

Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705

FCC ID.: 2AP27-TGB

## FCC 47 CFR PART 15 SUBPART C 15.247

## **TEST REPORT**

## **FOR**

## **TGBAND**

Model:TGB003

Issued to

INTELINOVA SOFTWARE, S.L.
CAMINO DE LA GOLETA SN EDIF LA CELULOSA 1 LOCAL IZQ 04007
ALMERIA Spain
Issued by
WH Technology Corp.





| Ор                  | en Site  | No.120, Ln. 5, Hudong St., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)       |
|---------------------|----------|------------------------------------------------------------------------------------|
| EMC<br>Test<br>Site |          | 7F., No.262, Sec. 3, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.) |
|                     | Tel.: +8 | 886-7729-7707 Fax: +886-2- 8648-1311                                               |

Note: This test refers exclusively to the test presented test model and sample. This report shall not be reproduced except in full, without the written approval of WH Technology Corp.. This document may be altered or revised by WH Technology Corp.. Personnel only, and shall be noted in the revision section of the document.



Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705

| 1. GENERAL INFORMATION                                         | 4  |
|----------------------------------------------------------------|----|
| 2. REPORT OF MEASUREMENTS AND EXAMINATIONS                     | 5  |
| 2.1 List of Measurements and Examinations                      | 5  |
| 3. TEST CONFIGURATION OF EQUIPMENT UNDER TEST                  | 6  |
| 3.1 DESCRIPTION OF THE TESTED SAMPLES                          |    |
| 3.2 CARRIER FREQUENCY OF CHANNELS                              |    |
| 3.3 TEST MODE AND TEST SOFTWARE                                |    |
|                                                                |    |
| 4. TEST AND MEASUREMENT EQUIPMENT                              |    |
| 4.1 CALIBRATION4.2 EQUIPMENT                                   |    |
| 5. ANTENNA REQUIREMENTS                                        | 12 |
| 5.1 STANDARD APPLICABLE                                        |    |
| 5.2 ANTENNA CONSTRUCTION AND DIRECTIONAL GAIN                  | 12 |
| 6. TEST OF CONDUCTED EMISSION                                  | 13 |
| 6.1 TEST LIMIT                                                 |    |
| 6.2 TEST PROCEDURES                                            | 13 |
| 6.3 TYPICAL TEST SETUP                                         |    |
|                                                                |    |
| 7. TEST OF RADIATED EMISSION                                   |    |
| 7.1 Test Limit                                                 |    |
| 7.3 TYPICAL TEST SETUP                                         |    |
| 7.4 TEST RESULT AND DATA (9KHz ~ 30MHz)                        |    |
| 7.5 Test Result and Data (30MHz ~ 1GHz, worst emissions found) |    |
| 7.6 TEST RESULT AND DATA (ABOVE 1GHZ)                          |    |
| 8. 6DB BANDWIDTH MEASUREMENT DATA                              |    |
|                                                                |    |
| 8.1 Test Limit                                                 |    |
| 8.3 TEST SETUP LAYOUT                                          |    |
| 8.4 TEST RESULT AND DATA                                       |    |
| 9. MAXIMUM PEAK AND AVERAGE OUTPUT POWER                       | 32 |
| 9.1 Test Limit                                                 |    |
| 9.2 TEST PROCEDURES                                            |    |
| 9.4 TEST RESULT AND DATA                                       |    |
| 10. POWER SPECTRAL DENSITY                                     | 34 |
| 10.1 Test Limit                                                | 34 |
| 10.2 Test Procedures                                           |    |
| 10.3 TEST SETUP LAYOUT                                         |    |
| IV-T ILSI KESULI AND DATA                                      |    |



Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705 FCC ID. : 2AP27-TGB

| 11. BAND EDGES MEASUREMENT        |    |
|-----------------------------------|----|
| 11.1 Test Limit                   | 38 |
| 11.2 TEST PROCEDURE               | 38 |
| 11.3 TEST SETUP LAYOUT            | 38 |
| 11.4 TEST RESULT AND DATA         | 38 |
| 12. RESTRICTED BANDS OF OPERATION | 41 |
| 12.1 LARFLING REQUIREMENT         |    |



Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705

FCC ID.: 2AP27-TGB

### 1. GENERAL INFORMATION

Applicant : INTELINOVA SOFTWARE, S.L.

Address : CAMINO DE LA GOLETA SN EDIF LA CELULOSA 1 LOCAL IZQ

04007 ALMERIA Spain

Manufacturer : Trainingym

Address : Camino de la Goleta, 1, 04007 Almeria, España, Spain

Factory : Vexos Dongguan Industrial Company Limited

Address : Plainvim Industrial Park, Zhongxin Avenue, Dongkeng Town,

Dongguan, Guangdong Province, P.R.China

EUT : TGBand

Model Name : TGB003
Trade Name : TGBand

Model : N/A

**Differences** 

Is here with confirmed to comply with the requirements set out in the FCC Rules and Regulations Part 15 Subpart C and the measurement procedures were according to ANSI C63.10-2013. The said equipment in the configuration described in this report shows the maximum emission levels emanating

FCC part 15 Subpart C

Receipt Date: 07/02/2018 Final Test Date: 07/28/2018

Tested By: Reviewed by:

July 28, 2018

(Date)

Bing Chang/ Engineer

July 28, 2016 (Date)

Bell Wei / Manager

Designation Number: TW2954



Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705

FCC ID.: 2AP27-TGB

## 2. REPORT OF MEASUREMENTS AND EXAMINATIONS

### 2.1 LIST OF MEASUREMENTS AND EXAMINATIONS

| FCCRule      | . Description of Test                      | Result |
|--------------|--------------------------------------------|--------|
| 15.203       | . Antenna Requirement                      | Pass   |
| 15.207       | . Conducted Emission                       | Pass   |
| 15.205       |                                            |        |
| 15.209       | . Radiated Emission                        | Pass   |
| 15.247(d)    |                                            |        |
| 15.247(a)(2) | . 6dB Bandwidth                            | Pass   |
| 15.247(b)(3) | . Maximum Peak Output Power                | Pass   |
| 15.247(d)    | . 100kHz Bandwidth of Frequency Band Edges | Pass   |
| 15.247(e)    | . Power Spectral Density                   | Pass   |
| 1.1307       |                                            |        |
| 1.1310       | DE Evneques Compliance                     | Pass   |
| 2.1091       | . RF Exposure Compliance                   | Fass   |
| 2.1093       |                                            |        |



Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705

FCC ID.: 2AP27-TGB

## 3. TEST CONFIGURATION OF EQUIPMENT UNDER TEST

## 3.1 DESCRIPTION OF THE TESTED SAMPLES

| EUT Name             | : | TGBand                      |  |  |
|----------------------|---|-----------------------------|--|--|
| Model Number         | : | TGB003                      |  |  |
| FCC ID               | : | 2AP27-TGB                   |  |  |
| Internal Battery     | : | 3.7V, 30mAh,0.22Wh          |  |  |
| Nominal voltage      | : | DC 5V from adapter          |  |  |
| USB Line             | : | Unshielded, Detachable 0.2m |  |  |
| Operate Frequency    | : | 2402~2480MHz                |  |  |
| Modulation Technique | : | GFSK                        |  |  |
| Number of Channels   | : | 40 CH                       |  |  |
| Bluetooth Version    | : | BT 5.0 BLE                  |  |  |
| Antenna Type         | : | Fractus Antenna             |  |  |
| Channel Space        | : | 2MHz                        |  |  |
| Antenna gain         | : | 0.2dBi                      |  |  |

### 3.2 CARRIER FREQUENCY OF CHANNELS

| Channel<br>No. | Frequency<br>(MHz) | Channel<br>No. | Frequency<br>(MHz) |
|----------------|--------------------|----------------|--------------------|
| 1              | 2402               | 21             | 2442               |
| 2              | 2404               | 22             | 2444               |
| 3              | 2406               | 23             | 2446               |
| 4              | 2408               | 24             | 2448               |
| 5              | 2410               | 25             | 2450               |
| 6              | 2412               | 26             | 2452               |
| 7              | 2414               | 27             | 2454               |
| 8              | 2416               | 28             | 2456               |
| 9              | 2418               | 29             | 2458               |
| 10             | 2420               | 30             | 2460               |
| 11             | 2422               | 31             | 2462               |
| 12             | 2424               | 32             | 2464               |
| 13             | 2426               | 33             | 2466               |
| 14             | 2428               | 34             | 2468               |
| 15             | 2430               | 35             | 2470               |
| 16             | 2432               | 36             | 2472               |
| 17             | 2434               | 37             | 2474               |
| 18             | 2436               | 38             | 2476               |
| 19             | 2438               | 39             | 2478               |
| 20             | 2440               | 40             | 2480               |



Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705 FCC ID. : 2AP27-TGB

## 3.3 TEST MODE AND TEST SOFTWARE

| Channel                                         |             |      | Frequency<br>MHz |  |                                                                                       |
|-------------------------------------------------|-------------|------|------------------|--|---------------------------------------------------------------------------------------|
| 1                                               |             |      | 2402             |  |                                                                                       |
| 20                                              |             |      | 2440             |  |                                                                                       |
| 40                                              |             | 2480 |                  |  |                                                                                       |
| Test Item                                       | Software    |      | Description      |  |                                                                                       |
| Conducted RF<br>Testing and<br>Radiated testing | nRF Toolbox |      | nRF Toolbox      |  | Touch EUT switching frequency after sending a fixed frequency command through the App |



Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705

FCC ID.: 2AP27-TGB

#### 3.4 TEST METHODOLOGY & GENERAL TEST PROCEDURES

All testing as described bellowed were performed in accordance with ANSI C63.10:2013 and FCC CFR 47 Part 15 Subpart C.

#### **Conducted Emissions**

The EUT is placed on a wood table, which is at 0.8 m above ground plane acceding to clause 15.207 and requirements of ANSI C63.10:2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz are using CISPR Quasi-Peak / Average detectors.

#### **Radiated Emissions**

The EUT is a placed on a turn table, which is 0.8 m above ground plane. The turntable was rotated through 360 degrees to determine the position of maximum emission level. The EUT is placed at 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

- 1)Putting the EUT on the platform and turning on the EUT (on/off button on the bottom of the EUT).
- 2)Setting test channel described as "Channel setting and operating condition", and testing channel by channel.
- 3)For the maximum output power measurement, we followed the method of measurement KDB558074 D01.
- 4)For the spurious emission test based on ANSI(2014), at the frequency where below 1GHz used quasi-peak detector mode; where above 1GHz used the peak and average detector mode. IF the peak value may be under average limit, the average mode will not be performed.

#### 3.5 MEASUREMENT UNCERTAINTY

| Measurement Item             | Uncertainty |
|------------------------------|-------------|
| Radiated emission            | ±4.11dB     |
| Peak Output Power(conducted) | ±1.38dB     |
| Peak Output Power(Radiated)  | ±1.70dB     |
| Power Spectral Density       | ±1.39dB     |
| Radiated emission(3m)        | ±4.11dB     |
| Radiated emission(10m)       | ±3.89dB     |



Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705

FCC ID.: 2AP27-TGB

#### 3.6 DESCRIPTION OF THE SUPPORT EQUIPMENTS

### **Setup Diagram**

See test photographs attached in appendix 1 for the actual connections between EUT and support equipment.

## **Support Equipment**

Peripherals Devices:

|      | OUTSIDE SUPPORT EQUIPMENT |                   |            |           |               |               |               |
|------|---------------------------|-------------------|------------|-----------|---------------|---------------|---------------|
| No.  | Equipment                 | Model             | Serial No. | FCC ID    | Trade<br>name | Date<br>Cable | Power<br>Cord |
| 1.   | AC<br>adapter             | QX6.5W7<br>5100FG | N/A        | VOC       | Stos          | N/A           | N/A           |
| 2.   | N/A                       | N/A               | N/A        | N/A       | N/A           | N/A           | N/A           |
|      |                           | IN                | SIDE SUPP  | ORT EQUIF | PMENT         |               |               |
| No.  | Equipment                 | Model             | Serial No. | FCC ID    | Trade         | Date          | Power         |
| 140. | Ечариси                   | IVIOGCI           | Ochai No.  | 1 00 10   | name          | Cable         | Cord          |
| 1.   | N/A                       | N/A               | N/A        | N/A       | N/A           | N/A           | N/A           |

**Note:** All the above equipment /cable were placed in worse case position to maximize emission signals during emission test

**Grounding:** Grounding was in accordance with the manufacturer's requirement and conditions for the intended use.



Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705

FCC ID.: 2AP27-TGB

### 4. TEST AND MEASUREMENT EQUIPMENT

#### 4.1 CALIBRATION

The measuring equipment utilized to perform the tests documented in the report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

#### 4.2 EQUIPMENT

The following list contains measurement equipment used for testing. The equipment conforms to the requirement of CISPR 16-1, ANSI C63.2 and. Other required standards. Calibration of all test and measurement, including any accessories that may effect such calibration, is checked frequently to ensure the accuracy. Adjustments are made and correction factors are applied in accordance with the instructions contained in the respective.



Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705

FCC ID.: 2AP27-TGB

### TABLELIST OF TEST AND MEASUREMENT EQUIPMENT

| Instrument                               | Manufacturer                      | Model No.                                   | S/N                      | Next Cal.<br>Date |
|------------------------------------------|-----------------------------------|---------------------------------------------|--------------------------|-------------------|
| EMI Receiver                             | R&S                               | ESHS10                                      | 830223/008               | 2019/06/06        |
| LISN                                     | Rolf Heine<br>Hochfrequenztechnik | NNB-2/16z                                   | 98062                    | 2019/06/11        |
| ISN                                      | Schwarzbeck                       | 8-Wire ISN<br>CAT5                          | CAT5-8158-<br>0094       | 2018/09/21        |
| RF Cable                                 | N/A                               | N/A                                         | EMI-3                    | 2018/10/19        |
| Bilog antenna(30M-1G)                    | ETC                               | MCTD2786<br>B                               | BLB16M040<br>04/JB-5-004 | 2019/05/18        |
| Double Ridged Guide Horn antenna(1G-18G) | ETC                               | MCTD 1209                                   | DRH15N020<br>09          | 2018/11/23        |
| Horn antenna (18G-26G)                   | com-power                         | AH-826                                      | 81000                    | 2019/08/16        |
| LOOP Antenna (Below 30M)                 | com-power                         | AL-130                                      | 17117                    | 2018/10/04        |
| Pre amplifier (30M-1G)                   | EMC INSTRUMENT                    | EMC9135                                     | 980334                   | 2019/05/03        |
| Microwave Preamplifier (1G-18G)          | EMC INSTRUMENT                    | EMC05184<br>5                               | 980108&AT<br>-18001      | 2018/10/23        |
| Pre amplifier (18G~26G)                  | MITEQ                             | JS4-180026<br>00-30-5A                      | 808329                   | 2019/08/09        |
| EMI Test Receiver                        | R&S                               | ESVS30<br>(20M-1000<br>MHz)                 | 826006/002               | 2018/11/28        |
| RF Cable (open site)                     | EMCI                              | N male on<br>end of both<br>sides<br>(EMI4) | 30m                      | 2018/10/19        |
| RF CABLE (1~26G)                         | HARBOUT<br>INDUSTRIES             | LL142MI(4<br>M+4M)                          | NA                       | 2019/04/17        |
| RF CABLE (1~26G)                         | HARBOUT<br>INDUSTRIES             | LL142MI(7<br>M)                             | NA                       | 2019/08/09        |
| Spectrum (9K7GHz)                        | R&S                               | FSP7                                        | 830180/006               | 2019/04/14        |
| Spectrum (9K40GHz)                       | AGILENT                           | 8564EC                                      | 4046A0032                | 2019/03/01        |
| e3                                       | AUDIX                             | N/A                                         | N/A                      | N/A               |
| SINGAL GENTERATOR<br>(100k-1GHz)         | HP                                | 8648A                                       | 3619U0042<br>6           | N/A               |
| Power Meter                              | ANRITSU                           | ML2487                                      | 6K00001574               | 2019/08/09        |

\*CALIBRATION INTERVAL OF INSTRUMENTS LISTED ABOVE IS ONE YEAR



Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705

FCC ID.: 2AP27-TGB

### 5. ANTENNA REQUIREMENTS

#### 5.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

### 5.2 ANTENNA CONSTRUCTION AND DIRECTIONAL GAIN

|              |   | BLE             |
|--------------|---|-----------------|
| Antenna Type | : | Fractus Antenna |
| Antenna Gain | : | 0.2 dBi         |



Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705

FCC ID.: 2AP27-TGB

#### 6. TEST OF CONDUCTED EMISSION

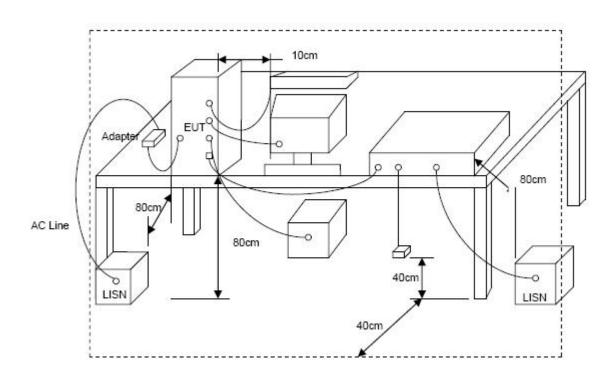
#### 6.1 TEST LIMIT

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 KHz on the 120 VAC power and return leads of the EUT according to the methods defined in ANSI C63.10-2013 Section 3.1. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane as shown in section 2.2. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced maximum conducted emissions.

| Frequency<br>(MHz) | Quasi Peak<br>(dB μ V) | Average<br>(dB μ V) |
|--------------------|------------------------|---------------------|
| 0.15 - 0.5         | 5 – 0.5 66-56*         |                     |
| 0.5 - 5.0          | 56                     | 46                  |
| 5.0 – 30.0         | 60                     | 50                  |

<sup>\*</sup>Decreases with the logarithm of the frequency.

#### 6.2 TEST PROCEDURES


- a. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. All the support units are connecting to the other LISN.
- d. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- e. The FCC states that a 50 ohm, 50 micro-Henry LISN should be used.
- f. Both sides of AC line were checked for maximum conducted interference.
- g. The frequency range from 150 kHz to 30 MHz was searched.
- h. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.



Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705

FCC ID.: 2AP27-TGB

## 6.3 TYPICAL TEST SETUP





Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705

FCC ID.: 2AP27-TGB

## 6.4 TEST RESULT AND DATA

| M/N:                |                                                                                                                    | TGB003                                              |                                                                                                    |                                                                                         | Tes                                                                            | t Voltag                                                                             | ge:                                                   | Α                | AC 120V/60Hz                           |
|---------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------|------------------|----------------------------------------|
| Γest D              | Date:                                                                                                              | July 11,                                            | 2018                                                                                               |                                                                                         | Pha                                                                            | se:                                                                                  |                                                       | L                | .1                                     |
| Гетрє               | erature:                                                                                                           | 20°C                                                |                                                                                                    |                                                                                         | Rela                                                                           | Relative Humidity:                                                                   |                                                       |                  | 4%                                     |
| Pressur             | re:                                                                                                                | 101.0KP                                             | Pa                                                                                                 |                                                                                         | Tes                                                                            | Test by:                                                                             |                                                       | В                | Bing                                   |
| Γest M              | Mode:                                                                                                              | Charging                                            | <u>g</u>                                                                                           |                                                                                         |                                                                                |                                                                                      |                                                       |                  |                                        |
|                     | 80.0 dBuV                                                                                                          |                                                     |                                                                                                    |                                                                                         |                                                                                |                                                                                      |                                                       |                  |                                        |
|                     |                                                                                                                    |                                                     |                                                                                                    |                                                                                         |                                                                                |                                                                                      |                                                       |                  | Conduction(QP)                         |
|                     | 40 × V                                                                                                             | my                                                  | Molyman                                                                                            | manifin                                                                                 | m, mm                                                                          | M., .                                                                                | <u> </u>                                              | السر بما         | MAMMAN peak                            |
|                     | MM                                                                                                                 | Monday                                              | Mura                                                                                               | hydylwyda.                                                                              | W. W.                                                                          | V                                                                                    | <b>√</b>                                              | V                | MMMmm ave                              |
|                     | 0.0                                                                                                                | Moharly                                             | 0.5                                                                                                | hadalahaha                                                                              | (MHz)                                                                          | VY CV                                                                                | 5                                                     | V                | 30,000                                 |
| No.                 | 0.0<br>0.150                                                                                                       | Factor                                              | Reading                                                                                            | Level (dBuV)                                                                            | Limit                                                                          | Margin (dB)                                                                          | 5<br>Detector                                         | P/F              | ~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
|                     | 0.0                                                                                                                | March                                               |                                                                                                    | Level<br>(dBuV)<br>39.60                                                                |                                                                                | Margin<br>(dB)                                                                       | Same and S                                            | P/F<br>P         | 30.000                                 |
| No.                 | 0.0<br>0.150<br>Frequency<br>(MHz)                                                                                 | Factor (dB)                                         | Reading<br>(dBuV)                                                                                  | (dBuV)                                                                                  | Limit<br>(dBuV)                                                                | (dB)                                                                                 | Detector                                              |                  | 30.000                                 |
| No.<br>1            | 0.0<br>0.150<br>Frequency<br>(MHz)<br>0.1703                                                                       | Factor (dB) 9.62                                    | Reading<br>(dBuV)<br>29.98                                                                         | (dBuV)<br>39.60                                                                         | Limit<br>(dBuV)<br>64.95                                                       | (dB)<br>-25.35                                                                       | Detector                                              | Р                | 30.000                                 |
| No.<br>1<br>2       | 0.0<br>0.150<br>Frequency<br>(MHz)<br>0.1703<br>0.1703                                                             | Factor (dB) 9.62 9.62                               | Reading<br>(dBuV)<br>29.98<br>19.55                                                                | (dBuV)<br>39.60<br>29.17                                                                | Limit<br>(dBuV)<br>64.95<br>54.95                                              | (dB)<br>-25.35<br>-25.78                                                             | Detector<br>QP<br>AVG                                 | P<br>P           | 30.000                                 |
| No. 1 2 3           | 0.0<br>0.150<br>Frequency<br>(MHz)<br>0.1703<br>0.1703<br>0.4778                                                   | Factor (dB) 9.62 9.62 9.62                          | Reading<br>(dBuV)<br>29.98<br>19.55<br>28.98                                                       | (dBuV)<br>39.60<br>29.17<br>38.60                                                       | Limit<br>(dBuV)<br>64.95<br>54.95<br>56.38                                     | (dB)<br>-25.35<br>-25.78<br>-17.78                                                   | Detector<br>QP<br>AVG<br>QP                           | P<br>P           | 30.000                                 |
| No. 1 2 3 4         | 0.0<br>0.150<br>Frequency<br>(MHz)<br>0.1703<br>0.1703<br>0.4778<br>0.4778                                         | Factor (dB) 9.62 9.62 9.62 9.62                     | Reading<br>(dBuV)<br>29.98<br>19.55<br>28.98<br>17.56                                              | (dBuV)<br>39.60<br>29.17<br>38.60<br>27.18                                              | Limit<br>(dBuV)<br>64.95<br>54.95<br>56.38<br>46.38                            | (dB)<br>-25.35<br>-25.78<br>-17.78<br>-19.20                                         | Detector  QP  AVG  QP  AVG                            | P<br>P<br>P      | 30.000                                 |
| No. 1 2 3 4 5       | 0.0<br>0.150<br>Frequency<br>(MHz)<br>0.1703<br>0.1703<br>0.4778<br>0.4778<br>1.2786                               | Factor (dB) 9.62 9.62 9.62 9.62 9.66                | Reading<br>(dBuV)<br>29.98<br>19.55<br>28.98<br>17.56<br>22.94                                     | (dBuV)<br>39.60<br>29.17<br>38.60<br>27.18<br>32.60                                     | Limit<br>(dBuV)<br>64.95<br>54.95<br>56.38<br>46.38<br>56.00                   | (dB)<br>-25.35<br>-25.78<br>-17.78<br>-19.20<br>-23.40                               | QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP             | P<br>P<br>P      | 30.000                                 |
| No. 1 2 3 4 5       | 0.0<br>0.150<br>Frequency<br>(MHz)<br>0.1703<br>0.1703<br>0.4778<br>0.4778<br>1.2786<br>1.2786                     | Factor (dB) 9.62 9.62 9.62 9.66 9.66                | Reading<br>(dBuV)<br>29.98<br>19.55<br>28.98<br>17.56<br>22.94<br>12.39                            | (dBuV)<br>39.60<br>29.17<br>38.60<br>27.18<br>32.60<br>22.05                            | Limit<br>(dBuV)<br>64.95<br>54.95<br>56.38<br>46.38<br>56.00<br>46.00          | (dB)<br>-25.35<br>-25.78<br>-17.78<br>-19.20<br>-23.40<br>-23.95                     | QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP             | P<br>P<br>P<br>P | 30.000                                 |
| No. 1 2 3 4 5 6 7   | 0.0<br>0.150<br>Frequency<br>(MHz)<br>0.1703<br>0.1703<br>0.4778<br>1.2786<br>1.2786<br>4.3910                     | Factor (dB) 9.62 9.62 9.62 9.66 9.66 9.72           | Reading<br>(dBuV)<br>29.98<br>19.55<br>28.98<br>17.56<br>22.94<br>12.39<br>21.58                   | (dBuV)<br>39.60<br>29.17<br>38.60<br>27.18<br>32.60<br>22.05<br>31.30                   | Limit<br>(dBuV)<br>64.95<br>54.95<br>56.38<br>46.38<br>56.00<br>46.00          | (dB)<br>-25.35<br>-25.78<br>-17.78<br>-19.20<br>-23.40<br>-23.95<br>-24.70           | Detector  QP  AVG  QP  AVG  QP  AVG  QP  AVG          | P P P P P        | 30.000                                 |
| No. 1 2 3 4 5 6 7   | 0.0<br>0.150<br>Frequency<br>(MHz)<br>0.1703<br>0.1703<br>0.4778<br>0.4778<br>1.2786<br>1.2786<br>4.3910<br>4.3910 | Factor (dB) 9.62 9.62 9.62 9.66 9.72 9.72           | Reading<br>(dBuV)<br>29.98<br>19.55<br>28.98<br>17.56<br>22.94<br>12.39<br>21.58<br>11.13          | (dBuV)<br>39.60<br>29.17<br>38.60<br>27.18<br>32.60<br>22.05<br>31.30<br>20.85          | Limit<br>(dBuV)<br>64.95<br>54.95<br>56.38<br>46.38<br>56.00<br>46.00<br>56.00 | (dB)<br>-25.35<br>-25.78<br>-17.78<br>-19.20<br>-23.40<br>-23.95<br>-24.70<br>-25.15 | Detector  QP  AVG  QP  AVG  QP  AVG  QP  AVG  QP  AVG | P P P P P        | 30.000                                 |
| No. 1 2 3 4 5 6 7 8 | 0.0<br>0.150<br>Frequency<br>(MHz)<br>0.1703<br>0.1703<br>0.4778<br>1.2786<br>1.2786<br>4.3910<br>4.3910<br>9.8661 | Factor (dB) 9.62 9.62 9.62 9.66 9.66 9.72 9.72 9.81 | Reading<br>(dBuV)<br>29.98<br>19.55<br>28.98<br>17.56<br>22.94<br>12.39<br>21.58<br>11.13<br>25.79 | (dBuV)<br>39.60<br>29.17<br>38.60<br>27.18<br>32.60<br>22.05<br>31.30<br>20.85<br>35.60 | Limit (dBuV) 64.95 54.95 56.38 46.38 56.00 46.00 46.00 60.00                   | (dB) -25.35 -25.78 -17.78 -19.20 -23.40 -23.95 -24.70 -25.15 -24.40                  | Detector  QP  AVG  QP  AVG  QP  AVG  QP  AVG  QP  AVG | P P P P P P P    | 30.000                                 |



Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705 FCC ID. : 2AP27-TGB

| M/N:                                 |                                                                                                | TGB003                                                               | 3                                                                                                  |                                                                                         | Tes                                                                | t Voltag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ge:                                              | A                     | C 120V/60Hz |           |
|--------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------|-------------|-----------|
| Test D                               | Date:                                                                                          | July 11,                                                             | 2018                                                                                               |                                                                                         | Pha                                                                | se:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | N                     | leutral     |           |
| Tempe                                | erature:                                                                                       | 20°C                                                                 |                                                                                                    |                                                                                         | Rela                                                               | ative Hu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ımidity:                                         | 5                     | 4%          |           |
| Pressu                               | re:                                                                                            | 101.0KF                                                              | Pa                                                                                                 |                                                                                         | Tes                                                                | t by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | В                     | ing         |           |
| Test M                               | Mode:                                                                                          | Chargin                                                              | Charging                                                                                           |                                                                                         |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                       |             |           |
| *                                    | 80.0 dBuV                                                                                      |                                                                      |                                                                                                    |                                                                                         |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                       |             |           |
|                                      | 40 W W                                                                                         | May                                                                  | Mum                                                                                                | w <sup>*</sup> ~~*                                                                      | Why was                                                            | X-Mys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M.M.                                             | Jun J                 | Conduction  |           |
|                                      |                                                                                                | Amahy                                                                | Monda                                                                                              | hollagh                                                                                 | mm                                                                 | why                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | Mary Mary             | 1 VVV       | v.M., AVG |
|                                      | 0.0                                                                                            | Annah                                                                | 0.5                                                                                                | haylayta                                                                                | (MHz)                                                              | when the same of t | 5                                                | L-200                 | , v         | 30,000    |
| No.                                  | 0.150<br>Frequency                                                                             | Factor (dB)                                                          | 0.5  Reading (dBuV)                                                                                | Level (dBuV)                                                                            | (MHz) Limit (dBuV)                                                 | Margin (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | P/F                   | Remark      |           |
| No. 1                                | 0.150                                                                                          |                                                                      | Reading                                                                                            |                                                                                         | Limit                                                              | Margin<br>(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  | P/F<br>P              | Tanas cons  |           |
|                                      | 0.150<br>Frequency<br>(MHz)                                                                    | (dB)                                                                 | Reading<br>(dBuV)                                                                                  | (dBuV)                                                                                  | Limit<br>(dBuV)                                                    | (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Detector                                         | 11.0000               | Tanas cons  |           |
| 1                                    | 0.150<br>Frequency<br>(MHz)<br>0.4854                                                          | (dB)<br>9.61                                                         | Reading<br>(dBuV)<br>27.89                                                                         | (dBuV)<br>37.50                                                                         | Limit<br>(dBuV)<br>56.25                                           | (dB)<br>-18.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Detector                                         | Р                     | Tanas cons  |           |
| 1 2                                  | 0.150<br>Frequency<br>(MHz)<br>0.4854<br>0.4854                                                | (dB)<br>9.61<br>9.61                                                 | Reading<br>(dBuV)<br>27.89<br>16.84                                                                | (dBuV)<br>37.50<br>26.45                                                                | Limit<br>(dBuV)<br>56.25<br>46.25                                  | (dB)<br>-18.75<br>-19.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | QP<br>AVG<br>QP                                  | P<br>P                | Tanas cons  |           |
| 1 2 3                                | 0.150<br>Frequency<br>(MHz)<br>0.4854<br>0.4854<br>0.5512                                      | 9.61<br>9.61<br>9.61                                                 | Reading<br>(dBuV)<br>27.89<br>16.84<br>25.99                                                       | (dBuV)<br>37.50<br>26.45<br>35.60                                                       | Limit<br>(dBuV)<br>56.25<br>46.25<br>56.00                         | (dB)<br>-18.75<br>-19.80<br>-20.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QP<br>AVG<br>QP                                  | P<br>P                | Tanas cons  |           |
| 1<br>2<br>3<br>4                     | 0.150<br>Frequency<br>(MHz)<br>0.4854<br>0.4854<br>0.5512<br>0.5512                            | (dB)<br>9.61<br>9.61<br>9.61<br>9.61                                 | Reading<br>(dBuV)<br>27.89<br>16.84<br>25.99<br>15.04                                              | (dBuV)<br>37.50<br>26.45<br>35.60<br>24.65                                              | Limit<br>(dBuV)<br>56.25<br>46.25<br>56.00<br>46.00                | (dB)<br>-18.75<br>-19.80<br>-20.40<br>-21.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QP<br>AVG<br>QP<br>AVG<br>QP                     | P<br>P<br>P           | Tanas cons  |           |
| 1<br>2<br>3<br>4<br>5                | 0.150<br>Frequency<br>(MHz)<br>0.4854<br>0.4854<br>0.5512<br>0.5512<br>1.0238                  | 9.61<br>9.61<br>9.61<br>9.61<br>9.63                                 | Reading<br>(dBuV)<br>27.89<br>16.84<br>25.99<br>15.04<br>27.27                                     | (dBuV)<br>37.50<br>26.45<br>35.60<br>24.65<br>36.90                                     | Limit (dBuV) 56.25 46.25 56.00 46.00 56.00                         | (dB)<br>-18.75<br>-19.80<br>-20.40<br>-21.35<br>-19.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP        | P<br>P<br>P<br>P      | Tanas cons  |           |
| 1<br>2<br>3<br>4<br>5                | 0.150  Frequency (MHz)  0.4854  0.4854  0.5512  0.5512  1.0238  1.0238                         | 9.61<br>9.61<br>9.61<br>9.61<br>9.63<br>9.63                         | Reading<br>(dBuV)<br>27.89<br>16.84<br>25.99<br>15.04<br>27.27<br>13.74                            | (dBuV)<br>37.50<br>26.45<br>35.60<br>24.65<br>36.90<br>23.37                            | Limit (dBuV) 56.25 46.25 56.00 46.00 56.00 46.00                   | (dB)<br>-18.75<br>-19.80<br>-20.40<br>-21.35<br>-19.10<br>-22.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG | P<br>P<br>P<br>P      | Tanas cons  |           |
| 1<br>2<br>3<br>4<br>5<br>6           | 0.150  Frequency (MHz) 0.4854 0.4854 0.5512 0.5512 1.0238 1.0238 1.3624                        | (dB)<br>9.61<br>9.61<br>9.61<br>9.63<br>9.63<br>9.64                 | Reading<br>(dBuV)<br>27.89<br>16.84<br>25.99<br>15.04<br>27.27<br>13.74<br>23.86                   | (dBuV)<br>37.50<br>26.45<br>35.60<br>24.65<br>36.90<br>23.37<br>33.50                   | Limit (dBuV) 56.25 46.25 56.00 46.00 56.00 46.00 56.00             | (dB)<br>-18.75<br>-19.80<br>-20.40<br>-21.35<br>-19.10<br>-22.63<br>-22.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QP AVG QP AVG QP AVG QP AVG AVG                  | P<br>P<br>P<br>P<br>P | Tanas cons  |           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7      | 0.150  Frequency (MHz)  0.4854  0.4854  0.5512  0.5512  1.0238  1.0238  1.3624  1.3624         | (dB)<br>9.61<br>9.61<br>9.61<br>9.63<br>9.63<br>9.64<br>9.64         | Reading (dBuV) 27.89 16.84 25.99 15.04 27.27 13.74 23.86 10.83                                     | (dBuV)<br>37.50<br>26.45<br>35.60<br>24.65<br>36.90<br>23.37<br>33.50<br>20.47          | Limit (dBuV) 56.25 46.25 56.00 46.00 56.00 46.00 56.00 46.00       | (dB)<br>-18.75<br>-19.80<br>-20.40<br>-21.35<br>-19.10<br>-22.63<br>-22.50<br>-25.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG        | P<br>P<br>P<br>P<br>P | Tanas cons  |           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 0.150  Frequency (MHz)  0.4854  0.4854  0.5512  0.5512  1.0238  1.0238  1.3624  1.3624  2.5301 | (dB)<br>9.61<br>9.61<br>9.61<br>9.63<br>9.63<br>9.64<br>9.64<br>9.68 | Reading<br>(dBuV)<br>27.89<br>16.84<br>25.99<br>15.04<br>27.27<br>13.74<br>23.86<br>10.83<br>22.92 | (dBuV)<br>37.50<br>26.45<br>35.60<br>24.65<br>36.90<br>23.37<br>33.50<br>20.47<br>32.60 | Limit (dBuV) 56.25 46.25 56.00 46.00 56.00 46.00 56.00 46.00 56.00 | (dB)<br>-18.75<br>-19.80<br>-20.40<br>-21.35<br>-19.10<br>-22.63<br>-22.50<br>-25.53<br>-23.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG        | P P P P P P P         | Tanas cons  |           |



Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705

FCC ID.: 2AP27-TGB

#### 7. TEST OF RADIATED EMISSION

#### 7.1 TEST LIMIT

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter measurement is based on the maximum conducted output power, the attenuation required under this paragraph shall be 30dB instead of 20dB. In addition, radiated emissions which fall in section 15.205(a) the restricted bands must also comply with the radiated emission limit specified in section 15.209(a).

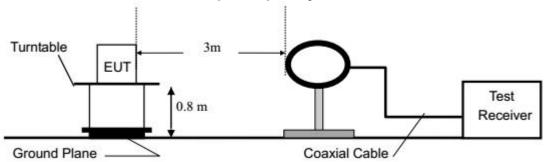
| Frequency<br>(MHz) | Field Strength<br>(microvolt/meter) | Measurement Distance (meters) |
|--------------------|-------------------------------------|-------------------------------|
| 0.009 ~ 0.490      | 2400/F(kHz)                         | 300                           |
| 0.490 ~ 1.705      | 24000/F(kHz)                        | 30                            |
| 1.705 ~ 30.0       | 30                                  | 30                            |
| 30 ~ 88            | 100                                 | 3                             |
| 88 ~ 216           | 150                                 | 3                             |
| 216 ~ 960          | 200                                 | 3                             |
| Above 960          | 500                                 | 3                             |

#### 7.2 TEST PROCEDURES

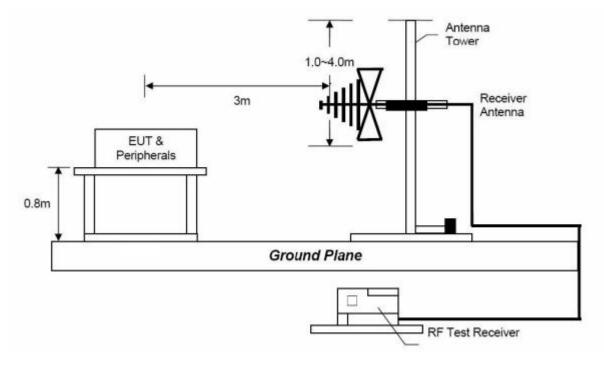
- a. The EUT was placed on a rotatable table top 0.8 meter above ground.
- b. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna is a broadband antenna and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported,



Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705


FCC ID.: 2AP27-TGB

otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.

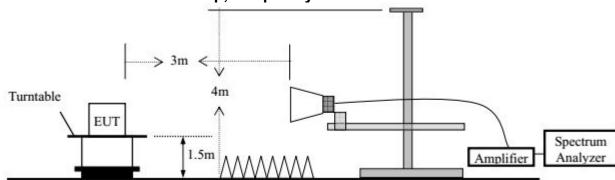

- h. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower thanaverage limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- i. "Cone of radiation" has been considered to be 3dB bandwidth of the measurement antenna.

#### 7.3 TYPICAL TEST SETUP

## Radiated Emission Test Set-Up, Frequency Below 30MHz



## Radiated Emission Test Set-Up, Frequency 30MHz-1000MHz





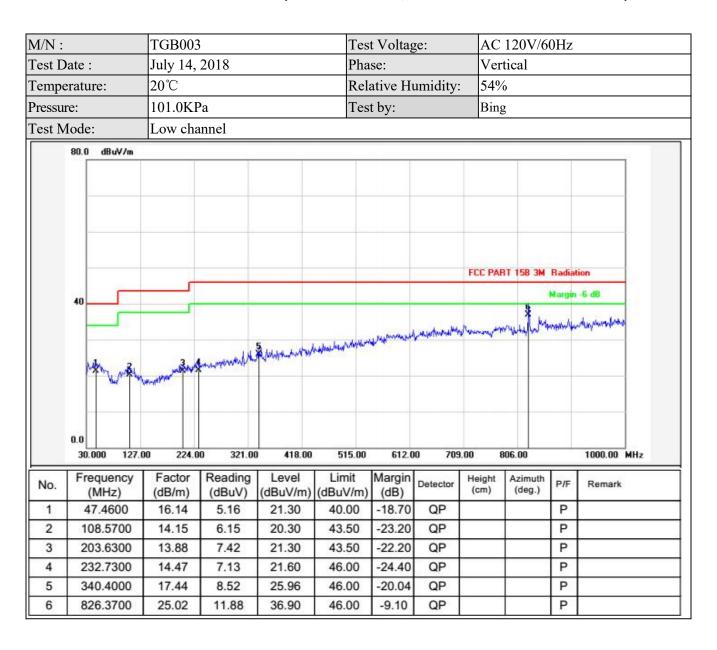

Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705

FCC ID.: 2AP27-TGB

## Radiated Emission Test Set-Up, Frequency above 1GHz



## 7.4 TEST RESULT AND DATA (9KHZ ~ 30MHZ)


The 9kHz - 30MHz spurious emission is under limit 20dB more.



Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705

FCC ID.: 2AP27-TGB

## 7.5 TEST RESULT AND DATA (30MHZ ~ 1GHZ, WORST EMISSIONS FOUND)





Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705

| 1/N:  |                                                                  | TGB003                                                  | 1                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tes                                                    | Test Voltage:                                         |                         | AC                    | AC 120V/60Hz      |               |         |
|-------|------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------|-----------------------|-------------------|---------------|---------|
| est D | Date:                                                            | July 14,                                                | 2018                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pha                                                    | se:                                                   |                         | Ho                    | rizontal          |               |         |
| empe  | erature:                                                         | 20°C                                                    |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rela                                                   | ative H                                               | umidity:                | 54%                   | 54%               |               |         |
| ressu | ire:                                                             | 101.0KP                                                 | 'a                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tes                                                    | t by:                                                 |                         | Bing                  | g                 |               |         |
| est N | Mode:                                                            | Low cha                                                 | nnel                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                      |                                                       |                         |                       |                   |               |         |
|       | 80.0 dBuV/m                                                      |                                                         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                       |                         |                       |                   |               |         |
|       |                                                                  | ()                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                       |                         |                       | RT 158 3M         |               |         |
|       | 40                                                               | San June 3 . N.                                         | noessaffic job mark and directed          | Alexandria de la compansión de la compan | ndrest wheel                                           | aghter design                                         | halloperacrayhid        | i de majorgo provingo | malin             | Margin        | 45 dB   |
| No.   | 0.0<br>30.000 127.0                                              | 0 224.00<br>Factor                                      | 0 321.00<br>Reading                       | 418.00<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 515.00<br>Limit                                        | 612.0<br>Margin                                       |                         | .00 8<br>Height       | 806.00<br>Azimuth | P/F           | mondo   |
|       | 0.0<br>30.000 127.0<br>Frequency<br>(MHz)                        | 0 224.00<br>Factor<br>(dB/m)                            | Reading (dBuV)                            | 418.00<br>Level<br>(dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 515.00<br>Limit<br>(dBuV/m)                            | 612.0<br>Margin<br>(dB)                               | 00 709<br>Detector      | .00 8                 | 806.00            | P/F           | 1000.00 |
| 1     | 0.0 30.000 127.0 Frequency (MHz) 49.4000                         | 0 224.00<br>Factor<br>(dB/m)<br>16.12                   | 0 321.00<br>Reading<br>(dBuV)<br>5.18     | Level<br>(dBuV/m)<br>21.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 515.00<br>Limit<br>(dBuV/m)<br>40.00                   | 612.0<br>Margin<br>(dB)<br>-18.70                     | Detector                | .00 8<br>Height       | 806.00<br>Azimuth | P/F           | 1000.00 |
| 1     | 0.0<br>30.000 127.0<br>Frequency<br>(MHz)<br>49.4000<br>107.6000 | 0 224.00<br>Factor<br>(dB/m)<br>16.12<br>19.15          | Reading<br>(dBuV)<br>5.18<br>1.85         | 418.00<br>Level<br>(dBuV/m)<br>21.30<br>21.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 515.00<br>Limit<br>(dBuV/m)<br>40.00<br>43.50          | 612.0<br>Margin<br>(dB)<br>-18.70<br>-22.50           | Detector QP QP          | .00 8<br>Height       | 806.00<br>Azimuth | P/F<br>P      | 1000.00 |
| 1 2 3 | 0.0 30.000 127.0 Frequency (MHz) 49.4000 107.6000 205.5700       | 0 224.00<br>Factor<br>(dB/m)<br>16.12<br>19.15<br>16.76 | Reading<br>(dBuV)<br>5.18<br>1.85<br>3.54 | Level<br>(dBuV/m)<br>21.30<br>21.00<br>20.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 515.00<br>Limit<br>(dBuV/m)<br>40.00<br>43.50<br>43.50 | 612.0<br>Margin<br>(dB)<br>-18.70<br>-22.50<br>-23.20 | Detector QP QP QP       | .00 8<br>Height       | 806.00<br>Azimuth | P/F<br>P<br>P | 1000.00 |
| 1     | 0.0<br>30.000 127.0<br>Frequency<br>(MHz)<br>49.4000<br>107.6000 | 0 224.00<br>Factor<br>(dB/m)<br>16.12<br>19.15          | Reading<br>(dBuV)<br>5.18<br>1.85         | 418.00<br>Level<br>(dBuV/m)<br>21.30<br>21.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 515.00<br>Limit<br>(dBuV/m)<br>40.00<br>43.50          | 612.0<br>Margin<br>(dB)<br>-18.70<br>-22.50           | Detector QP QP QP QP QP | .00 8<br>Height       | 806.00<br>Azimuth | P/F<br>P      | 1000.00 |



Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705

FCC ID.: 2AP27-TGB

## 7.6 TEST RESULT AND DATA (ABOVE 1GHZ)

| M/N:                          |         | TGB003     |         |        | Test V            | Voltage: | A       | .C 120V/ | 60Hz   |       |  |
|-------------------------------|---------|------------|---------|--------|-------------------|----------|---------|----------|--------|-------|--|
| Test Date                     | :       | July 14, 2 | 2018    |        | Phase             | :        | V       | ertical  |        |       |  |
| Temperat                      | ure:    | 20℃        |         |        | Relati            | ve Humic | dity: 5 | 4%       |        |       |  |
| Pressure:                     |         | 101.0KP    | a       |        | Test b            | y:       | В       | ing      |        |       |  |
| Test Mod                      | e:      | BLE        |         |        |                   |          |         |          |        |       |  |
| Operation Mode: (Low channel) |         |            |         |        |                   |          |         |          |        |       |  |
| Freq                          | Ant.Pol | Readin     |         |        |                   | n Level  |         | it 3m    | M      | argin |  |
| (MHz)                         | (H/V)   |            | uV)     | (dB)   | (dBu <sup>v</sup> | V/m)     |         | V/m)     |        | (dB)  |  |
|                               |         | PK         | AV      |        | PK                | AV       | PK      | AV       | PK     | AV    |  |
| 4824                          | V       | 45.33      | 33.25   | 14.05  | 59.38             | 47.30    | 74.00   | 54.00    | -14.62 | -6.70 |  |
| 7236                          | V       | 37.84      | 27.62   | 18.81  | 56.65             | 46.43    | 74.00   | 54.00    | -17.35 | -7.57 |  |
|                               |         |            |         |        |                   |          |         |          |        |       |  |
| 4824                          | Н       | 46.25      | 31.98   | 14.05  | 60.30             | 46.03    | 74.00   | 54.00    | -13.70 | -7.97 |  |
| 7236                          | Н       | 38.07      | 26.02   | 18.18  | 56.25             | 44.20    | 74.00   | 54.00    | -17.75 | -9.80 |  |
|                               |         |            |         |        |                   |          |         |          |        |       |  |
| Operation Mode: (Mid channel) |         |            |         |        |                   |          |         |          |        |       |  |
| Freq                          | Ant.Pol |            | g Level | Factor | Emission          |          |         | it 3m    | Margin |       |  |
| (MHz)                         | (H/V)   | (dB        |         | (dB)   | (dBu              |          |         | V/m)     | (dB)   |       |  |
|                               |         | PK         | AV      |        | PK                | AV       | PK      | AV       | PK     | AV    |  |
| 4874                          | V       | 46.40      | 31.55   | 14.41  | 60.81             | 45.96    | 74.00   | 54.00    | -13.19 | -8.04 |  |
| 7311                          | V       | 41.22      | 26.96   | 18.36  | 59.58             | 45.32    | 74.00   | 54.00    | -14.42 | -8.68 |  |
|                               |         | 1          |         |        |                   |          |         |          | 1100   |       |  |
| 4874                          | Н       | 45.26      | 32.06   | 14.41  | 59.67             | 46.47    | 74.00   | 54.00    | -14.33 | -7.53 |  |
| 7311                          | Н       | 39.04      | 27.04   | 18.36  | 57.40             | 45.40    | 74.00   | 54.00    | -16.60 | -8.60 |  |
|                               |         |            |         | . •    | 3.5.1.63          |          |         |          |        |       |  |
|                               |         |            |         |        | Mode:()           |          |         |          |        |       |  |
| Freq                          | Ant.Pol |            | g Level | Factor | Emissio           |          |         | it 3m    |        | argin |  |
| (MHz)                         | (H/V)   | _ `        | uV)     | (dB)   | (dBu <sup>v</sup> |          | `       | V/m)     |        | (dB)  |  |
| 1001                          |         | PK         | AV      | 11-5   | PK                | AV       | PK      | AV       | PK     | AV    |  |
| 4924                          | V       | 45.59      | 32.32   | 14.76  | 60.35             | 47.08    | 74.00   | 54.00    | -13.65 | -6.92 |  |
| 7386                          | V       | 38.27      | 26.63   | 18.55  | 56.82             | 45.18    | 74.00   | 54.00    | -17.18 | -8.82 |  |
| 4024                          | 11      | 45.60      | 21.00   | 1476   | 60.44             | 46.75    | 74.00   | 54.00    | 12.56  | 7.25  |  |
| 4924                          | H       | 45.68      | 31.99   | 14.76  | 60.44             | 46.75    | 74.00   | 54.00    | -13.56 | -7.25 |  |
| 7386                          | Н       | 38.77      | 26.56   | 18.55  | 57.32             | 45.11    | 74.00   | 54.00    | -16.68 | -8.89 |  |
|                               |         |            |         |        |                   |          |         |          |        |       |  |

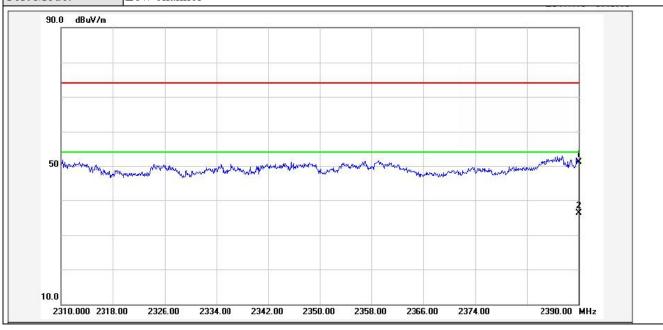


Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705 FCC ID. : 2AP27-TGB

## 7.7 RESTRICT BAND EMISSION MEASUREMENT DATA

| M/N:        |               | TGI  | B003    |         |        | Test Vo  | oltage:  |     | AC 120V/60Hz |          |        |        |  |
|-------------|---------------|------|---------|---------|--------|----------|----------|-----|--------------|----------|--------|--------|--|
| Test Date:  |               | July | 14, 201 | .8      |        | Phase:   |          |     | Ver          | Vertical |        |        |  |
| Temperature | e:            | 20℃  | C       |         |        | Relativ  | e Humidi | ty: | 54%          | 54%      |        |        |  |
| Pressure:   |               | 101. | .0KPa   |         |        | Test by  | :        |     | Bing         |          |        |        |  |
| Test Mode:  | Test Mode: BI |      |         |         |        | •        |          |     |              |          |        |        |  |
| Freq        | Ant.Po        | ol   | Readin  | g Level | Factor | Emissio  | n Level  | L   | imit         | t 3m     | N      | Iargin |  |
| (MHz)       | (H/V)         | )    | (dB     | uV)     | (dB)   | (dBuV/m) |          | (d  | lBu\         | V/m)     | (      | (dB)   |  |
|             |               |      | PK      | AV      |        | PK       | AV       | PK  |              | AV       | PK     | AV     |  |
| 2390.000    | Н             |      | 33.97   | 18.24   | 12.56  | 46.53    | 30.80    | 74  |              | 54       | -27.47 | -23.20 |  |
| 2390.000    | V             |      | 38.43   | 21.14   | 12.56  | 50.99    | 33.70    | 74  |              | 54       | -23.01 | -20.30 |  |
| 2483.500    | Н             |      | 30.03   | 17.53   | 12.67  | 45.70    | 30.20    | 74  |              | 54       | -28.30 | -23.80 |  |
| 2483.500    | V             |      | 38.64   | 23.53   | 12.67  | 51.31    | 36.20    | 74  |              | 54       | -22.69 | -17.80 |  |




Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705

| M/N:         | TGB003                                                  | Test Voltage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AC 120V/60Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|--------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Γest Date :  | July 14, 2018                                           | Phase:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Геmperature: | 20℃                                                     | Relative Humidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Pressure:    | 101.0KPa                                                | Test by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Γest Mode:   | Low channel                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 90.0 dBuV/m  | - 18                                                    | V- 20 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 50 mm mm     | at the same many the same and the same and produces are | manage per de manage de proposition de la proposition della propos | Marian Ma |  |  |



Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705

| M/N:         | TGB003        | Test Voltage:      | AC 120V/60Hz |
|--------------|---------------|--------------------|--------------|
| Test Date:   | July 14, 2018 | Phase:             | Horizontal   |
| Temperature: | 20℃           | Relative Humidity: | 54%          |
| Pressure:    | 101.0KPa      | Test by:           | Bing         |
| Test Mode:   | Low channel   | ·                  |              |
| 90.0 dBuV/r  |               |                    |              |





Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705

| M/N:         | TGB003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Test Voltage:      | AC 120V/60Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Date:   | July 14, 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Phase:             | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Temperature: | 20℃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Relative Humidity: | 54%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Pressure:    | 101.0KPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Test by:           | Bing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test Mode:   | High channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 90.0 dBuV/m  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50 hayshar   | when the war was the same of t | Marian mariant     | month of the second of the sec |
| *            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705

FCC ID.: 2AP27-TGB

| <i>M</i> /N: | TGB003               | Test Voltage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AC 120V/60Hz                           |
|--------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| est Date :   | July 14, 2018        | Phase:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Horizontal                             |
| emperature:  | 20℃                  | Relative Humic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lity: 54%                              |
| ressure:     | 101.0KPa             | Test by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bing                                   |
| est Mode:    | High channel         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 90.0 dBuV/   | <u>.</u>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 50 Jun       | of the many many way | it was for the party of the par | when the air amy M while               |
| - TN         | 1 Mary and Comment   | A Management of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a many of the star have a section that |
| 3            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 1            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |

#### Note:

- 1. Emission level = Reading level + Correction factor
- 2. Correction factor: Antenna factor, Cable loss, Pre-Amp, etc.
- 3. All emissions as described above were determining by rotating the EUT through three orthogonal axes to maximizing the emissions if the EUT belongs to hand-held or body-worn devices.
- 4. Measurements above 1000 MHz, Peak detector setting:1 MHz RBW with 1 MHz VBW (Peak Detector).
- 5. Measurements above 1000 MHz, Average detector setting:1 MHz RBW with 10Hz VBW (RMS Detector).
- 6. Peak detector measurement data will represent the worst case results.
- 7. Where limits are specified for both average and peak detector functions, if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.



Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705

FCC ID.: 2AP27-TGB

### 8. 6DB BANDWIDTH MEASUREMENT DATA

### 8.1 TEST LIMIT

The minimum of 6dB Bandwidth Measurement is 0.5 MHz. Test Procedures

### 8.2 TEST PROCEDURES

- a. The transmitter output was connected to the spectrum analyzer.
- b. Set RBW of spectrum analyzer to 100KHz of the emission bandwidth and VBW ≥ 3x RBW.
- c. The 6 dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6 dB.
- d. The 6dB Bandwidth was measured and recorded.

### 8.3 TEST SETUP LAYOUT



### 8.4 TEST RESULT AND DATA

### **PASS**

Please refer to following table.



Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705 FCC ID. : 2AP27-TGB

| Temperature :      | <b>22</b> ℃ | Humidity:         | 56%          | Pressure:     | 101.45KPa |
|--------------------|-------------|-------------------|--------------|---------------|-----------|
| Test By:           |             | Bing              | Test Date :  | July 25, 2018 |           |
| Frequency MHz      | :           | Data Rate<br>Mbps | 6dB Bandwidt | h KHz         | Limit     |
|                    |             | GFS               | SK           |               |           |
| Low Channel:       | 2402        | 1                 | 692.8        |               | >500KHz   |
| Middle Channel     | : 2440      | 1                 | 688.5        |               | >500KHz   |
| High Channel: 2480 |             | 1                 | 688.4        |               | >500KHz   |




Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705

FCC ID.: 2AP27-TGB

### **Low Channel**



## **Middle Channel**





Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705





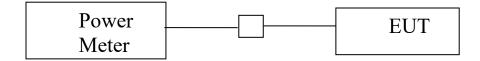
Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705

FCC ID.: 2AP27-TGB

### 9. MAXIMUM PEAK AND AVERAGE OUTPUT POWER

#### 9.1 TEST LIMIT

The Maximum Peak Output Power Measurement is 30dBm.


#### 9.2 TEST PROCEDURES

The transmitter output (antenna port) was connected to the power meter. According to KDB558074 D01 DTS Measurement Guidance Section 9.1 Maximum peak conducted output power, 9.1.2 the maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

According to KDB558074 D01 DTS Measurement Guidance Section 9.2 Maximum average conducted output power, 9.2.3.1 Method AVGPM (Measurement using an RF average power meter)

- (a) As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.
- 1) The EUT is configured to transmit continuously, or to transmit with a constant duty factor.
- 2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.
- 3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- (b) If the transmitter does not transmit continuously, measure the duty cycle (x) of the transmitter output signal as described in Section 6.0.
- (c) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- (d) Adjust the measurement in dBm by adding 10log (1/x), where x is the duty cycle to the measurement result.

### 9.3 TEST SETUP LAYOUT



#### 9.4 TEST RESULT AND DATA

#### **PASS**

Please refer to following table.



Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705 FCC ID. : 2AP27-TGB

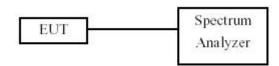
| Temperature :  | <b>22</b> ℃ | Humidity:         | 56%          | Pressure:        | 101.45KPa    |
|----------------|-------------|-------------------|--------------|------------------|--------------|
| Test By:       |             | Bing              | Test Date :  | July 25, 2018    |              |
|                | uency<br>Hz | Data Rate<br>Mbps |              | tput Power<br>Bm | Limit<br>dBm |
|                | GF          | SK (Antenna       | Gain=0.2dBi) |                  |              |
| Low Channel:   | 2402        | 1                 | 2.53         |                  | 30           |
| Middle Channel | : 2440      | 1                 | 2.47         |                  | 30           |
| High Channel:  | 2480        | 1                 | 1            | .44              | 30           |



Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705

FCC ID.: 2AP27-TGB

### 10. POWER SPECTRAL DENSITY


### 10.1 TEST LIMIT

The Maximum of Power Spectral Density Measurement is 8dBm

#### 10.2 TEST PROCEDURES

- g. The transmitter output was connected to spectrum analyzer.
- h. The spectrum analyzer's resolution bandwidth were set at 3KHz RBW and 30KHz VBW as that of the fundamental frequency. Set the sweep time=auto couple.
- i. The power spectral density was measured and recorded.

### 10.3 TEST SETUP LAYOUT



#### 10.4 TEST RESULT AND DATA

### **PASS**

Please refer to following table.



Date of Issue: July 28, 2018 Report No. : WH-FCC-R18082705 FCC ID. : 2AP27-TGB

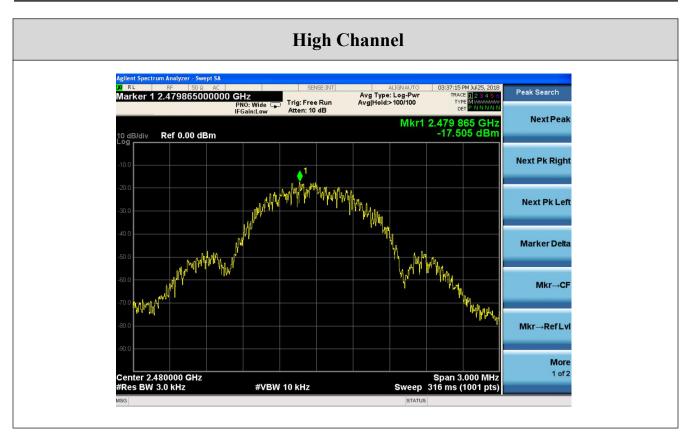

| Temperature :        | 22 ℃ | Humidity:         | 56%             | Pressure:     | 101.45KPa         |  |
|----------------------|------|-------------------|-----------------|---------------|-------------------|--|
| Test By:             |      | Bing              | Test Date :     | July 25, 2018 |                   |  |
| Frequency<br>MHz     |      | Data Rate<br>Mbps | PSD<br>dBm/3kHz |               | Limit<br>dBm/3kHz |  |
| GFSK                 |      |                   |                 |               |                   |  |
| Low Channel: 2402    |      | 1                 | -16             | 5.015         | 8                 |  |
| Middle Channel: 2440 |      | 1                 | -16             | 6.177         | 8                 |  |
| High Channel: 2480   |      | 1                 | -17             | 7.505         | 8                 |  |



Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705

FCC ID.: 2AP27-TGB

### Low Channel




## **Middle Channel**





Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705

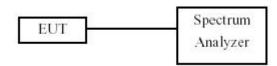




Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705

FCC ID.: 2AP27-TGB

#### 11. BAND EDGES MEASUREMENT


#### 11.1 TEST LIMIT

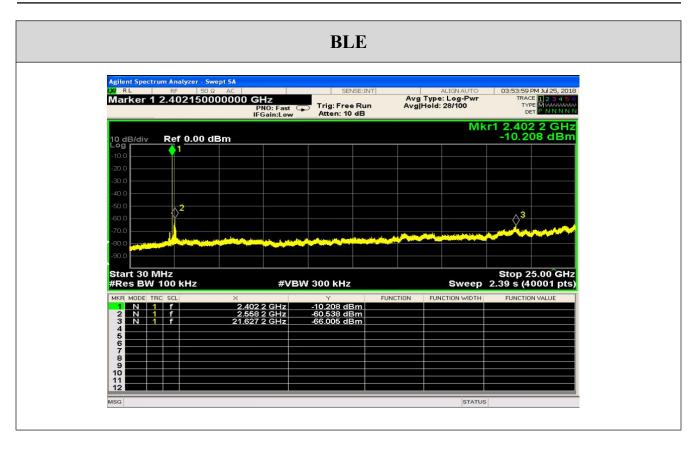
Below - 20dB of the highest emission level of operating band (In 100 kHz Resolution Bandwidth)

#### 11.2 TEST PROCEDURE

- a. The transmitter output was connected to the spectrum analyzer via a low lose cable.
- b. Set RBW of spectrum analyzer to 100 KHz and VBW of spectrum analyzer to 300 KHz with convenient frequency span including 100 KHz bandwidth from band edge.
- c. Peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20dB relative to the maximum measured in-band peak PSD level.
- d. The band edges was measured and recorded.

#### 11.3 TEST SETUP LAYOUT




#### 11.4 TEST RESULT AND DATA

### **PASS**

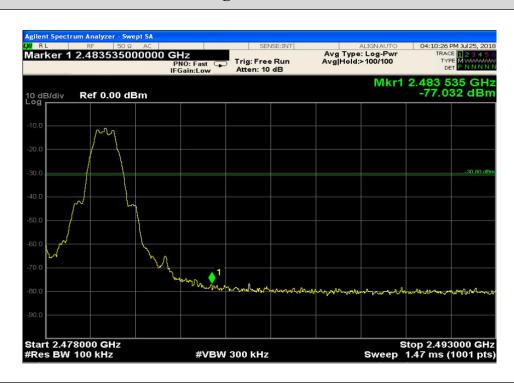
Please refer to following table.



Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705






Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705

FCC ID.: 2AP27-TGB

### Low Channel



## **High Channel**





Date of Issue: July 28, 2018 Report No.: WH-FCC-R18082705

FCC ID.: 2AP27-TGB

#### 12. RESTRICTED BANDS OF OPERATION

Only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                 | MHz                   | MHz             | GHz             |
|---------------------|-----------------------|-----------------|-----------------|
| 0.09000 - 0.11000   | 16.42000 - 16.42300   | 399.9 - 410.0   | 4.500 - 5.150   |
| 0.49500 - 0.505**   | 16.69475 - 16.69525   | 608.0 - 614.0   | 5.350 - 5.460   |
| 2.17350 - 2.19050   | 16.80425 - 16.80475   | 960.0 - 1240.0  | 7.250 - 7.750   |
| 4.12500 - 4.12800   | 25.50000 - 25.67000   | 1300.0 - 1427.0 | 8.025 - 8.500   |
| 4.17725 - 4.17775   | 37.50000 - 38.25000   | 1435.0 - 1626.5 | 9.000 - 9.200   |
| 4.20725 - 4.20775   | 73.00000 - 74.60000   | 1645.5 - 1646.5 | 9.300 - 9.500   |
| 6.21500 - 6.21800   | 74.80000 - 75.20000   | 1660.0 - 1710.0 | 10.600 - 12.700 |
| 6.26775 - 6.26825   | 108.00000 - 121.94000 | 1718.8 – 1722.2 | 13.250 - 13.400 |
| 6.31175 - 6.31225   | 123.00000 - 138.00000 | 2200.0 - 2300.0 | 14.470 - 14.500 |
| 8.29100 - 8.29400   | 149.90000 - 150.05000 | 2310.0 - 2390.0 | 15.350 - 16.200 |
| 8.36200 - 8.36600   | 156.52475 - 156.52525 | 2483.5 - 2500.0 | 17.700 - 21.400 |
| 8.37625 - 8.38675   | 156.70000 - 156.90000 | 2655.0 - 2900.0 | 22.010 - 23.120 |
| 8.41425 - 8.41475   | 162.01250 - 167.17000 | 3260.0 - 3267.0 | 23.600 - 24.000 |
| 12.29000 - 12.29300 | 167.72000 - 173.20000 | 3332.0 - 3339.0 | 31.200 - 31.800 |
| 12.51975 - 12.52025 | 240.00000 - 285.00000 | 3345.8 - 3358.0 | 36.430 - 36.500 |
| 12.57675 - 12.57725 | 322.00000 - 335.40000 | 3600.0 - 4400.0 | Above 38.6      |
| 13.36000 - 13.41000 | 5                     |                 |                 |

<sup>\*\*:</sup> Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

### 12.1 LABELING REQUIREMENT

The device shall bear the following statement in a conspicuous location on the device: This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

--END---