

FCC TEST REPORT FCC ID: 2AP2N-UPTM

On Behalf of

Shenzhen Esorun Technology Co., LTD

5 in 1 Magnetic Wireless Power Bank Station

Model No.: StandUP TM10000, StandUP TM20000

Prepared for : Shenzhen Esorun Technology Co., LTD	
Address Room 226, Building A, B, C, Zone B, Yuanfen Industrial Zone, Taoyuan Community, Dalang Street, Longhua District, Shenzhen	n

Prepared By	:	Shenzhen Alpha Product Testing Co., Ltd.		
Address	:	Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China		

Report Number	:	A2307239-C03-R07
Date of Receipt	:	August 2, 2023
Date of Test	:	August 2, 2023-August 18, 2023
Date of Report	:	August 18, 2023
Version Number	:	V0

TABLE OF CONTENTS

	Description	Page
1.	Test Result Summary	5
2.	General Information	6
	2.1. DESCRIPTION OF DEVICE (EUT)	6
	2.2. Accessories of Device (EUT)	7
	2.3. TESTED SUPPORTING SYSTEM DETAILS	7
	2.4. BLOCK DIAGRAM OF CONNECTION BETWEEN EUT AND SIMULATORS	7
	2.5. DESCRIPTION OF TEST MODES	7
	2.6. TEST CONDITIONS	7
	2.7. TEST FACILITY	8
	2.8. MEASUREMENT UNCERTAINTY	8
	2.9. TEST EQUIPMENT LIST	9
3.	Test Results and Measurement Data	10
	3.1. CONDUCTED EMISSION	10
	3.2. RADIATED SPURIOUS EMISSION MEASUREMENT	14
	3.3. TEST SPECIFICATION	25
4.	Photos of test setup	
5.	Photographs of EUT	

Applicant	:	Shenzhen Esorun Technology Co., LTD			
Address	:	Room 226, Building A, B, C, Zone B, Yuanfen Industrial Zone, Taoyuan Community, Dalang Street, Longhua District, Shenzhen			
Manufacturer	:	Shenzhen Esorun Technology Co., LTD			
Address	:	Room 226, Building A, B, C, Zone B, Yuanfen Industrial Zone, Taoyuan Community, Dalang Street, Longhua District, Shenzhen			
EUT Description	:	5 in 1 Magnetic Wireless Power Bank Station			
		(A) Model No. : StandUP TM10000, StandUP TM20000			
		(B) Trademark : ESORUN			

TEST REPORT DECLARATION

Measurement Standard Used:

FCC CFR Title 47 Part 15 Subpart C Section 15.209

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with the FCC CFR Title 47 Part 15 Subpart C Section 15.209 requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature).....:

Lucas Pang **Project Engineer**

Lucas Pourg

Reak Yang **Project Manager**

Date of issue.....:

Approved by (name + signature).....:

August 18, 2023

Revision History

Revision	Issue Date	Revisions	Revised By
V0	August 18, 2023	Initial released Issue	Lucas Pang

1. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Spurious Emission	§15.209(a)(f)	PASS
Occupied Bandwidth	§15.215 (c)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

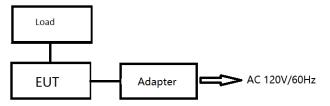
4. The test result judgment is decided by the limit of test standard.

5. Decision rules for the conclusion of this test report: decision by actual test data without

considering measurement uncertainty.

2. General Information

2.1. Description of Device (EUT)				
EUT Name	:	5 in 1 Magnetic Wireless Power Bank Station		
Model No.	:	StandUP TM10000, StandUP TM20000		
DIFF.	:	There is no difference except the name of the model. All tests are made with the StandUP TM10000 model.		
Power supply : DC Typ Mic US Typ Wir Airp iWa		DC 5V/9V from adapter with AC 120V/60Hz, DC 3.7V from battery Type-C Input: 5V=2.6A, 9V=2A Micro USB Input: 5V=2A, 9V=2A USB-A Output: 5V=3A, 9V=2A, 12V=1.5A Type-C Output: 5V=2.4A, 9V=2.22A, 12V=1.67A Wireless Output: 5W, 7.5W, 10W, 15W Airpods Output: 5W iWatch Output: 5W Simultaneous Output: 5V=3A		
Radio Technology	:	Wireless power transmission systems		
Operation frequency	:	115-205KHz, 325KHz		
Modulation	:	MSK		
Antenna Type	:	Coil Antenna, Maximum Gain is 0dBi(This value is supplied by applicant).		
Connector cable loss	:	0.5dB (This value is supplied by applicant).		
Software version	:	V1.0		
Hardware version	:	V1.0		


2.2. Accessories of Device (EUT)

Accessories	:	SB Cable			
Manufacturer	:	nzhen Esorun Technology Co., LTD			
Model	:	1.5m			
specifications	:	1.5m			

2.3. Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or SDoC
1	Adapter	XinSPower	BS-CH905	N/A	N/A
2	Wireless Load	N/A	N/A	N/A	N/A
3	Wireless Load	N/A	N/A	N/A	N/A
4	Wireless Load	N/A	N/A	N/A	N/A

2.4. Block Diagram of connection between EUT and simulators

2.5. Description of Test Modes

Channel	Frequency (KHz)
1	128
2	132
3	325

2.6. Test Conditions

Items	Required	Actual
Temperature range:	15-35 ℃	24 ℃
Humidity range:	25-75%	56%
Pressure range:	86-106kPa	98kPa

2.7. Test Facility

Shenzhen Alpha Product Testing Co., Ltd Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission Registration Number: 293961

July 15, 2019 Certificated by IC Registration Number: 12135A

2.8. Measurement Uncertainty

(95% confidence levels, k=2)

Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	1.63dB
Uncertainty for Radiation Emission test in 3m chamber (below 30MHz)	3.5dB
Uncertainty for Radiation Emission test in 3m chamber	3.74dB(Polarize: V)
(30MHz to 1GHz)	3.76dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	3.77dB(Polarize: V)
(1GHz to 25GHz)	3.80dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	4.31 dB(Polarize: V)
(18GHz to 40GHz)	4.30 dB(Polarize: H)
Uncertainty for radio frequency	5.06×10 ⁻⁸ GHz
Uncertainty for conducted RF Power	0.40dB
Uncertainty for temperature	0.2°C
Uncertainty for humidity	1%
Uncertainty for DC and low frequency voltages	0.06%

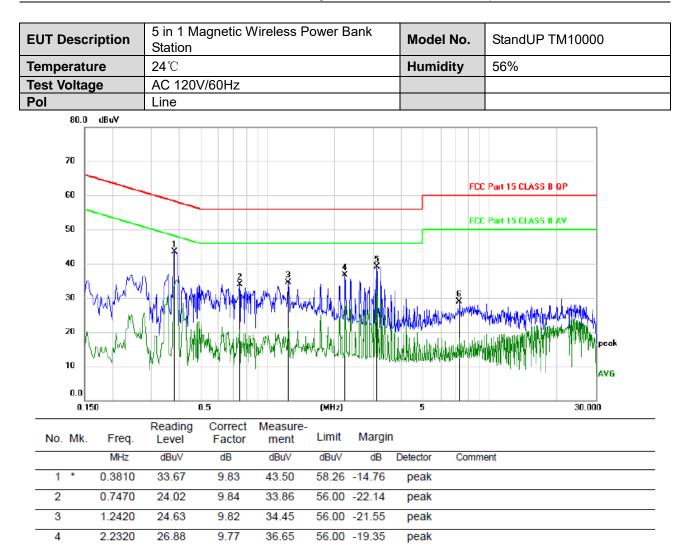
Equipment	Manufacture Model No. Firmware Serial No.		Last cal.	Cal Interval		
9*6*6 anechoic chamber	CHENYU	9*6*6	/	N/A	2022.05.17	3Year
Spectrum analyzer	ROHDE&SCHWARZ	HDE&SCHWARZ FSV40-N 2.3 102137 20		2022.08.22	1Year	
Spectrum analyzer	Agilent	N9020A	A.14.16	MY499100060	2022.08.22	1Year
Receiver	ROHDE&SCHWARZ	ESR	2.28 SP1	1316.3003K03-10 2082-Wa	2022.08.22	1Year
Receiver	R&S	ESCI	4.42 SP1	101165	2022.08.22	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	/	VULB 9168#627	2021.08.30	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	/	2106	2021.08.30	2Year
Active Loop Antenna	SCHWARZBECK	FMZB 1519B	/	00059	2021.08.30	2Year
RF Cable	Resenberger	Cable 1	/	RE1	2022.08.22	1Year
RF Cable	Resenberger	Cable 2	/	RE2	2022.08.22	1Year
RF Cable	Resenberger	Cable 3	/	CE1	2022.08.22	1Year
Pre-amplifier	HP	HP8347A	/	2834A00455	2022.08.22	1Year
Pre-amplifier	Agilent	8449B	/	3008A02664	2022.08.22	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	/	8126-466	2022.08.22	1Year
L.I.S.N.#2	ROHDE&SCHWARZ	ENV216	/	101043	2022.08.23	1 Year
Horn Antenna	SCHWARZBECK	BBHA9170	/	00946	2021.08.30	2 Year
Preamplifier	SKET	LNPA_1840 -50	/	SK2018101801	2022.08.22	1 Year
Power Meter	Agilent	E9300A	/	MY41496628	2022.08.22	1 Year
Power Sensor	DARE	RPR3006W	/	15100041SNO91	2022.08.22	1 Year
Temp. & Humid. Chamber	Teelong	TL-HW408S	/	TL-20191205-01	2023.07.25	1 Year
Switching Mode Power Supply	JUNKE	JK12010S	/	20140927-6	2022.08.22	1 Year
Adjustable attenuator	MWRFtest	N/A	/	N/A	N/A	N/A
10dB Attenuator	Mini-Circuits	DC-6G	/	N/A	N/A	N/A

2.9. Test Equipment List

Software Information								
Test Item	Software Name	Version						
RE	EZ-EMC	Farad	Alpha-3A1					
CE	EZ-EMC	Farad	Alpha-3A1					
RF-CE	MTS 8310	MWRFtest	2.0.0.0					

3. Test Results and Measurement Data

3.1. Conducted Emission


3.1.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.20	07					
Test Method:	ANSI C63.10:2013						
Frequency Range:	150 kHz to 30 MHz						
Receiver setup:	RBW=9 kHz, VBW=30 kHz,	Sweep time=auto					
	Frequency range (MHz)	Limit (d	BuV)				
		Quasi-peak	Average				
Limits:	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	Referen	nce Plane					
Test Setup:	40cm 80cm LISN Filter AC power Filter AC power E.U.T Adapter Fest table/Insulation plane EMI Receiver Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
Test Mode:	Transmitting Mode						
Test Procedure:	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 						
Test Result:	PASS						

3.1.2. Test data

Please refer to following diagram for individual

Test Mo	ode : 128KHz
Test Re	esults : PASS
Note:	The test results are listed in next pages.
	All test modes has been tested, this report only reflected the worst mode.
	If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector and quasi-peak detector need not be carried out. If the limits for the measurement with the average detector are met when using a receiver with a quasi-peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector are met when using a receiver with a quasi-peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

*:Maximum data x:Over limit 1:over margin (Reference Only Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

56.00 -16.88

60.00 -31.07

peak

peak

3.1020

7.3260

5

6

29.31

19.00

9.81

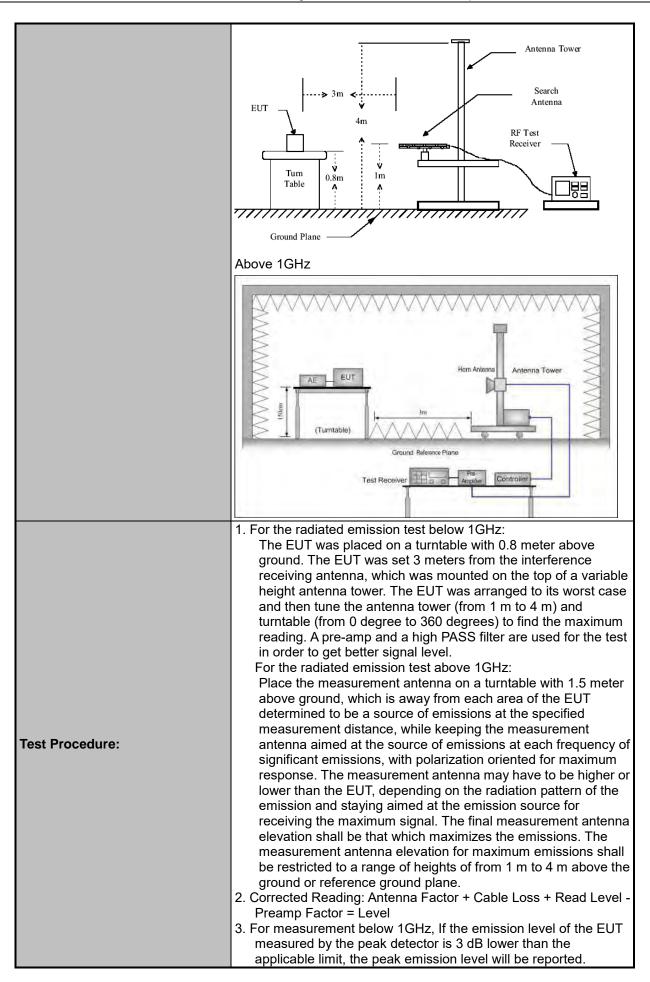
9.93

39.12

28.93

*:Maximum data x:Over limit !:over margin

(Reference Only

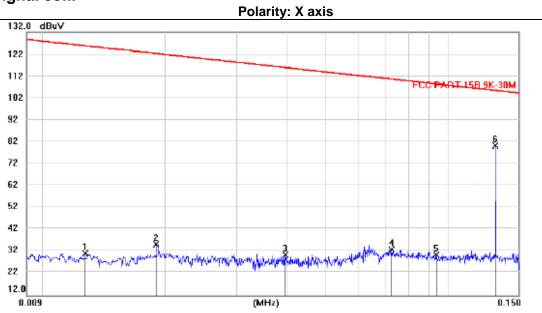

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable
*:Maximum data x:Over limit !:over margin

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

3.2. Radiated Spurious Emission Measurement

3.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10: 2	2013							
Frequency Range:	9 kHz to 25 GH	z							
Measurement Distance:	3 m								
Antenna Polarization:	Horizontal & Ve	Horizontal & Vertical							
Operation mode:	Refer to item 4.	.1							
	Frequency 9kHz- 150kHz 150kHz-	Qua	etector Isi-pea Isi-pea	ak	RBW 200Hz 9kHz	VBW 1kHz 30kHz	Quas	Remark si-peak Value si-peak Value	
Receiver Setup:	30MHz 30MHz-1GHz	Qua	isi-pea	ak	100KHz	300KHz	Quas	si-peak Value	
	Above 1GHz		Peak		1MHz	3MHz		eak Value	
		F	Peak		1MHz	10Hz	Ave	erage Value	
	Frequen 0.009-0.4	-			Field Strength (microvolts/meter)		Measurement Distance (meters)		
	0.490-1.705				2400/F(KHz) 24000/F(KHz)		<u> </u>		
	1.705-30			30		,		30	
	30-88			100			3		
Limit:	88-216			150			3		
Linint.	216-96 Above 9			200 500			3		
		00	500					5	
	Frequency			eld Strength crovolts/meter)		Measure Distan (meter	се	Detector	
	Above 1GHz		500		3		Average		
				5000		3		Peak	
	For radiated em	nissio	ons be	elow	v 30MHz				
Test setup:	For radiated emissions below 30MHz Distance = 3m Computer Pre-Amplifier Pre-Amplifier Receiver 30MHz to 1GHz								

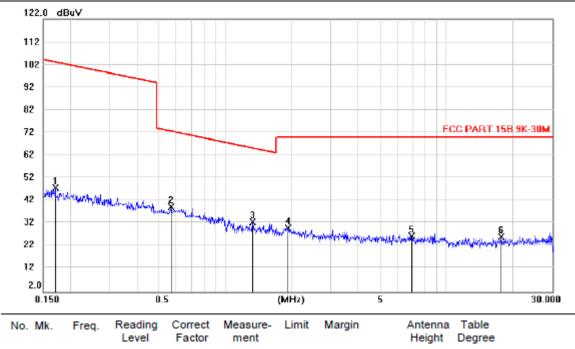


	 Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is
	no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 4.1 for details
Test results:	PASS

3.2.2. Test Data

Freque	ency Range	:	9KHz~30MHz				
Test Mode :		:	TX: 128kHz, 132kHz, 325kHz				
Test Re	esults	:	PASS				
Note:	1. The test	resu	ılts are listed in next pages.				
	2. This mode is worst case mode, so this report only reflected the worst mode.						
	3. If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the guasi-peak detector need not be carried out.						

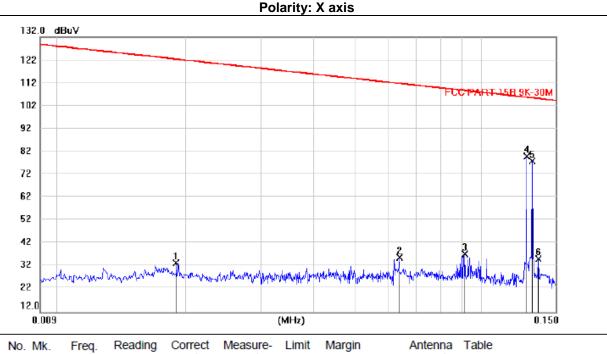
Please refer to following diagram for individual


Page 18 of 47

For signal coil:

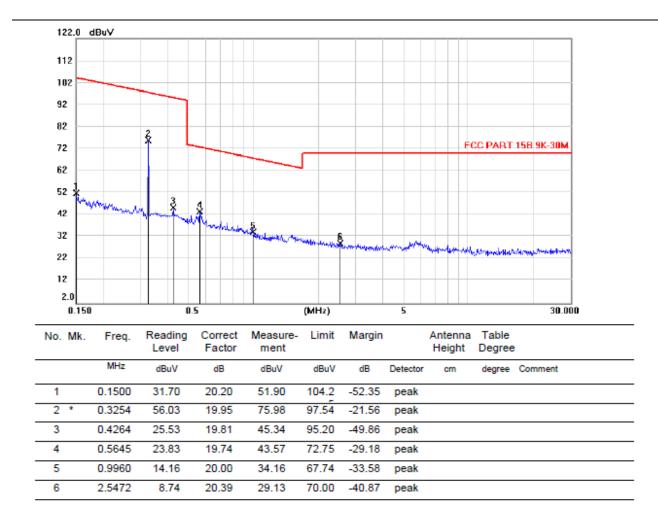
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree	Comment
1	0.0126	9.54	21.43	30.97	125.6	-94.72	peak			
2	0.0189	13.90	21.27	35.17	122.1	-87.01	peak			
3	0.0395	10.02	20.47	30.49	115.8	-85.31	peak			
4	0.0728	12.67	20.16	32.83	110.5	-77.68	peak			
5	0.0937	10.67	19.86	30.53	108.3	-77.79	peak			
6 *	0.1317	60.30	19.93	80.23	105.3	-25.14	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.


2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

		Level	Factor	ment				Height	Degree	•
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree	Comment
1	0.1708	27.70	20.17	47.87	103.1	-55.25	peak			
2	0.5672	19.54	19.74	39.28	72.71	-33.43	peak			
3 *	1.3251	12.71	20.08	32.79	65.22	-32.43	peak			
4	1.9110	9.96	20.23	30.19	70.00	-39.81	peak			
5	6.9420	3.89	22.67	26.56	70.00	-43.44	peak			
6	17.6173	4.91	21.11	26.02	70.00	-43.98	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.


2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

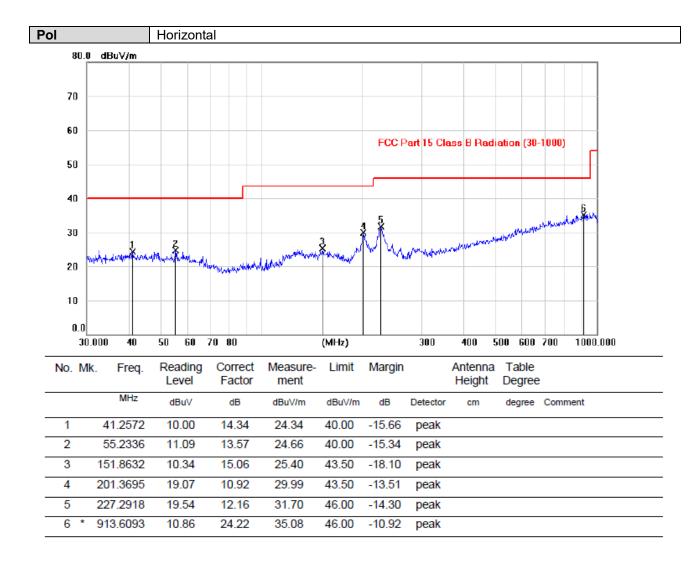
For three coils:

Level Factor ment Height Degree MHz dBuV dBuV dB dBuV dB Detector cm degree Comment 1 0.0189 12.20 21.27 33.47 122.2 -88.79 peak 2 0.0637 15.65 20.11 35.76 111.7 -75.95 peak 0.0913 17.36 19.89 37.25 108.5 -71.34 3 peak 0.1276 4 60.04 19.88 79.92 105.6 -25.76 peak 5 0.1317 57.88 19.93 77.81 105.4 -27.60 peak 0.1363 105.1 15.38 19.99 35.37 6 -69.74 peak

Note:1. *:Maximum data; x:Over limit; I:over margin. 2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Note:1. *:Maximum data; x:Over limit; !:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.


Frequer	ncy Range	:	30MHz~1000MHz			
Test Mo	de	:	128KHz, 132KHz, 325KHz			
Test Re	sults	:	PASS			
Note:	1. The test	rest	ults are listed in next pages.			
	2. All test r	node	es has been tested, this report only reflected the worst mode.			
3. If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the quasi-peak detector need not be carried out.						

Frequency Range : Above 1GHz			
EUT : /	Test Date	:	/
M/N : /	Temperature	:	/
Test Engineer : /	Humidity	:	1
Test Mode : /			
Test Results : N/A			
 The highest frequency of the internal sources of Note: measurement shall only be made up to 1 GHz. So the not applicable. 			

		30MH2	z-1GHz		
EUT Descriptior	UT Description 5 in 1 Magnetic Wireless Power Bank Stat			Model No.	StandUP TM10000
Temperature	24 °C		Humidity	56%	
Test Voltage	AC 120V/60Hz				
Pol	Vertical				
80.0 dBuV/m					· · · · · · · · · · · · · · · · · · ·
70					
60					
			FCC Part 1	15 Class B Radiatio	n (30-1000)
50					
40					
	2	3 \$	F	6	and a second second second
30	and the state of the second	un the starting of the start of	Å .	E Million and and a start of the	and the second second
20	mult to the show		- Win Marker	Plan Pranty or	
20					
10					
0.0					
30.000 4 0	50 60 70 80	(MHz)	3	00 400 500	600 700 1000.000
No. Mk. Freq	Reading Correct Level Factor	Measure- Limit ment	Margin		able egree
MHz	dBuV dB	dBuV/m dBuV/r	n dB Det	ector cm de	egree Comment
1 41.3200	16.12 14.34	30.46 40.00	-9.54 pe	eak	
2 * 59.4058	17.55 13.25	30.80 40.00	-9.20 pe	eak	
3 127.3069		33.34 43.50	· · · · ·	eak	
4 144.0146		34.03 43.50	-9.47 pe	eak	
5 201.3224		30.22 43.50		eak	
6 314.8913	16.39 14.48	30.87 46.00	-15.13 pe	eak	

30MHz-1GHz

Note:1. *:Maximum data; x:Over limit; !:over margin. 2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Note:1. *: Maximum data; x: Over limit; !: over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

3.3. Test Specification

Test Requirement:	FCC Part15 C Section 15.215(c)			
Test Method:	ANSI C63.10: 2013			
Limit:	N/A			
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW≥1% of the 20 dB bandwidth; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 			
Test setup:	Spectrum Analyzer			
Test Mode:	Refer to section 4.1 for details			
Test results:	PASS			

3.3.1. Test data

For Watch:

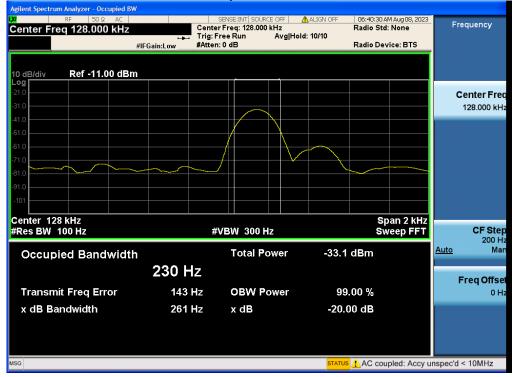
Frequency(kHz)	20dB Occupy Bandwidth (kHz)	Limit (kHz)	Conclusion
325	0.284		Pass

Test plots as follows:

glient Spectrum Analyzer - Occupied BW RF 50 Q AC Center Freq 325.000 kHz #II					▲ ALIGN OFF d:>10/10	06:43:31 A Radio Std Radio Dev		Fr	requency
0 dB/div Ref -11.00 dBm	1								
31.0								C	Center Fre 325.000 kH
41.0 51.0 51.0									
71.0									
81.0									
enter 325 kHz Res BW 100 Hz		#VB	W 300 H	z			an 2 kHz reep FFT		CF Ste
Occupied Bandwidth	050.11		Total Po	wer	-44.9	dBm		<u>Auto</u>	200 H Ma
	253 Hz	2							Freq Offs
Transmit Freq Error	-274 H	z	OBW Po	wer	99	0.00 %			. 01
x dB Bandwidth	284 H	z	x dB		-20.	00 dB			
3					STATU	AC cou	pled: Accy ur	ispec'd	< 10MHz

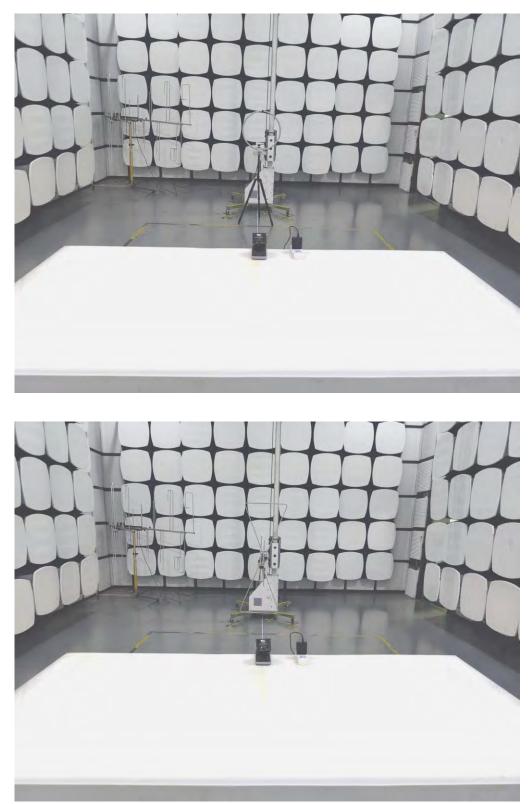
For Airpods:

Frequency(kHz)	20dB Occupy Bandwidth (kHz)	Limit (kHz)	Conclusion
132	0.235		Pass


Aglient Spectrum Analyzer - Occupied BW (W) RF 50 Q AC SENSE:INT SOURCE OFF ALIGN OFF 06:42:24 AM Aug 08, 2023 Center Freq 132.000 kHz Center Freq: 132.000 kHz Radio Std: None #IFGain:Low #Atten: 0 dB Radio Device: BTS 10 dB/div Ref -11.00 dBm	,
Definition Set Set Ac Set Set Set Int Source OFF AllGN OFF 06:42:24 AM Aug 08, 2023 Center Freq 132.000 kHz Center Freq 132.000 kHz Radio Std: None #IFGain:Low #IFGain:Low #Atten: 0 dB 10 dB/div Ref -11.00 dBm	'
Center Freq 132.000 kHz #IFGain:Low Center Freq: 132.000 kHz Trig: Free Run Avg Hold: 10/10 #Atten: 0 dB 10 dB/div Ref -11.00 dBm	'
#IFGain:Low #Atten: 0 dB Radio Device: BTS ID dB/div Ref -11.00 dBm	
10 dB/div Ref -11.00 dBm	
21.0 Center	rec
	KHZ
41.0	
51.0	
61.0	
81.0	
101	
Center 132 kHz Span 2 kHz	
#Res BW 100 Hz #VBW 300 Hz Sweep FFT CFS	tep
	оніz
Occupied Bandwidth Total Power -50.2 dBm Auto	Man
ovoupied Banaman	
216 Hz	
FreqO	fset
Transmit Freq Error 231 Hz OBW Power 99.00 %	0 Hz
x dB Bandwidth 235 Hz x dB -20.00 dB	
MSG STATUS AC coupled: Accy unspec'd < 10MH	<u> </u>

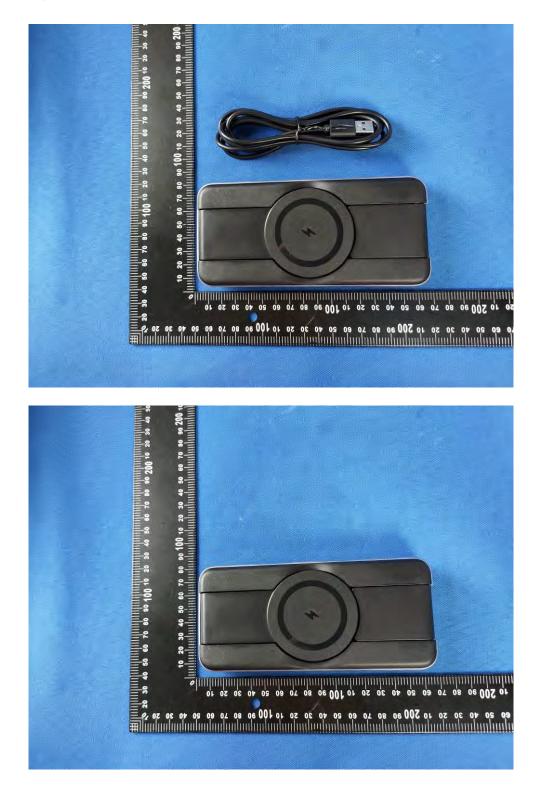
Test plots as follows:

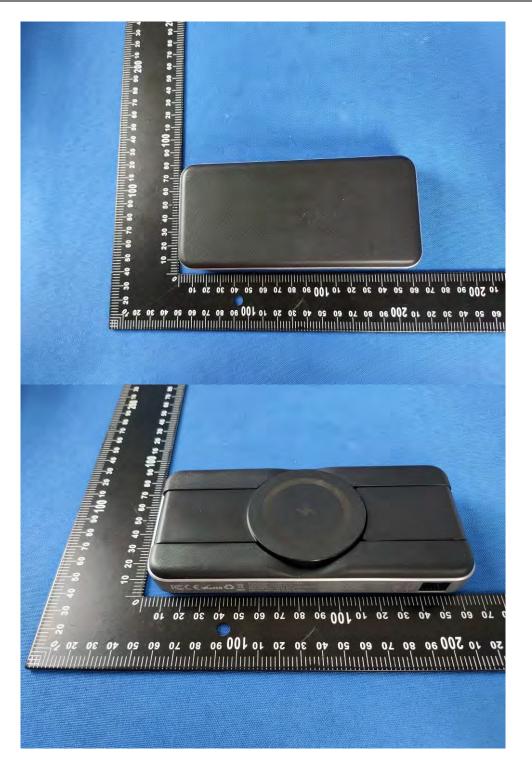
For Phone:

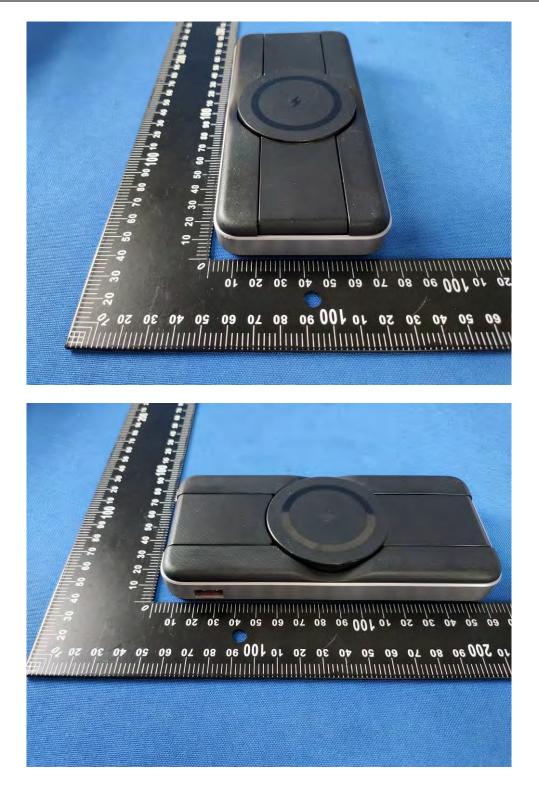

Frequency(kHz)	requency(kHz) 20dB Occupy Bandwidth (kHz)		Conclusion	
128	0.261		Pass	

Test plots as follows:

4. Photos of test setup

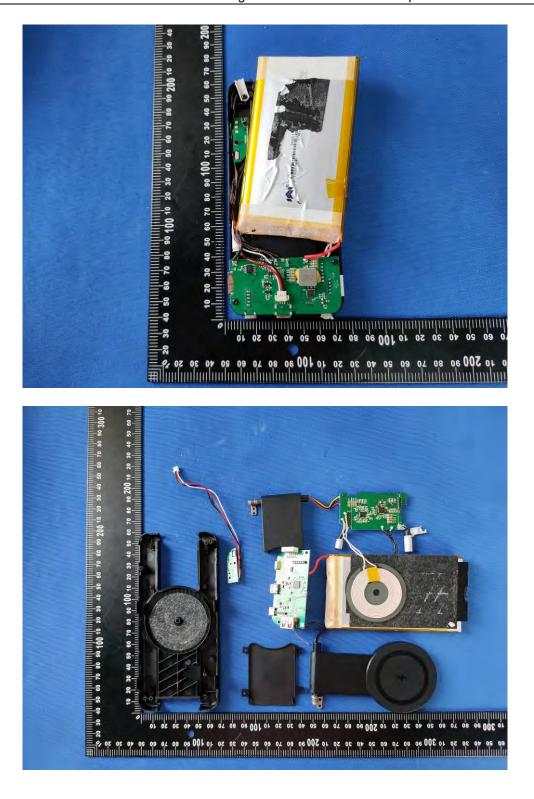

Radiated Emission

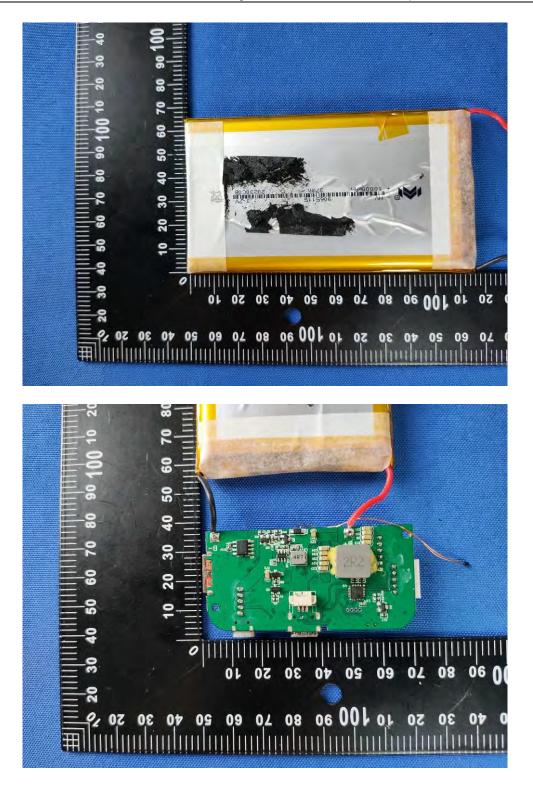


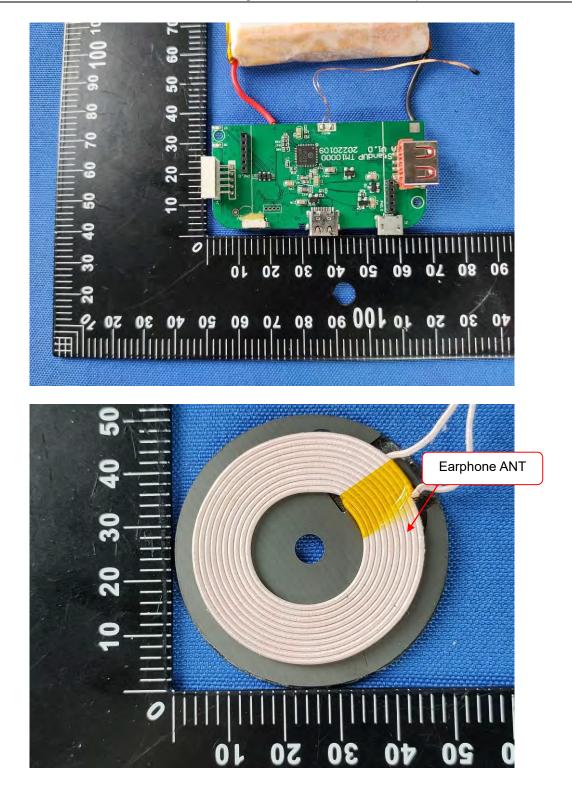


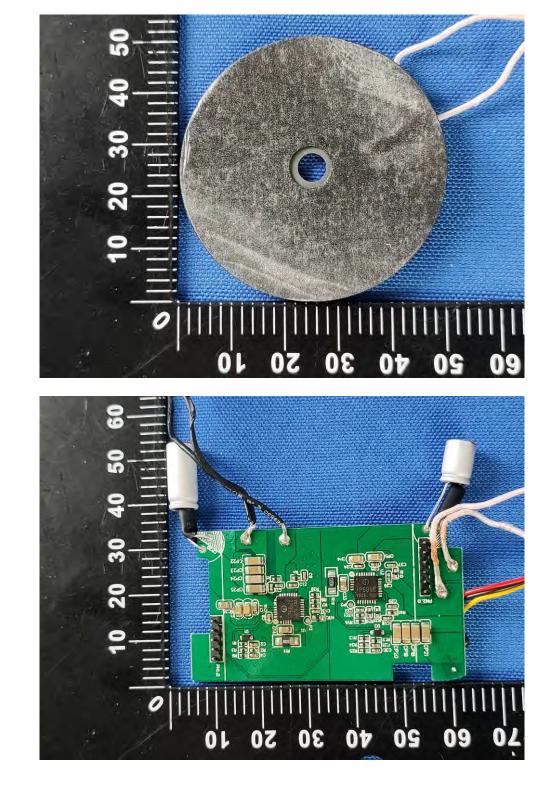
Conducted Emission

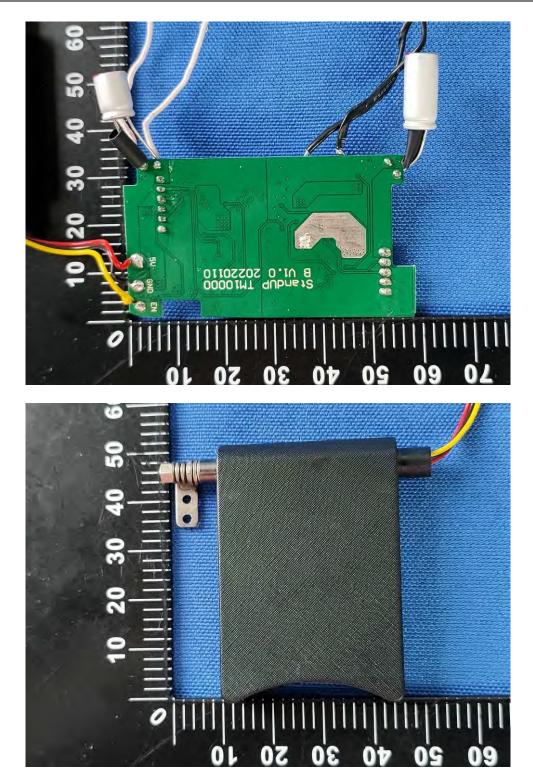
5. Photographs of EUT

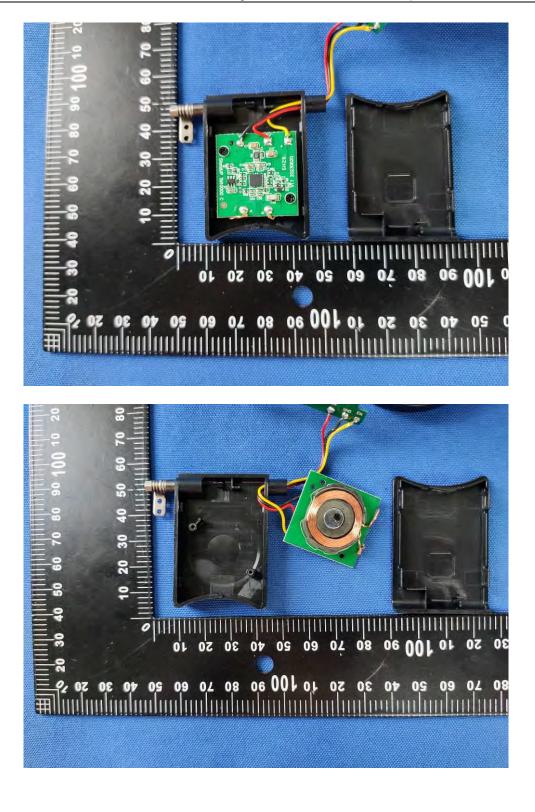


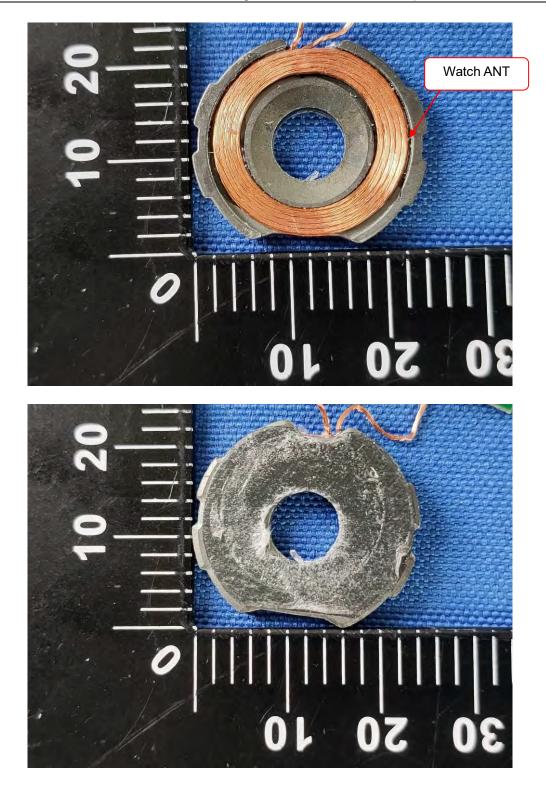


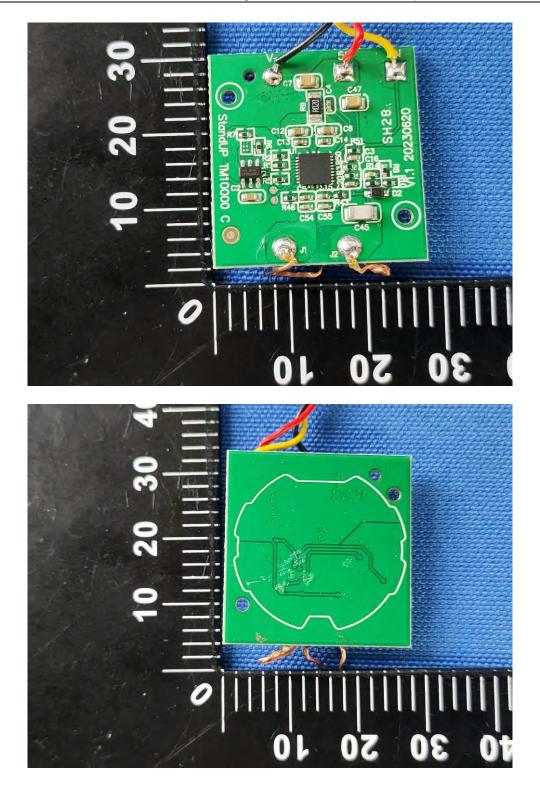


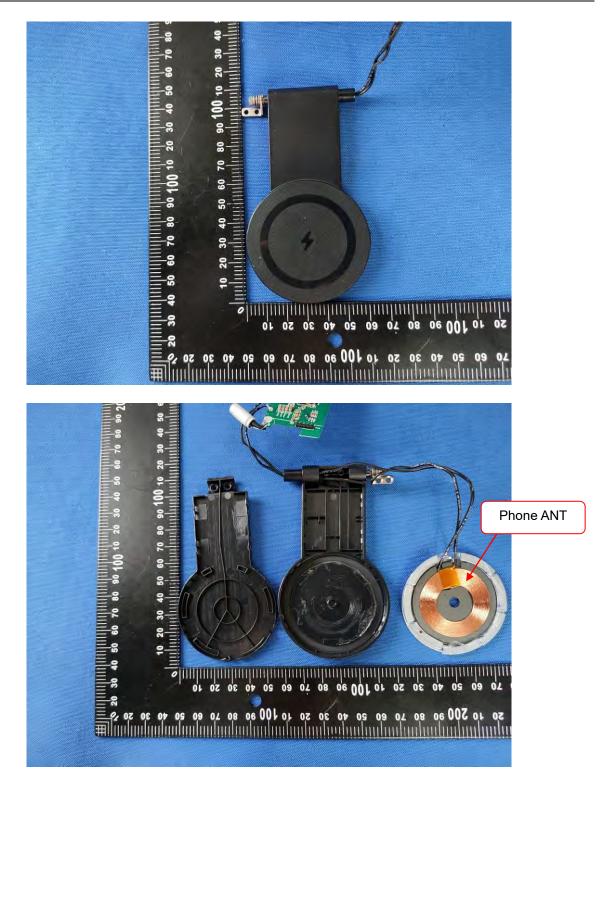


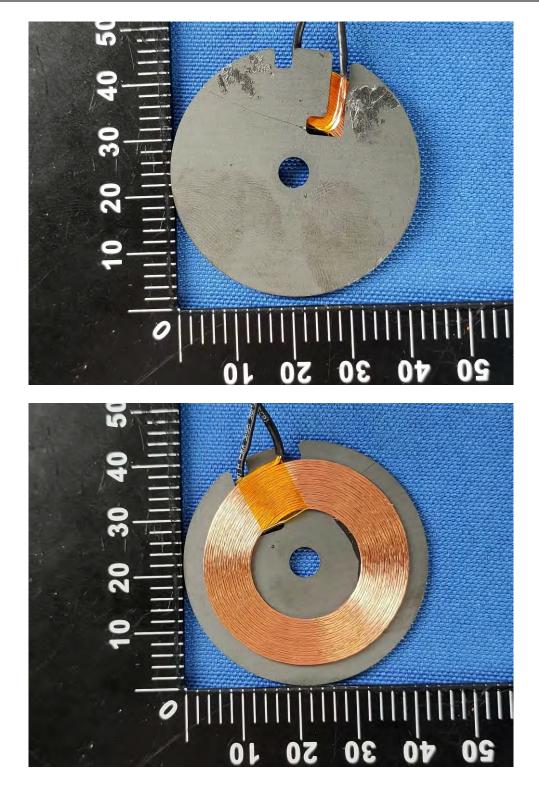












----- END OF REPORT------