 1.000 ms (1001 pts)           |                                              |

Middle channel



| Test Requirement: | FCC Part15 C Section 15.247 (a)(2)                                          |
|-------------------|-----------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013                                                            |
| Limit:            | N/A                                                                         |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane |
| Test Instruments: | Refer to section 6.0 for details                                            |
| Test mode:        | Refer to section 5.2 for details                                            |
| Test results:     | Pass                                                                        |

# 4.4 20dB Emission Bandwidth


## **Measurement Data**

| Mode     | Test channel | 20dB Emission Bandwidth<br>(MHz) | Result |  |
|----------|--------------|----------------------------------|--------|--|
|          | Lowest       | 0.9310                           |        |  |
| GFSK     | Middle       | 0.9324                           | Pass   |  |
|          | Highest      | 0.9313                           |        |  |
|          | Lowest       | 1.261                            |        |  |
| Pi/4QPSK | Middle       | 1.262                            | Pass   |  |
|          | Highest      | 1.262                            |        |  |
|          | Lowest       | 1.226                            |        |  |
| 8DPSK    | Middle 1.226 |                                  | Pass   |  |
|          | Highest      | 1.224                            |        |  |

# Test plot as follows:



GFSK mode 03:08:34 PM May 18, 20 Radio Std: None Frequency ALGREAU Avg|Hold>10/10 nter Freg 2,402 IND GH Radio Device: BT Ref Offset 1 dB Ref 20.00 dBm Center Free 2.402000000 GH nter 2.402 GHz es BW 30 kHz Span 3 MHz Sweep 3.2 ms CF St 300.000 F #VBW 100 kHz Auto Occupied Bandw idth Total Powe 7.88 dBm 855.34 kHz Freq Offse -481 Hz Transmit Freq Error OBW Power 99.00 % B Bandy x dB 931.0 kHz -20.00 dB





Middle channel







#### Lowest channel



#### Middle channel



## Test mode:

8DPSK mode



Lowest channel



Middle channel



| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                          |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10:2013                                                            |  |  |  |  |
| Receiver setup:   | RBW=20KHz, VBW=62KHz, detector=Peak                                         |  |  |  |  |
| Limit:            | 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)                |  |  |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                            |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                            |  |  |  |  |
| Test results:     | Pass                                                                        |  |  |  |  |

# 4.5 Carrier Frequencies Separation

#### Measurement Data

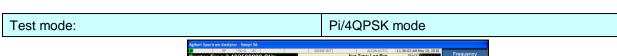
| Mode     | Test channel | Carrier Frequencies Separation<br>(kHz) | Limit (kHz) | Result |
|----------|--------------|-----------------------------------------|-------------|--------|
|          | Lowest       | 996                                     | 622         | Pass   |
| GFSK     | Middle       | 997                                     | 622         | Pass   |
|          | Highest      | 1000                                    | 622         | Pass   |
|          | Lowest       | 993                                     | 841         | Pass   |
| Pi/4QPSK | Middle       | 995                                     | 841         | Pass   |
|          | Highest      | 993                                     | 841         | Pass   |
|          | Lowest       | 992                                     | 817         | Pass   |
| 8DSK     | Middle       | 999                                     | 817         | Pass   |
|          | Highest      | 999                                     | 817         | Pass   |

#### Note: According to section 7.4

| Mode     | 20dB bandwidth (kHz)<br>(worse case) | Limit (kHz)<br>(Carrier Frequencies Separation) |
|----------|--------------------------------------|-------------------------------------------------|
| GFSK     | 932.4                                | 622                                             |
| Pi/4QPSK | 1262.00                              | 841                                             |
| 8DSK     | 1226.00                              | 817                                             |

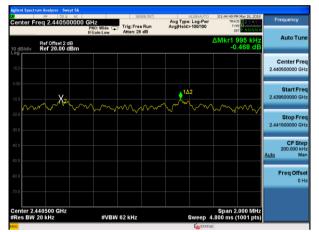
#### Test plot as follows:

Modulation mode:



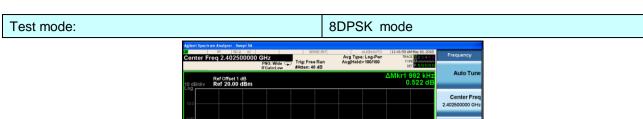

Lowest channel




Middle channel

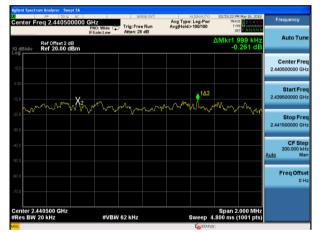





Lowest channel




Middle channel







Lowest channel

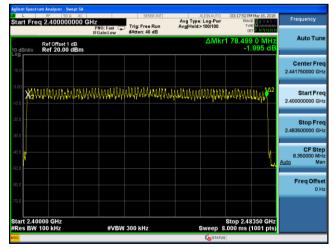


Middle channel



| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                          |  |  |  |
|-------------------|-----------------------------------------------------------------------------|--|--|--|
| Test Method:      | ANSI C63.10:2013                                                            |  |  |  |
| Receiver setup:   | RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz,<br>Detector=Peak |  |  |  |
| Limit:            | 15 channels                                                                 |  |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                            |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                            |  |  |  |
| Test results:     | Pass                                                                        |  |  |  |

# 4.6 Hopping Channel Number


#### **Measurement Data:**

| Mode     | Hopping channel numbers | Limit | Result |
|----------|-------------------------|-------|--------|
| GFSK     | 79                      | 15    | Pass   |
| Pi/4QPSK | 79                      | 15    | Pass   |
| 8DPSK    | 79                      | 15    | Pass   |



# Agent System Augent Sy

# Pi/4QPSK



| 8DPSK |
|-------|
|-------|

| Agilent Spect         | rum Analyzer - Swept                     |             |            |      |                       |         |                                  |                      |                                            |
|-----------------------|------------------------------------------|-------------|------------|------|-----------------------|---------|----------------------------------|----------------------|--------------------------------------------|
| Start Fre             | rf 50 g 2.40000000                       |             |            | Run  | Avg Type<br>Avg Hold: |         | TRACI                            | May 18, 2018         | Frequency                                  |
| 10 dB/div             | Ref Offset 1 dB<br>Ref 20.00 dB          | IFGain:Low  | #Atten: 40 |      |                       |         | <sub>00</sub><br>1 78.657<br>-0. |                      | Auto Tune                                  |
| 10.0                  |                                          |             |            |      |                       |         |                                  |                      | Center Freq<br>2.441750000 GHz             |
| 0.00<br>-10.0         | shawahahahahahahahahahahahahahahahahahah | forthe MANN | WWWW       | YMWW | WWW                   | /www.wi | WWW                              | ΛΛη <mark>142</mark> | Start Freq<br>2.40000000 GHz               |
| -20.0                 |                                          |             |            |      |                       |         |                                  |                      | <b>Stop Freq</b><br>2.483500000 GHz        |
| -40.0                 |                                          |             |            |      |                       |         |                                  | Ľ,                   | CF Step<br>8.350000 MHz<br><u>Auto</u> Man |
| -60.0                 |                                          |             |            |      |                       |         |                                  |                      | Freq Offset<br>0 Hz                        |
| -70.0                 |                                          |             |            |      |                       |         |                                  |                      |                                            |
| Start 2.40<br>#Res BW | 0000 GHz<br>100 kHz                      | #VBW        | 300 kHz    |      |                       | Sweep 8 | Stop 2.48<br>3.000 ms (*         | 350 GHz<br>1001 pts) |                                            |
| MSG                   |                                          |             |            |      |                       | STATU:  | S                                |                      |                                            |

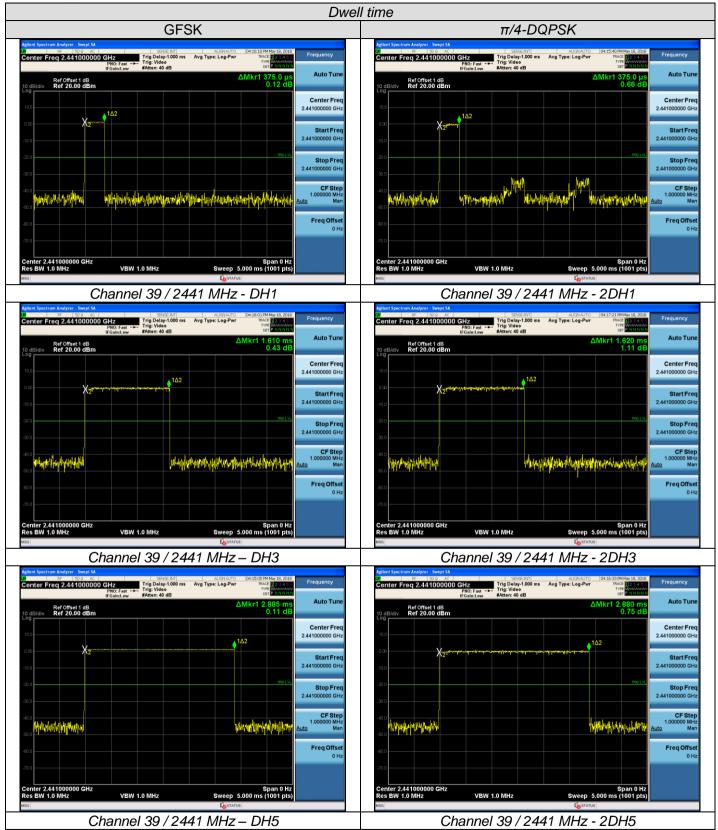
| 4.7 Dweir Fille   |                                                                             |  |  |  |
|-------------------|-----------------------------------------------------------------------------|--|--|--|
| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                          |  |  |  |
| Test Method:      | ANSI C63.10:2013                                                            |  |  |  |
| Receiver setup:   | RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak                                 |  |  |  |
| Limit:            | 0.4 Second                                                                  |  |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                            |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                            |  |  |  |
| Test results:     | Pass                                                                        |  |  |  |

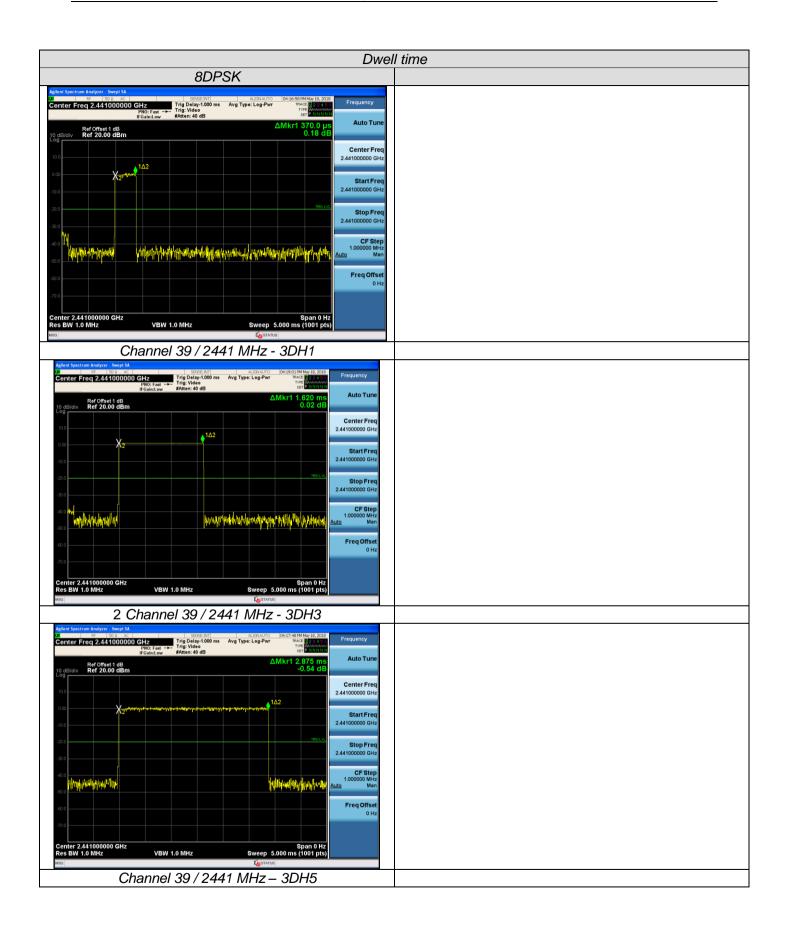
# 4.7 Dwell Time

## **Measurement Data**

| Mode      | Frequency<br>(MHz) | Burst Type | Pulse Width<br>(ms) | Dwell Time<br>(ms) | Limit<br>(ms) | Verdict |
|-----------|--------------------|------------|---------------------|--------------------|---------------|---------|
|           |                    | DH1        | 0.375               | 120.00             | 400           | PASS    |
| GFSK      | 2441               | DH3        | 1.610               | 257.60             |               |         |
|           |                    | DH5        | 2.885               | 307.73             |               |         |
|           | 2441               | DH1        | 0.375               | 120.00             | 400           | PASS    |
| π/4-DQPSK |                    | DH3        | 1.620               | 259.20             |               |         |
|           |                    | DH5        | 2.880               | 307.20             |               |         |
|           |                    | DH1        | 0.370               | 118.40             | 400           | PASS    |
| 8DPSK     | 2441               | DH3        | 1.620               | 259.20             |               |         |
|           |                    | DH5        | 2.875               | 306.67             |               |         |

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s


Test channel: 2402MHz/2441MHz/2480MHz as blow


DH1 time slot= Pulse time (ms)\*(1600/ (2\*79))\*31.6

DH3 time slot= Pulse time (ms)\*(1600/ (4\*79))\*31.6

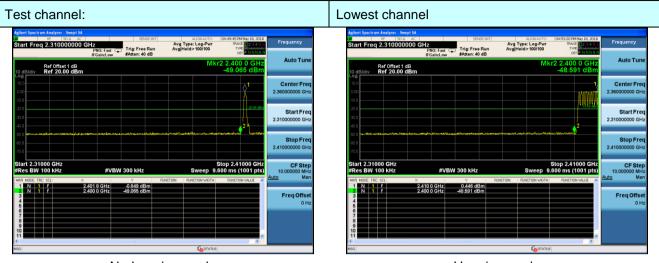
DH5 time slot= Pulse time (ms)\*(1600/ (6\*79))\*31.6

#### Test plot as follows:





| ;                                                                 | Pseudorandom Frequency Hopping Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                        |  |  |  |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        |  |  |  |  |
|                                                                   | Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.<br>Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                        |  |  |  |  |
|                                                                   | channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. |                                                                                                                                                                                        |  |  |  |  |
| EUT Pseudorandom Frequency Hopping Sequence                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        |  |  |  |  |
|                                                                   | <ul> <li>The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.</li> <li>Number of shift register stages: 9</li> <li>Length of pseudo-random sequence: 2<sup>9</sup>-1 = 511 bits</li> <li>Longest sequence of zeros: 8 (non-inverted signal)</li> </ul>                                                                                                                      |                                                                                                                                                                                        |  |  |  |  |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        |  |  |  |  |
|                                                                   | Linear Feedback Shift Register for Generation of the PRBS sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                        |  |  |  |  |
|                                                                   | An example of Pseudorando                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | om Frequency Hopping Sequence as follow:<br>62 64 78 1 73 75 77                                                                                                                        |  |  |  |  |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        |  |  |  |  |
|                                                                   | The system receivers have i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y on the average by each transmitter.<br>input bandwidths that match the hopping channel bandwidths of their<br>and shift frequencies in synchronization with the transmitted signals. |  |  |  |  |


# 4.9 Band Edge

# 4.9.1 Conducted Emission Method

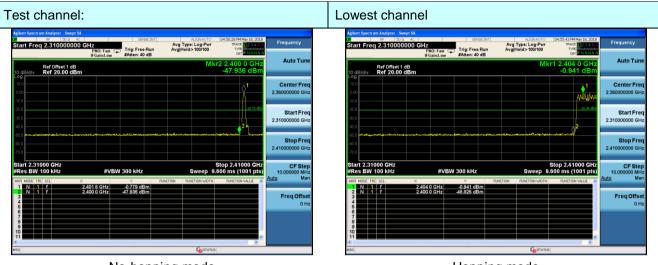
| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Method:      | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Receiver setup:   | RBW=100kHz, VBW=300kHz, Detector=Peak                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane                                                                                                                                                                                                                                                                                                             |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |


Test plot as follows:

### **GFSK Mode:**

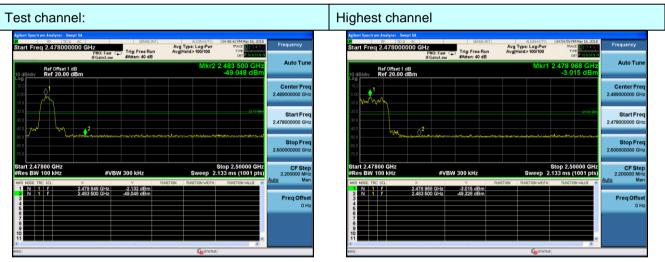


No-hopping mode






No-hopping mode


Hopping mode



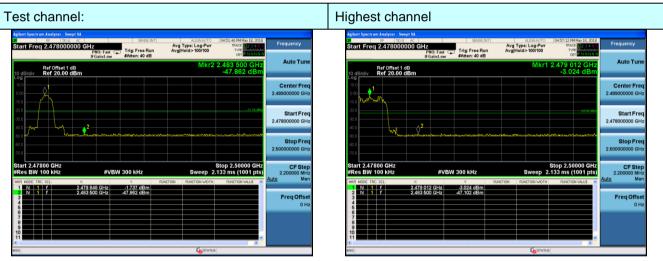


No-hopping mode






No-hopping mode


Hopping mode

#### 8DPSK Mode:



No-hopping mode





No-hopping mode

Hopping mode

| Test Requirement:               | FCC Part15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                                                                                 |                                                |                           |             |                             |  |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------|-------------|-----------------------------|--|--|--|
| Test Method:                    | ANSI C63.10:20                                                                                                                                                                                                                                                                                                                                         | 13                                             |                           |             |                             |  |  |  |
| Test Frequency Range:           | All restriction ba                                                                                                                                                                                                                                                                                                                                     | nd have bee                                    | en tested, and            | 2.3GHz to   | 2.5GHz band is the          |  |  |  |
| Test site:                      | Measurement D                                                                                                                                                                                                                                                                                                                                          | istance: 3m                                    |                           |             |                             |  |  |  |
| Receiver setup:                 | Frequency                                                                                                                                                                                                                                                                                                                                              | Detector                                       | RBW                       | VBW         | Remark                      |  |  |  |
|                                 | Above 1GHz                                                                                                                                                                                                                                                                                                                                             | Peak                                           | 1MHz                      | 3MHz        | Peak Value                  |  |  |  |
|                                 | Above TOTIZ                                                                                                                                                                                                                                                                                                                                            | Peak                                           | 1MHz                      | 10Hz        | Average Value               |  |  |  |
| Limit:                          | Freque                                                                                                                                                                                                                                                                                                                                                 | ncy                                            | Limit (dBuV/              |             | Remark                      |  |  |  |
|                                 | Above 1                                                                                                                                                                                                                                                                                                                                                | GHz                                            | <u> </u>                  |             | Average Value<br>Peak Value |  |  |  |
| Test setup:                     |                                                                                                                                                                                                                                                                                                                                                        |                                                | 74.0                      | 0           | Peak value                  |  |  |  |
|                                 | Tum Tables 700<br><150cm >                                                                                                                                                                                                                                                                                                                             | EUT+                                           | < lm 4m ><br>Receivery Pr | eamplifier. |                             |  |  |  |
|                                 | <ul><li>the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.</li><li>2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li></ul>                                                             |                                                |                           |             |                             |  |  |  |
|                                 | 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.                                                                                                                        |                                                |                           |             |                             |  |  |  |
|                                 | 4. For each suspected emission, the EUT was arranged to its worst case<br>and then the antenna was tuned to heights from 1 meter to 4 meters<br>and the rota table was turned from 0 degrees to 360 degrees to find the<br>maximum reading.                                                                                                            |                                                |                           |             |                             |  |  |  |
|                                 | 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                            |                                                |                           |             |                             |  |  |  |
|                                 | 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. |                                                |                           |             |                             |  |  |  |
|                                 | 10dB margin                                                                                                                                                                                                                                                                                                                                            | would be re-                                   |                           |             |                             |  |  |  |
| Test Instruments:               | 10dB margin                                                                                                                                                                                                                                                                                                                                            | would be re-<br>lod as specif                  | ied and then r            |             |                             |  |  |  |
| Test Instruments:<br>Test mode: | 10dB margin<br>average meth                                                                                                                                                                                                                                                                                                                            | would be re-<br>od as specif<br>6.0 for detail | ied and then r<br>Is      |             |                             |  |  |  |

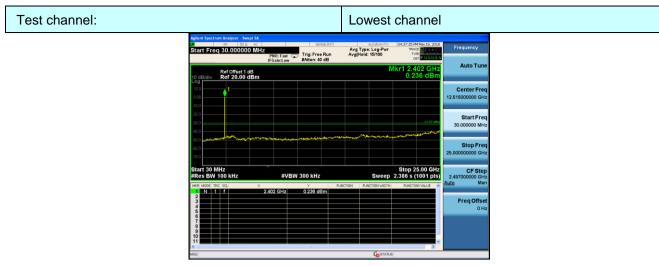
4.9.2 Radiated Emission Method

1. During the test, pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.

| Test channe        | l:                      |                             |                       | Low                      | vest              |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2390.00            | 46.18                   | 27.59                       | 5.38                  | 30.18                    | 48.97             | 74.00                  | -25.03                | Horizontal   |
| 2400.00            | 51.47                   | 27.58                       | 5.39                  | 30.18                    | 54.26             | 74.00                  | -19.74                | Horizontal   |
| 2390.00            | 47.04                   | 27.59                       | 5.38                  | 30.18                    | 49.83             | 74.00                  | -24.17                | Vertical     |
| 2400.00            | 50.32                   | 27.58                       | 5.39                  | 30.18                    | 53.11             | 74.00                  | -20.89                | Vertical     |
| Average val        | lue:                    |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2390.00            | 35.21                   | 27.59                       | 5.38                  | 30.18                    | 38.00             | 54.00                  | -16.00                | Horizontal   |
| 2400.00            | 37.00                   | 27.58                       | 5.39                  | 30.18                    | 39.79             | 54.00                  | -14.21                | Horizontal   |
| 2390.00            | 35.72                   | 27.59                       | 5.38                  | 30.18                    | 38.51             | 54.00                  | -15.49                | Vertical     |
| 2400.00            | 37.60                   | 27.58                       | 5.39                  | 30.18                    | 40.39             | 54.00                  | -13.61                | Vertical     |
|                    |                         |                             |                       | _                        |                   |                        |                       |              |
| Test channe        |                         |                             |                       | Higl                     | nest              |                        |                       |              |
| Peak value:        |                         |                             |                       | 1                        | r                 |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2483.50            | 48.06                   | 27.53                       | 5.47                  | 29.93                    | 51.13             | 74.00                  | -22.87                | Horizontal   |
| 2500.00            | 47.11                   | 27.55                       | 5.49                  | 29.93                    | 50.22             | 74.00                  | -23.78                | Horizontal   |
| 2483.50            | 49.76                   | 27.53                       | 5.47                  | 29.93                    | 52.83             | 74.00                  | -21.17                | Vertical     |
| 2500.00            | 47.74                   | 27.55                       | 5.49                  | 29.93                    | 50.85             | 74.00                  | -23.15                | Vertical     |
| Average va         | lue:                    |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2483.50            | 38.31                   | 27.53                       | 5.47                  | 29.93                    | 41.38             | 54.00                  | -12.62                | Horizontal   |
| 2500.00            | 36.20                   | 27.55                       | 5.49                  | 29.93                    | 39.31             | 54.00                  | -14.69                | Horizontal   |
| 2483.50            | 39.68                   | 27.53                       | 5.47                  | 29.93                    | 42.75             | 54.00                  | -11.25                | Vertical     |
| 2500.00            | 36.54                   | 27.55                       | 5.49                  | 29.93                    | 39.65             | 54.00                  | -14.35                | Vertical     |

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor


| 4.10 Spurious | Emission |
|---------------|----------|
|---------------|----------|

## 4.10.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 Meas Guidance V04                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |

### Remark:

During the test, pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.



### 30MHz~25GHz

|                                                                                   |                           |                     |                              | Mi                         | ddle                  | cha                     | nnel                    |                                                  |
|-----------------------------------------------------------------------------------|---------------------------|---------------------|------------------------------|----------------------------|-----------------------|-------------------------|-------------------------|--------------------------------------------------|
| Agilent Spec                                                                      | trum Analyzer - Sv        | wept SA             |                              |                            |                       |                         |                         |                                                  |
| N<br>Start Er                                                                     | RF 50                     |                     | SENSE                        |                            | ALIGNAUTO             |                         | M May 18, 2018<br>CE    | Frequency                                        |
| Start Pr                                                                          | aq 30.00000               | PNO: Fa<br>IFGain:L |                              | un Avg He                  | old: 5/100            | TY                      | PE MUMUUM<br>ET P NNNNN |                                                  |
| 10 dB/div                                                                         | Ref Offset 1<br>Ref 20.00 | IdB<br>)dBm         |                              |                            | ſ                     | 0.5 Wikr1               | 52 GHz<br>74 dBm        | Auto Tu                                          |
| Log<br>10.0                                                                       |                           |                     |                              |                            |                       |                         |                         | Center F                                         |
| 0.00                                                                              | •                         |                     |                              |                            |                       |                         |                         | 12.515000000                                     |
| -10.0                                                                             |                           |                     |                              |                            |                       |                         |                         |                                                  |
| -20.0                                                                             |                           |                     |                              |                            |                       |                         |                         | Start F                                          |
| -30.0                                                                             |                           |                     |                              |                            |                       |                         | -31.67.dBn              | 30.000000                                        |
| -40.0                                                                             |                           |                     |                              |                            | 4 months              |                         | معهيل                   |                                                  |
| -50.0                                                                             | and the second            | A management        | ومحافظهم يصدوا ليدعني الهدمة | and a start and a start of | "International states | and and a second second |                         | Oton F                                           |
| -60.0                                                                             |                           |                     |                              |                            |                       |                         |                         | Stop F                                           |
|                                                                                   |                           |                     |                              |                            |                       |                         |                         | 25.0000000000                                    |
| -70.0                                                                             |                           |                     |                              |                            |                       |                         |                         | 25.000000000                                     |
| Start 30                                                                          | MHz<br>V 100 kHz          |                     | VBW 300 kHz                  |                            | Sweep                 | Stop 2<br>2.386 s       | 5.00 GHz<br>(1001 pts)  | 25.000000000 CF S<br>2.497000000 CF S            |
| Start 30<br>#Res BV                                                               | TRC SCL                   | X                   | Y                            |                            | Sweep                 | 2.386 s                 | 25.00 GHz<br>(1001 pts) | CF S<br>2.497000000                              |
| Start 30<br>#Res BV                                                               | V 100 kHz                 |                     | Y                            |                            |                       | 2.386 s                 | (1001 pts)              | CF S<br>2.497000000<br>Auto                      |
| Start 30<br>#Res BV<br>MKR MODE<br>1 N<br>2<br>3                                  | TRC SCL                   | X                   | Y                            |                            |                       | 2.386 s                 | (1001 pts)              | CF S<br>2.497000000 (<br><u>Auto</u><br>Freq Off |
| Start 30<br>#Res BV<br>MKR MODE<br>1 N<br>2<br>3<br>4<br>5                        | TRC SCL                   | X                   | Y                            |                            |                       | 2.386 s                 | (1001 pts)              | CF S<br>2.497000000 (<br><u>Auto</u>             |
| Start 30<br>#Res BV<br>MKR MODE<br>1 N<br>2<br>3<br>4<br>5<br>6<br>7              | TRC SCL                   | X                   | Y                            |                            |                       | 2.386 s                 | (1001 pts)              | CF S<br>2.497000000 (<br><u>Auto</u><br>Freq Off |
| Start 30<br>#Res BV<br>MKR MODE<br>1<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>8<br>9 | TRC SCL                   | X                   | Y                            |                            |                       | 2.386 s                 | (1001 pts)              | CF S<br>2.497000000<br>Auto<br>Freq Off          |
| Start 30<br>#Res BV<br>MKR MDDE<br>1 N<br>2<br>3<br>4<br>5<br>6<br>7<br>8         | TRC SCL                   | X                   | Y                            |                            |                       | 2.386 s                 | (1001 pts)              | CF S<br>2.497000000 (<br><u>Auto</u><br>Freq Off |

30MHz~25GHz

| RF 50 \$                  | O MHZ         | 10:Fast G                      | Trig: Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Avg Type                                                                        | : Log-Pwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CE 23456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Frequenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------|---------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Offset 1<br>Ref 20.00 | dB<br>dBm     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 | Λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Auto T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                         |               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Center<br>12.515000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                           |               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -31.62.4Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Start<br>30.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                           | p.com.com.com | ******                         | and an entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a da na ser a da d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ال <sup>ی</sup> سلی در او                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stop<br>25.000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                           |               | #VBV                           | V 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                           | ×<br>2.47     | 7 GHz                          | ү<br>-1.194 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CTION FUP                                                                       | ICTION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PUNCTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ON VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Auto<br>Freq O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           |               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           | RF 500        | Ref 000000 MHz<br>Ref 2000 dBm | 80         80         80           91         30.000000 MHz         Proc. Far. C           Proc. 1 art C         26 Calc. L or           Ref Offset 1 dB         Ref 20.00 dBm           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1 | 89         903         AC         File           Pig         30.000000 MHz         Pio. (ref. cold)         Trig. Free           Bit         Glabelite         Affects 40         Affects 40           Ref Offset 1 dB         Free         Affects 40         Affects 40           Mitz         Statistical affects         Statistical affects         Affects 40           Mitz         Statistical affects         Statistical affects         Affects           Foot kitz         Statistical affects         Y         Y | 00         401         1         1         000000000000000000000000000000000000 | BY         BY< | 89         202         ADDRATION         ADDRATION           193         XCI         Ling Processor         Addratic Seg Processor           194         30.0000000 MHz         PROC_1set         Trigs Free Run<br>Meters: 40 dB         Arg Type: Log Proc<br>Arg Type: Log Pr | IP         100         AC         1         Stock MI         4.00 Autor         0.00 Bits           Pig 03.000000 MHz         Pigs Free Run<br>(#Gainct.ew         Trigs Free Run<br>Avagined.4100         Avg Trips: Log Pier         Trips<br>Ref of first 1 dB         Mkrt 1 24           Ref 015is 1 dB         Mkrt 1 24         100         10         10         10           MHz         EVEW 300 kHz         Stoce 7         Stoce 7         Stoce 7         10           MHz         EVEW 300 kHz         Stoce 7         Stoce 7         Stoce 7         10         10           100 kHz         V         Y         FUECIONI         Runcinow MONIT         Runcinow MONIT         Stoce 7         10 | IP         IOS         C         INSERT         AUXADO         OVERSEM Must accurate acc |

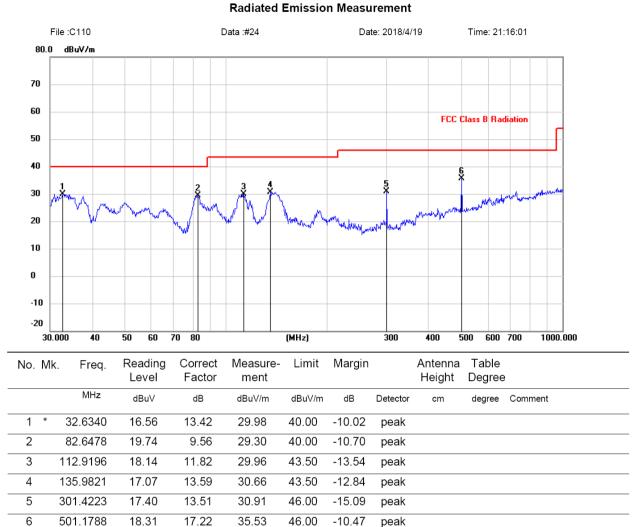
## Test channel:

Test channel:

30MHz~25GHz

| Test Requirement:     | FCC Part15 C S     |             |                |                |                  |  |
|-----------------------|--------------------|-------------|----------------|----------------|------------------|--|
| Test Method:          | ANSI C63.10:20     | 013         |                |                |                  |  |
| Test Frequency Range: | 30MHz to 25GH      | lz          |                |                |                  |  |
| Test site:            | Measurement D      | istance: 3m |                |                |                  |  |
| Receiver setup:       | Frequency Detector |             | RBW            | VBW            | Remark           |  |
|                       | 9kHz-<br>150kHz    | Quasi-peak  | 200Hz          | 1kHz           | Quasi-peak Value |  |
|                       | 150kHz-<br>30MHz   | Quasi-peak  | 9kHz           | 30kHz          | Quasi-peak Value |  |
|                       | 30MHz-<br>1GHz     | Quasi-peak  | 120KHz         | 300KHz         | Quasi-peak Value |  |
|                       |                    | Peak        | 1MHz           | 3MHz           | Peak Value       |  |
|                       | Above 1GHz         | Peak        | 1MHz           | 10Hz           | Average Value    |  |
| Limit:                | Freque             | ency        | Limit (dBuV    | /m @3m)        | Remark           |  |
|                       | 0.009-0.4          | 90MHz       | 2400/F(        | KHz)           | 300              |  |
|                       | 0.490-1.7          | 05MHz       | 24000/F        | (KHz)          | 30               |  |
|                       | 1.705-30           |             | 30             |                | 30               |  |
|                       | 30MHz-8            | 8MHz        | 40.0           | )              | Quasi-peak Value |  |
|                       | 88MHz-2            | 16MHz       | 43.8           | 5              | Quasi-peak Value |  |
|                       | 216MHz-9           | 60MHz       | 46.0           | )              | Quasi-peak Value |  |
|                       | 960MHz-            | 1GHz        | 54.0           | )              | Quasi-peak Value |  |
|                       | Above 1            |             | 54.0           | )              | Average Value    |  |
|                       | ADOVE              |             |                |                |                  |  |
|                       |                    |             | 74.(           | )              | Peak Value       |  |
| Test setup:           | Below 1GHz         | ÷           | < 3m>ψ<br>Test | $-\frac{1}{2}$ |                  |  |

## 4.10.2 Radiated Emission Method


|                   | $\frac{\langle 3m \rangle_{\ell}}{\text{Test Antenna}^{\ell}}$ $\frac{ }{\text{Tum Tablee}} = \frac{ }{ }$ $\frac{ }{$ |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Procedure:   | <ol> <li>The EUT was placed on the top of a rotating table (0.8 meters below<br/>1G and 1.5 meters above 1G) above the ground at a 3 meter camber.<br/>The table was rotated 360 degrees to determine the position of the<br/>highest radiation.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | 4. For each suspected emission, the EUT was arranged to its worst case<br>and then the antenna was tuned to heights from 1 meter to 4 meters<br>and the rota table was turned from 0 degrees to 360 degrees to find the<br>maximum reading.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Remark:

- 1. During the test, pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 3. The test data below 30MHz is too lower than the limit, so not show in this report.
- 4. Pre-scan all modes and recorded the worst case results in this report (TX-Middle Channel (1Mbps)).

### Measurement data:

Test result for BT3.0 (GFSK: 2441MHz), AC 120V/ 60Hz Vertical:



Note:1. \*:Maximum data; x:Over limit; !:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

# Test result for BT3.0 (GFSK: 2441MHz), AC 120V/ 60Hz Horizontal:



Note:1. \*:Maximum data; x:Over limit; !:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

### Above 1GHz

| Test channel       | :                       |                             |                       |                          | Lowest            |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4804.00            | 38.24                   | 31.78                       | 8.6                   | 32.09                    | 46.53             | 74.00                  | -27.47                | Vertical     |
| 7206.00            | 32.76                   | 36.15                       | 11.65                 | 32                       | 48.56             | 74.00                  | -25.44                | Vertical     |
| 9608.00            | 31.94                   | 37.95                       | 14.14                 | 31.62                    | 52.41             | 74.00                  | -21.59                | Vertical     |
| 12010.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14412.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4804.00            | 42.09                   | 31.78                       | 8.6                   | 32.09                    | 50.38             | 74.00                  | -23.62                | Horizontal   |
| 7206.00            | 34.26                   | 36.15                       | 11.65                 | 32                       | 50.06             | 74.00                  | -23.94                | Horizontal   |
| 9608.00            | 31.54                   | 37.95                       | 14.14                 | 31.62                    | 52.01             | 74.00                  | -21.99                | Horizontal   |
| 12010.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14412.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |

### Average value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 4804.00            | 26.12                   | 31.78                       | 8.6                   | 32.09                    | 34.41             | 54.00                  | -19.59                | Vertical     |
| 7206.00            | 21.10                   | 36.15                       | 11.65                 | 32                       | 36.90             | 54.00                  | -17.10                | Vertical     |
| 9608.00            | 20.11                   | 37.95                       | 14.14                 | 31.62                    | 40.58             | 54.00                  | -13.42                | Vertical     |
| 12010.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14412.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4804.00            | 30.68                   | 31.78                       | 8.6                   | 32.09                    | 38.97             | 54.00                  | -15.03                | Horizontal   |
| 7206.00            | 22.99                   | 36.15                       | 11.65                 | 32                       | 38.79             | 54.00                  | -15.21                | Horizontal   |
| 9608.00            | 19.18                   | 37.95                       | 14.14                 | 31.62                    | 39.65             | 54.00                  | -14.35                | Horizontal   |
| 12010.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14412.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "\*", means this data is the too weak instrument of signal is unable to test.

| Test channel       | :                       |                             |                       |                          | Middle            |                        |                       |              |  |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|--|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |  |
| 4882.00            | 37.64                   | 31.85                       | 8.67                  | 32.12                    | 46.04             | 74.00                  | -27.96                | Vertical     |  |  |
| 7323.00            | 32.33                   | 36.37                       | 11.72                 | 31.89                    | 48.53             | 74.00                  | -25.47                | Vertical     |  |  |
| 9764.00            | 31.48                   | 38.35                       | 14.25                 | 31.62                    | 52.46             | 74.00                  | -21.54                | Vertical     |  |  |
| 12205.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |  |  |
| 14646.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |  |  |
| 4882.00            | 42.59                   | 31.85                       | 8.67                  | 32.12                    | 50.99             | 74.00                  | -23.01                | Horizontal   |  |  |
| 7323.00            | 33.76                   | 36.37                       | 11.72                 | 31.89                    | 49.96             | 74.00                  | -24.04                | Horizontal   |  |  |
| 9764.00            | 31.69                   | 38.35                       | 14.25                 | 31.62                    | 52.67             | 74.00                  | -21.33                | Horizontal   |  |  |
| 12205.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |  |  |
| 14646.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |  |  |

### Average value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 4882.00            | 26.24                   | 31.85                       | 8.67                  | 32.12                    | 34.64             | 54.00                  | -19.36                | Vertical     |
| 7323.00            | 21.12                   | 36.37                       | 11.72                 | 31.89                    | 37.32             | 54.00                  | -16.68                | Vertical     |
| 9764.00            | 19.44                   | 38.35                       | 14.25                 | 31.62                    | 40.42             | 54.00                  | -13.58                | Vertical     |
| 12205.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14646.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4882.00            | 30.44                   | 31.85                       | 8.67                  | 32.12                    | 38.84             | 54.00                  | -15.16                | Horizontal   |
| 7323.00            | 23.51                   | 36.37                       | 11.72                 | 31.89                    | 39.71             | 54.00                  | -14.29                | Horizontal   |
| 9764.00            | 19.49                   | 38.35                       | 14.25                 | 31.62                    | 40.47             | 54.00                  | -13.53                | Horizontal   |
| 12205.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14646.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

Remark:

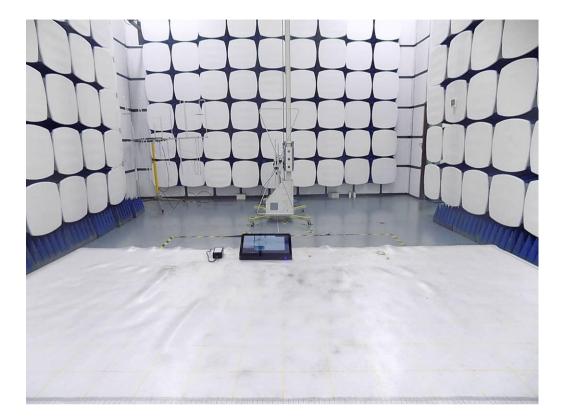
1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "\*", means this data is the too weak instrument of signal is unable to test.

| Test channel       | :                       |                             |                       | Highest                  |                   |                        |                       |              |  |  |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|--|--|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |  |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |  |  |
| 4960.00            | 37.68                   | 31.93                       | 8.73                  | 32.16                    | 46.18             | 74.00                  | -27.82                | Vertical     |  |  |  |
| 7440.00            | 32.75                   | 36.59                       | 11.79                 | 31.78                    | 49.35             | 74.00                  | -24.65                | Vertical     |  |  |  |
| 9920.00            | 31.30                   | 38.81                       | 14.38                 | 31.88                    | 52.61             | 74.00                  | -21.39                | Vertical     |  |  |  |
| 12400.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |  |  |  |
| 14880.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |  |  |  |
| 4960.00            | 42.75                   | 31.93                       | 8.73                  | 32.16                    | 51.25             | 74.00                  | -22.75                | Horizontal   |  |  |  |
| 7440.00            | 34.04                   | 36.59                       | 11.79                 | 31.78                    | 50.64             | 74.00                  | -23.36                | Horizontal   |  |  |  |
| 9920.00            | 31.96                   | 38.81                       | 14.38                 | 31.88                    | 53.27             | 74.00                  | -20.73                | Horizontal   |  |  |  |
| 12400.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |  |  |  |
| 14880.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |  |  |  |

### Average value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 4960.00            | 26.48                   | 31.93                       | 8.73                  | 32.16                    | 34.98             | 54.00                  | -19.02                | Vertical     |
| 7440.00            | 20.93                   | 36.59                       | 11.79                 | 31.78                    | 37.53             | 54.00                  | -16.47                | Vertical     |
| 9920.00            | 19.68                   | 38.81                       | 14.38                 | 31.88                    | 40.99             | 54.00                  | -13.01                | Vertical     |
| 12400.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14880.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4960.00            | 30.95                   | 31.93                       | 8.73                  | 32.16                    | 39.45             | 54.00                  | -14.55                | Horizontal   |
| 7440.00            | 23.43                   | 36.59                       | 11.79                 | 31.78                    | 40.03             | 54.00                  | -13.97                | Horizontal   |
| 9920.00            | 19.74                   | 38.81                       | 14.38                 | 31.88                    | 41.05             | 54.00                  | -12.95                | Horizontal   |
| 12400.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14880.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |


Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "\*", means this data is the too weak instrument of signal is unable to test.

# 5 Test Setup Photo

Radiated Emission







# Conducted Emission

# 6 EUT Constructional Details

Please refer to separated files for External Photos & Internal Photos of the EUT.

-----End------