

RF TEST REPORT

Client Information:

Applicant: HOLYBRO(H.K.) LIMITED

Applicant add.: RM 1902 EASEY COMM BLDG253-261 HENNESSY RD WANCHAI HONG

Report No.: AIT23041404FW1

KONG

Manufacturer: Shenzhen HolyBro Hobby Technical Co.,LTD

Manufacturer add.: Floor 4, Jiang Hai Industry District, No.7 yonghe Road, Shi Yan Town, Bao'an

District, Shenzhen City, Guangdong Province, China

Product Information:

Product Name: Microhard Radio P900

Model No.: HT08, Telemetry Radio Series

Brand Name: N/A

FCC ID: 2AP22- HT08

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.249

Prepared By:

Dongguan Yaxu (AiT) Technology Limited

No.22, Jinqianling 3rd Street, Jitigang, Huangjiang, Dongguan,

Guangdong, China

Tel.: +86-769-8202 0499 Fax.: +86-769-8202 0495

Date of Receipt: 2023.04.17 Date of Test: 2023.04.17~2023.05.06

Date of Issue: 2023.05.06 Test Result: Pass

This device described above has been tested by Dongguan Yaxu (AiT) Technology Limited and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Note: This report shall not be reproduced except in full, without the written approval of Dongguan Yaxu (AiT) Technology Limited, this document may be altered or revised by Dongguan Yaxu (AiT) Technology Limited, personal only, and shall be noted in the revision of the document. This test report must not be used by the client to claim product endorsement.

Reviewed by:

Simba Huang

Approved by:

Seal-Chern

Seal-Chern

TABLE OF CONTENTS

1. TEST SUMMARY	
1.1. TEST STANDARDS	
2. GENERAL INFORMATION	6
2.1. GENERAL DESCRIPTION OF EUT	8 8
3. TEST ITEM AND RESULTS	9
3.1. ANTENNA REQUIREMENT	
4. EUT TEST PHOTOS	33

1. TEST SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. REPORT VERSION

Revised No.	Date of issue	Description
01	2023.05.06	Original

1.3. TEST DESCRIPTION

FCC Rules Part 15.249			
To at Itams	Section in CFR 47	Dagult	Test
Test Item	FCC	Result	Engineer
Antenna requirement	15.203	Pass	Simba Huang
AC Power Line Conducted Emissions	15.207	Pass	Simba Huang
20dB Bandwidth	Section 15.215(c)	Pass	Simba Huang
Band edge Emissions	Section 15.249(d)	Pass	Simba Huang
Radiated Spurious Emissions	Section 15.205(a), Section 15.209(a), Section 15.249, Section 15.35	Pass	Simba Huang

Note:

1. The measurement uncertainty is not included in the test result.

1.4. TABLE OF CARRIER FREQUENCY

Channel Number	Frequency MHz	Channel Number	Frequency MHz	Channel Number	Frequency MHz
0	902.4	18	906.9	36	911.4
1	902.65	19	907.15	37	911.65
2	902.9	20	907.4	38	911.9
3	903.15	21	907.65	39	912.15
4	903.4	22	907.9	40	912.4
5	903.65	23	908.15	41	912.65
6	903.9	24	908.4	42	912.9
7	904.15	25	908.65	43	913.15
8	904.4	26	908.9	44	913.4
9	904.65	27	909.15	45	913.65
10	904.9	28	909.4	46	913.9
11	905.15	29	909.65	47	914.15
12	905.4	30	909.9	48	914.4
13	905.65	31	910.15	49	914.65
14	905.9	32	910.4		
15	906.15	33	910.65		
16	906.4	34	910.9		
17	906.65	35	911.15		

1.5. MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " . system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	0.009MHz-30MHz	3.10dB	(1)	
Radiated Emission	30MHz-1GHz	3.75dB	(1)	
Radiated Emission	1GHz-18GHz	3.88dB	(1)	
Radiated Emission	18GHz-40GHz	3.88dB	(1)	
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	1.20dB	(1)	
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.				

1.6. ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

2. GENERAL INFORMATION

2.1. GENERAL DESCRIPTION OF EUT

Test Sample Number:	AIT23041404-2(Normal Sample),AIT23041404-1(Engineering Sample)
Product Name:	Microhard Radio P900
Trade Mark:	N/A
Model/Type reference:	HT08
Serial model(s):	Telemetry Radio Series
Difference Description	All the series models are the same as the test model except for the color and model names.
Power supply	DC 12V
Hardware version:	N/A
Software version:	N/A
Specification	
Modulation:	GFSK
Operation frequency:	902.4-914.65MHz
Channel number:	50
Antenna type:	ROD Antenna
Antenna gain:	Max. 1.0dBi

2.2. MEASUREMENT INSTRUMENTS LIST

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
1	Spectrum Analyzer	R&S	FSV40	101470	2022.09.02	2023.09.01
2	EMI Measuring Receiver	R&S	ESR	101160	2022.09.02	2023.09.01
3	Low Noise Pre Amplifier	HP	HP8447E	AiT-F0131 9	2022.09.02	2023.09.01
4	Low Noise Pre Amplifier	Tsj	MLA-0120-A02- 34	2648A047 38	2022.09.02	2023.09.01
5	Passive Loop	ETS	6512	00165355	2022.09.04	2024.09.03
6	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9160	9160-3206	2021.08.29	2024.08.28
7	Broadband Horn Antenna	SCHWARZBECK	BBHA9120D	452	2021.08.29	2024.08.28
8	SHF-EHF Horn Antenna 15-40GHz	SCHWARZBECK	BBHA9170	BBHA9170 367d	2020.11.24	2023.11.23
9	EMI Test Receiver	R&S	ESCI	100124	2022.09.02	2023.09.01
10	LISN	Kyoritsu	KNW-242	8-837-4	2022.09.02	2023.09.01
11	LISN	R&S	ESH3-Z2	0357.8810.54 - 101161-S2	2022.09.02	2023.09.01
12	Pro.Temp&Humi.chamber	MENTEK	MHP-150-1C	MAA08112 501	2022.09.02	2023.09.01
13	RF Automatic Test system	MW	MW100-RFCB	21033016	2022.09.02	2023.09.01
14	Signal Generator	Agilent	N5182A	MY501430 09	2022.09.02	2023.09.01
15	Wideband Radio communication tester	R&S	CMW500	1201.0002 K50	2022.09.02	2023.09.01
16	RF Automatic Test system	MW	MW100-RFCB	21033016	2022.09.02	2023.09.01
17	DC power supply	ZHAOXIN	RXN-305D-2	280700025 59	N/A	N/A
18	RE Software	EZ	EZ-EMC_RE	Ver.AIT-03 A	N/A	N/A
19	CE Software	EZ	EZ-EMC_CE	Ver.AIT-03 A	N/A	N/A
20	RF Software	MW	MTS 8310	2.0.0.0	N/A	N/A

2.3. TEST LOCATION

Company:	Dongguan Yaxu (AiT) Technology Limited
Address:	No.22, Jinqianling 3rd Street, Jitigang, Huangjiang, Dongguan, Guangdong, China
CNAS Registration Number:	CNAS L14158
A2LA Registration Number:	6317.01
FCC Accredited Lab. Designation Number:	CN1313
FCC Test Firm Registration Number:	703111

2.4. DESCRIPTION OF TEST MODES

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Test Frequency: 902.4MHz, 908.4MHz, 914.65MHz

Test mode

FΩ	r RI	F ta	est i	iter	ne.
гυі		_ 16	5 51	ILEI	115.

The engineering test program was provided and enabled to make EUT continuous transmit.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

2.5. TEST SOFTWARE

Software name	Model	Version
Conducted emission Measurement Software	EZ-EMC	EMC-Con 3A1.1
Radiated emission Measurement Software	EZ-EMC	FA-03A.2.RE
Bluetooth and WIFI Test System	MW	MTS 8310

3. TEST ITEM AND RESULTS

3.1. ANTENNA REQUIREMENT

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.249(b) (3):

(i) Systems operating in the 902~928 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

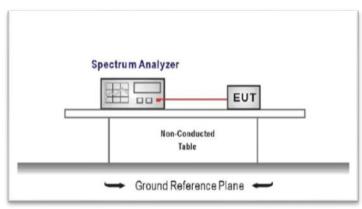
Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

Note: The antenna is permanently fixed to the EUT

33

Page 10 of



3.2. 20DB BANDWIDTH

Limit

Operation Frequency range 902MHz~928MHz.

Test Configuration

Test Procedure

- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously 2.
- 3. Use the following spectrum analyzer settings:

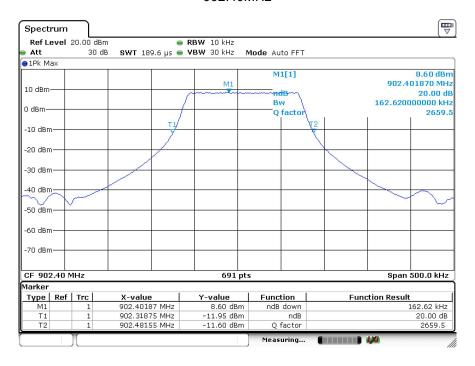
Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW

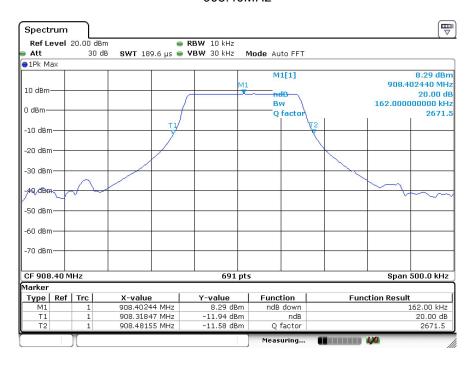
Sweep = auto, Detector function = peak, Trace = max hold

4. Measure and record the results in the test report.

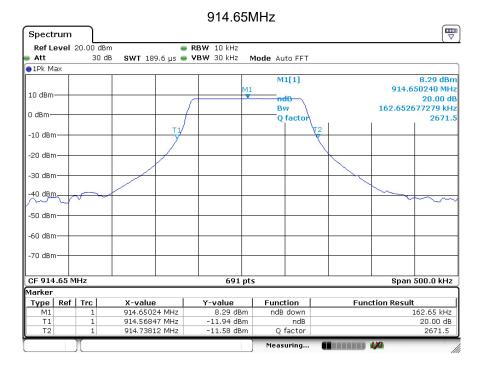
Test Mode


Please refer to the clause 2.2.

Test Results



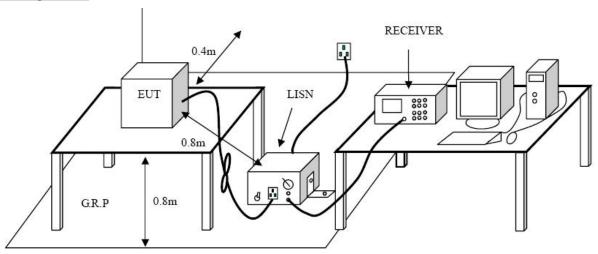
Channel frequency (MHz)	20dB Bandwidth [KHz]	Verdict
902.40	162.62	PASS
908.40	162.00	PASS
914.65	162.65	PASS


902.40MHz

908.40MHz

3.3. CONDUCTED EMISSION

Limit


Conducted Emission Test Limit

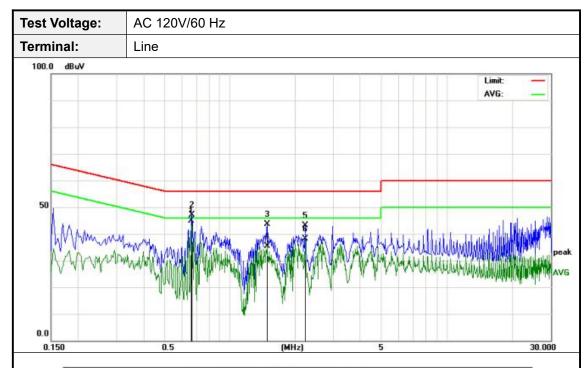
Fraguency	Maximum RF Lir	ne Voltage (dBμV)
Frequency	Quasi-peak Level Average Leve	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

Test Procedure

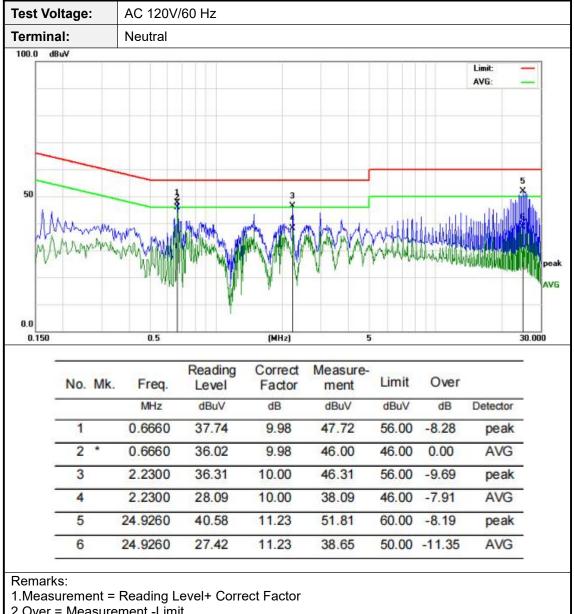

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment.

 The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

33

Test Results

Page 14 of


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.6660	35.02	9.98	45.00	46.00	-1.00	AVG
2		0.6700	37.16	9.98	47.14	56.00	-8.86	peak
3		1.4819	33.79	9.96	43.75	56.00	-12.25	peak
4		1.4819	25.52	9.96	35.48	46.00	-10.52	AVG
5		2.2220	33.24	10.00	43.24	56.00	-12.76	peak
6		2.2220	28.19	10.00	38.19	46.00	-7.81	AVG

Remarks:

^{1.}Measurement = Reading Level+ Correct Factor

^{2.}Over = Measurement -Limit

^{2.}Over = Measurement -Limit

Note:

All test modes had been tested. The TX 915MHz is the worst case and recorded in the report.

Page 16 of 33 Report No.: AIT23041404FW1

3.4. RADIATED SPURIOUS EMISSIONS

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209(a) and 15.205(a)

Standard FCC15.249

Fundamental Frequency	Field Strength of Fundamental	Field Strength of Harmonics
	(millivolts/meter)	(microvolts/meter)
900-928MHz	50 (94dBuV/m @3m)	500 (54dBuV/m @3m)
2400-2483.5MHz	50 (94dBuV/m @3m)	500 (54dBuV/m @3m)
5725-5875MHz	50 (94dBuV/m @3m)	500 (54dBuV/m @3m)
24.0-24.25GHz	250 (108dBuV/m @3m)	2500 (68dBuV/m @3m)

Standard FCC 15.209

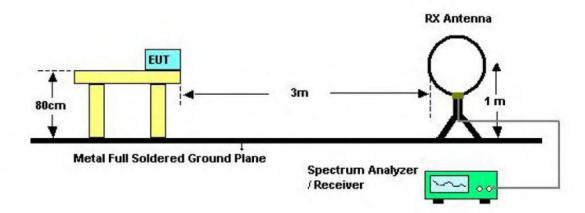
Frequency	Distance	Field S	Field Strengths Limit		
(MHz)	Meters	μ V/m	dB(μV)/m		
0.009 ~ 0.490	300	2400/F(kHz)			
0.490 ~ 1.705	30	24000/F(kHz)			
1.705 ~ 30	30	30			
30 ~ 88	3	100	40.0		
88 ~ 216	3	150	43.5		
216 ~ 960	3	200	46.0		
960 ~ 1000	3	500	54.0		
Above 1000	3	Other:74.0dB(µV)/m(Peak	s) 54.0dB(µV)/m (Average)		

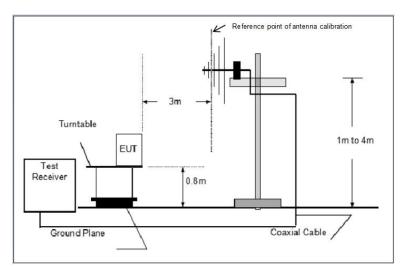
Remark:

- (1) Emission level dB μ V = 20 log Emission level μ V/m
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

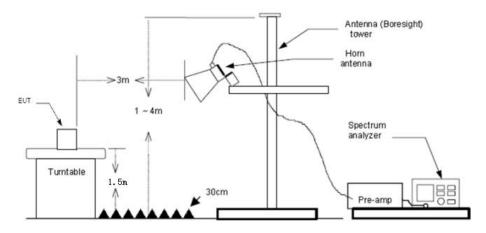
FREQUENCY RANGE OF RADIATED MEASUREMENT

Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
	1GHz~26.5GHz
Start ~Stop Frequency	RBW 1MHz/ VBW 1MHz for Peak,
	RBW 1MHz/ VBW 10Hz for Average


Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP


Start ~Stop Frequency

30MHz~1000MHz/RB 120KHz for QP


Test Configuration

Below 30MHz Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

Report No.: AIT23041404FW1

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;

Page

(2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=10HzPeak detector for Average value.

TEST MODE:

Please refer to the clause 2.2.

TEST RESULTS

able
í

9 KHz~30 MHz and 18GHz~25GHz

From 9 KHz~30 MHz and 18GHz~25GHz: Conclusion: PASS

Note:

- Final level = Reading level + Correct Factor
 - Correct Factor=Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3) The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 4) 18GHz ~ 25GHz

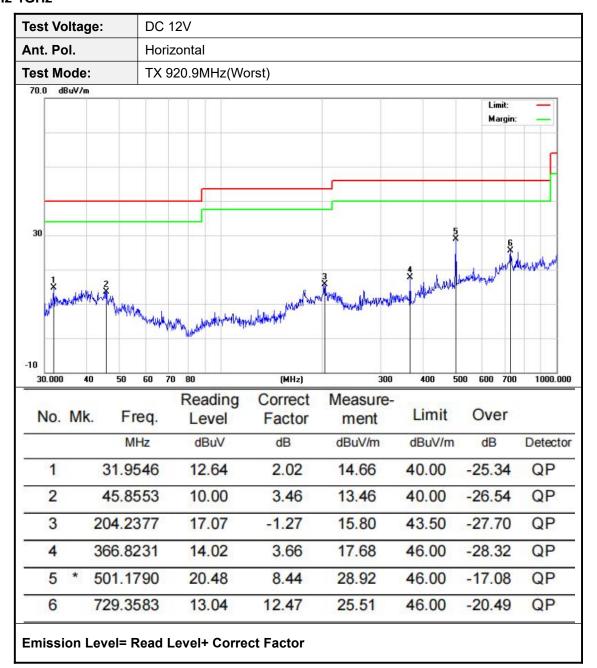
The EUT was pre-scanned the frequency band (18GHz~25GHz), found the radiated level(Background noise) lower than the limit, so don't show on the report. 3

Radiated field strength of the fundamental signal

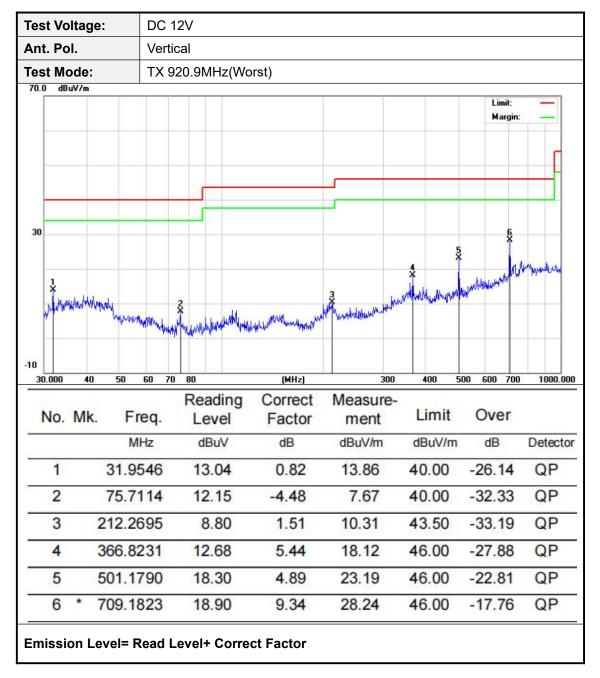
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dBuV/m)	Polarization	Test value
902.40	79.87	6.78	86.65	94	-7.35	Vertical	QP
902.40	77.06	6.78	83.84	94	-10.16	Horizontal	QP
908.40	79.91	6.92	86.83	94	-7.17	Vertical	QP
908.40	78.02	6.92	84.94	94	-9.06	Horizontal	QP
914.65	82.88	6.83	89.71	94	-4.29	Vertical	QP
914.65	80.95	6.83	87.78	94	-6.22	Horizontal	QP

Note:

- 1. Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor
- 2. Level = Read Level +Correct Factor


RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

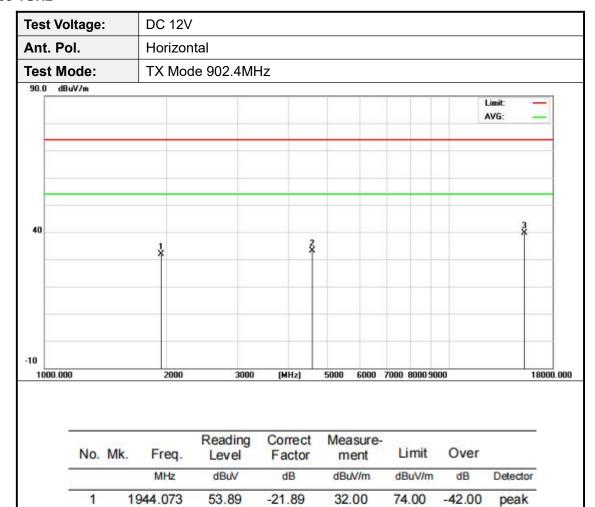

Page 20 of

30MHz-1GHz

Note:

All test modes had been tested. The TX 920.9MHz is the worst case and recorded in the report.

33


Adobe 1GHz

2

3

4586.998

15310.07

-17.50

-15.47

33.15

39.65

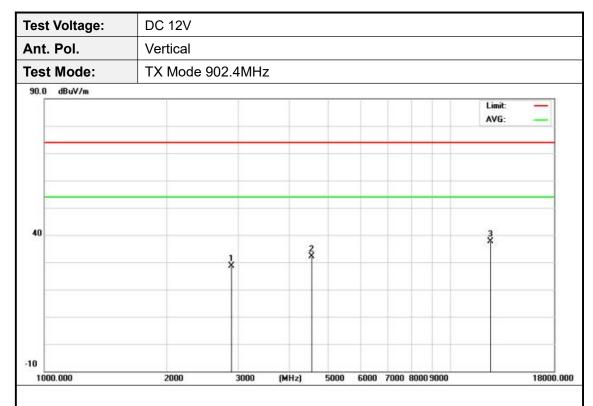
74.00

74.00

-40.85

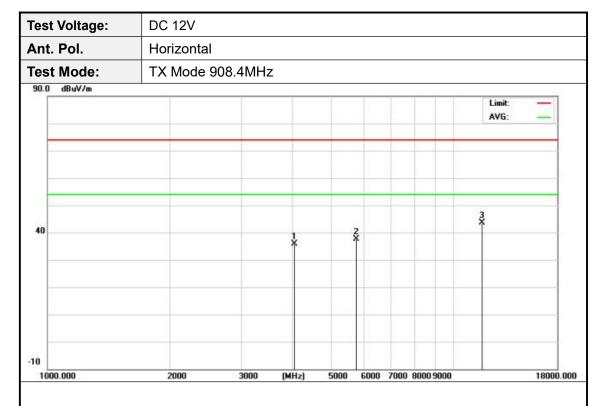
-34.35

peak

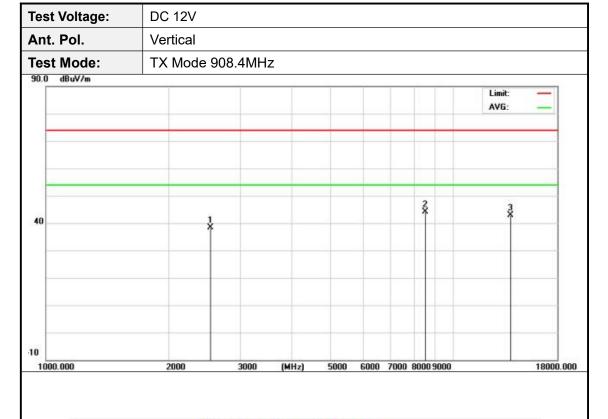

peak

50.65

55.12

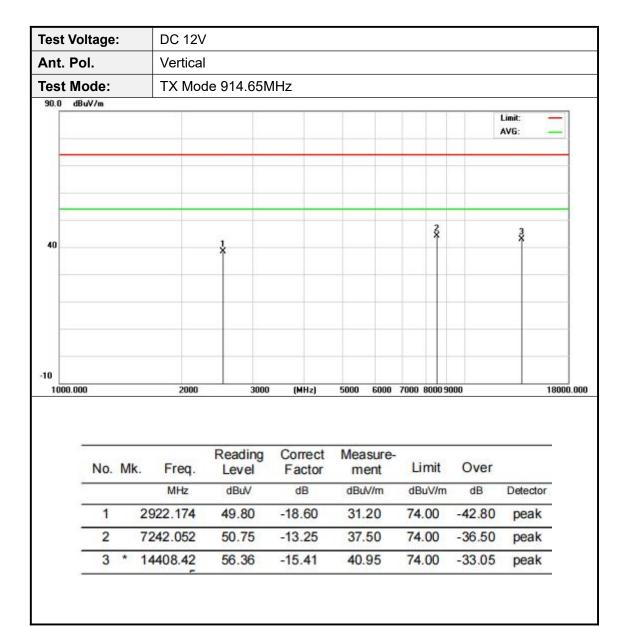

Page 22 of

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	2	880.247	47.02	-18.37	28.65	74.00	-45.35	peak
2	4	547.396	49.85	-17.60	32.25	74.00	-41.75	peak
3	* 1	2541.90	51.38	-13.73	37.65	74.00	-36.35	peak

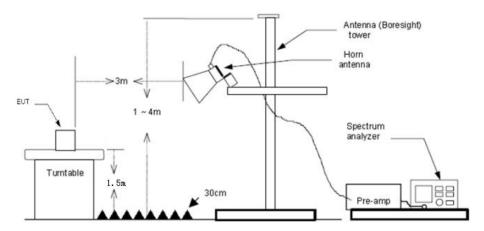


No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	ý	4039.212	53.92	-18.07	35.85	74.00	-38.15	peak
2		5763.617	52.28	-14.68	37.60	74.00	-36.40	peak
3	*	11735.24	58.48	-14.83	43.65	74.00	-30.35	peak

Emission Level= Read Level+ Correct Factor


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	1	2536.283	58.15	-19.70	38.45	74.00	-35.55	peak
2	*	8539.102	56.16	-12.11	44.05	74.00	-29.95	peak
3	- 8	13837.02	58.36	-15.51	42.85	74.00	-31.15	peak

Emission Level= Read Level+ Correct Factor



Page

3.5. BAND EDGE EMISSIONS(RADIATED)

Test Configuration

Test Procedure

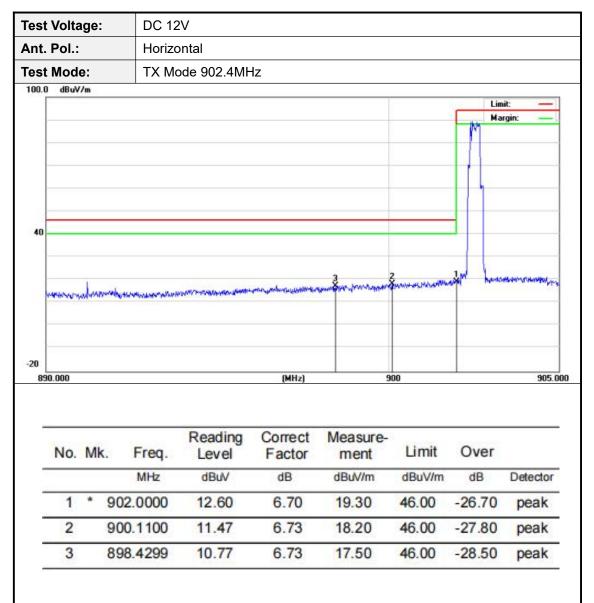
- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;

RBW=1MHz, VBW=3MHz PEAK detector for Peak value.

RBW=1MHz, VBW=10Hz with PEAK Detector for Average Value.

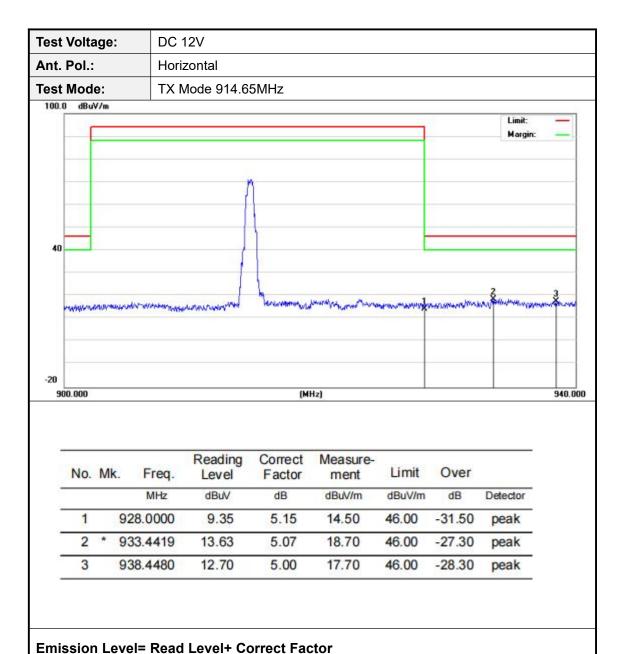
Test Mode

Please refer to the clause 2.2.

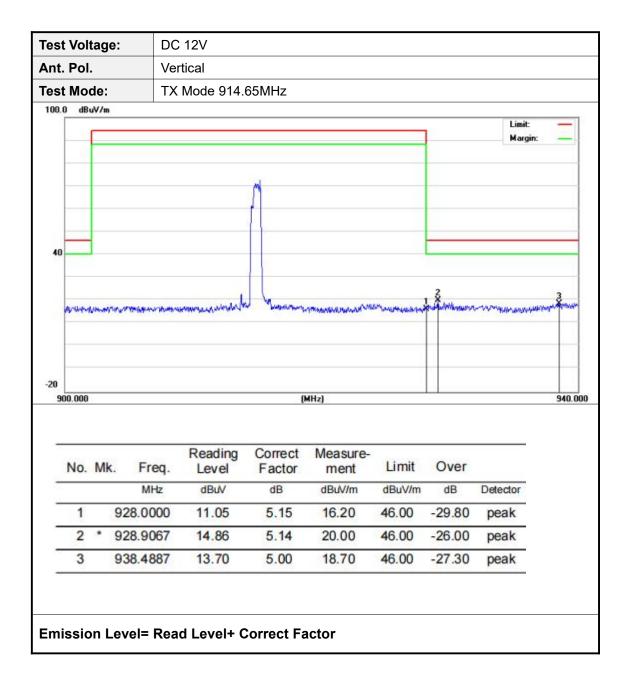

Test Results

Note:

- 1) Final level= Read level + Antenna Factor + Cable Loss Preamp Factor
- Correction Factor = Antenna factor + cable loss
- 3) The peak level is lower than average limit(54dBuV/m), this data is the too weak instrument of signal is unable to test.
- 4) The emission levels of other frequencies are very lower than the limit and not show in test report.



Emission Level= Read Level+ Correct Factor



4.EUT TEST PHOTOS

eference attachment Test Setup Photos	Reference attachment Te
