

TESTREPORT

Applicant Name :	Altobeam(China) Inc.			
Address :	No. A1 A2 D 8F Building 2 1# Yard Wangzhuang Road Haidian District			
	Beijing China			
Report Number:	BJ220706-30561E-RF			
FCC ID:	2AOXXATBM601X			
Test Standard (s)				
FCC Part 15.247				
1 CC 1 att 15.247				
Sample Description				
Product:	Wi-Fi Module			
Tested Model:	ATBM601X			
Trade Name:	AltoBeam			
Date Received:	2022-07-06			
Date of Test:	2022-07-28 to 2022-11-15			
Report Date:	2022-11-17			
Test Result:	Pass*			

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Roger, Ling

Roger.Ling EMC Engineer

Approved By: Candry . Li

Candy Li **EMC Engineer**

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*.

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect testresults are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 12: 2021-11-09

Page 1 of 49

FCC- 2.4G Wi-Fi

Shenzhen Accurate Technology Co., Ltd.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective Test Methodology	
MEASUREMENT UNCERTAINTY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
Equipment Modifications	6
EUT EXERCISE SOFTWARE	
DUTY CYCLE	
EXTERNAL I/O CABLE	
SUMMARY OF TEST RESULTS	9
TEST EQUIPMENT LIST	10
FCC §1.1307(b) – RF EXPOSURE	11
TEST RESULT	11
FCC §15.203 - ANTENNA REQUIREMENT	12
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver Setup	
Test Procedure	
FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver & Spectrum Analyzer Setup	
Test Procedure	18
FACTOR& MARGIN CALCULATION	
TEST DATA	
FCC §15.247(A) (2) – 6 DB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH	
APPLICABLE STANDARD Test Procedure	
TEST PROCEDURE TEST DATA	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE	26
TEST DATA	
FCC §15.247(d) – 100kHz BANDWIDTH OF FREQUENCY BAND EDGE	
APPLICABLE STANDARD	27

Version 12: 2021-11-09

FCC- 2.4G Wi-Fi

Shenzhen Accurate Technology Co., Ltd.	Report No.:BJ220706-30561E-RF
Shenzhen Accurate Technology Co., Ltd. TEST PROCEDURE TEST DATA	
FCC §15.247(e)- POWER SPECTRAL DENSITY	
APPLICABLE STANDARD TEST PROCEDURE TEST DATA	
TEST PROCEDURE	
APPENDIX A: 6dB Emission Bandwidth	
APPENDIX B: Occupied Channel Bandwidth	
APPENDIX C: Maximum conducted output power	
APPENDIX D: Band edge measurements	40
APPENDIX E: Maximum power spectral density	
APPENDIX F: Duty Cycle	

GENERAL INFORMATION

Product Description	for Equipment under	Test (EUT)
----------------------------	---------------------	------------

Product	Wi-Fi Module
Tested Model	ATBM601X
Frequency Range	Wi-Fi: 2412-2462MHz
Maximum Conducted Peak Output Power	Wi-Fi: 15.48dBm(802.11b), 16.83dBm(802.11g), 16.56dBm(802.11n20)
Modulation Technique	Wi-Fi: DSSS, OFDM
Antenna Specification*	Dipole Antenna: 2.25dBi(provided by the applicant)
Voltage Range	DC 3.3V
Sample serial number	BJ220706-30561E-RF-S1(Assigned by ATC, Shenzhen)
Sample/EUT Status	Good condition

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices, and KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty	
Occupied Char	nnel Bandwidth	5%	
RF output pov	wer, conducted	0.73dB	
Unwanted Emission, conducted		1.6dB	
AC Power Lines Conducted Emissions		2.72dB	
Emissions, Radiated	30MHz - 1GHz	4.28dB	
	1GHz-18GHz	4.98dB	
	18GHz- 26.5GHz	5.06dB	
Temperature		1°C	
Humidity		6%	
Supply	voltages	0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189.

Accredited by American Association for Laboratory Accreditation (A2LA). The Certificate Number is 4297.01

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 5077A.

Shenzhen Accurate Technology Co., Ltd.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

For 802.11b, 802.11g, 802.11n-HT20, total 11 channels are provided to testing:

802.11b, 802.11g and 802.11n-HT20 mode was tested with Channel1, 6 and 11.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

Software "test-gui-litepoint.exe"* was used during testing and power level as below:

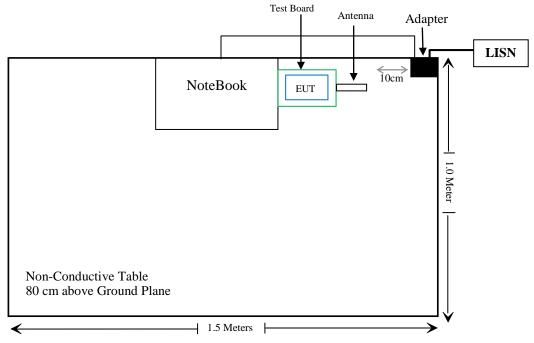
Mode	Data Rate (Mbps)	Power Level*
802.11 b	1	Default
802.11 g	6	Default
802.11 n20	MCS0	Default

The worse-case data rates are determined to be as above for each mode based upon investigations by measuring the output power and PSD across all data rates, bandwidths and modulations.

Duty cycle

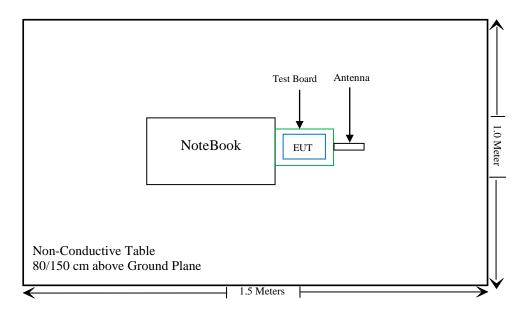
Test Result: Compliant. Please refer to the Appendix F

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number	
Lenovo	NoteBook	T430	23447YC	
Lenovo	Lenovo Adapter		11S45N0257Z1ZX1773ND2K	
AltoBeam Inc.	Test Board	ATBM601X USB Mother Board	20211130V1.2	

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Detachable AC Cable	1.2	LISN	Adapter
Un-shielding Un-Detachable DC Cable	1.5	Adapter	NoteBook


Block Diagram of Test Setup

For Conducted Emission

Version 12: 2021-11-09

For Radiated Emission

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i) & §1.1307(b)	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth& Occupied Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Conducted Emissions Test						
Rohde & Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12	
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12	
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2021/12/13	2022/12/12	
Unknown	RF Coaxial Cable	No.17	N0350	2021/12/14	2022/12/13	
	Conducted E	mission Test Soft	tware: e3 19821b (V9)		
		Radiated Emissi	ons Test			
Rohde & Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12	
Rohde & Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12	
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08	
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08	
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2021/11/11	2022/11/10	
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05	
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04	
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04	
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13	
		nission Test Softw	ware: e3 19821b (V		·	
RF Conducted Test						
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12	
Rohde & Schwarz	Open Switch and ControlUnit	OSP120 + OSP-B157	101244 + 100866	2021/12/13	2022/12/12	
WEINSCHEL	10dB Attenuator	5324	AU 3842	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.33	RF-03	Each	time	

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307(b) – RF EXPOSURE

Applicable Standard

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.4–MPE-Based Exemption:

An alternative to the SAR-based exemption is provided in § 1.1307(b)(3)(i)(C), for a much wider frequency range, from 300 kHz to 100 GHz, applicable for separation distances greater or equal to $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. The MPE-based test exemption condition is in terms of ERP, defined as the product of the maximum antenna gain and the delivered maximum time-averaged power. For this case, a RF source is an RF exempt device if its ERP (watts) is no more than a frequency-dependent value, as detailed tabular form in Appendix B. These limits have been derived based on the basic specifications on Maximum Permissible Exposure (MPE) considered for the FCC rules in § 1.1310(e)(1).

Table to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

f = frequency in MHz;

R = minimum separation distance from the body of a nearby person (appropriate units, e.g., m);

Test Result

For worst case:

Frequency Mode Range		Tune-up Output Power		Antenna Gain		ERP		Evaluation Distance	MPE-Based Exemption
Mode	(MHz)	(dBm)	(mW)	(dBi)	(dBd)	(dBm)	(mW)	(cm)	Limit (mW)
2.4G Wi-Fi	2412-2462	17.0	50.12	2.25	0.1	17.1	51.29	20	768

Note 1: The tune-up power was declared by the applicant. Note 2: 0dBd=2.15dBi.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

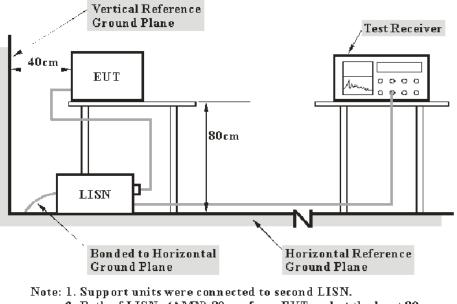
b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has one Dipole Antenna arrangement for 2.4G Wi-Fi, which used a unique coupling attached to the EUT and the antenna gain is 2.25dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

FrequencyRange	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Margin Calculation

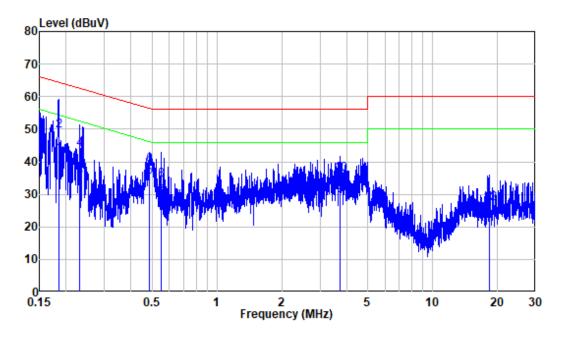
The factor is calculated by addingLISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

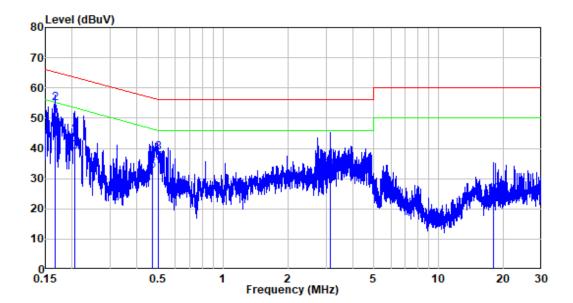
Test Data


Environmental Conditions

Temperature:	24 °C
Relative Humidity:	58 %
ATM Pressure:	101.0 kPa

The testing was performed by Jason Liu on 2022-11-15.

EUT operation mode: 2.4G Wi-Fi Transmitting (Worst case for 802.11B Middle channel as below)


AC 120V/60 Hz, Line

Site :	Shielding Room
Condition:	Line
Job No. :	BJ220706-30561E-RF
Mode :	2.4G WIFI
Power :	AC 120V 60Hz

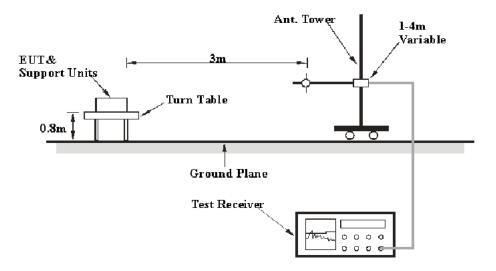
	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.184	9.80	32.39	42.19	54.29	-12.10	Average
2	0.184	9.80	39.77	49.57	64.29	-14.72	QP
3	0.231	9.80	25.48	35.28	52.42	-17.14	Average
4	0.231	9.80	33.98	43.78	62.42	-18.64	QP
5	0.488	9.80	25.56	35.36	46.20	-10.84	Average
6	0.488	9.80	29.11	38.91	56.20	-17.29	QP
7	0.553	9.81	19.36	29.17	46.00	-16.83	Average
8	0.553	9.81	24.72	34.53	56.00	-21.47	QP
9	3.710	9.84	19.65	29.49	46.00	-16.51	Average
10	3.710	9.84	26.32	36.16	56.00	-19.84	QP
11	18.268	9.98	15.77	25.75	50.00	-24.25	Average
12	18.268	9.98	17.06	27.04	60.00	-32.96	QP

AC 120V/60 Hz, Neutral

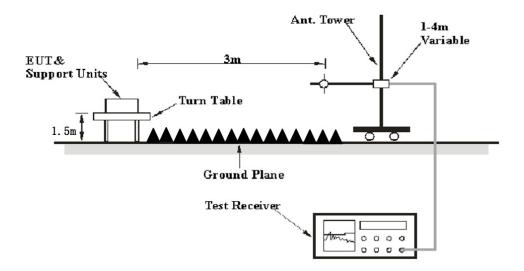
Site	:	Shielding Room
Condition	:	Neutral
Job No.	:	BJ220706-30561E-RF
Mode	:	2.4G WIFI
Power	:	AC 120V 60Hz

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.166	9.80	40.81	50.61	55.15	-4.54	Average
2	0.166	9.80	45.27	55.07	65.15	-10.08	QP
3	0.205	9.80	29.05	38.85	53.40	-14.55	Average
4	0.205	9.80	35.72	45.52	63.40	-17.88	QP
5	0.471	9.80	22.91	32.71	46.49	-13.78	Average
6	0.471	9.80	27.14	36.94	56.49	-19.55	QP
7	0.500	9.80	25.54	35.34	46.00	-10.66	Average
8	0.500	9.80	28.98	38.78	56.00	-17.22	QP
9	3.156	9.83	20.82	30.65	46.00	-15.35	Average
10	3.156	9.83	23.37	33.20	56.00	-22.80	QP
11	17.944	10.08	12.17	22.25	50.00	-27.75	Average
12	17.944	10.08	14.74	24.82	60.00	-35.18	QP

Shenzhen Accurate Technology Co., Ltd.


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30MHz - 1000 MHz	100 kHz	300 kHz	120kHz	QP
	1MHz	3 MHz	/	РК
Above 1 GHz	1MHz	10 Hz ^{Note 1}	/	Average
	1MHz	$> 1/T^{Note 2}$	/	Average

Note 1: when duty cycle is no less than 98%

Note 2: when duty cycle is less than 98%

If the maximized peak measured value complies with the limit, then it is unnecessary to perform QP/Avera ge measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Factor& Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

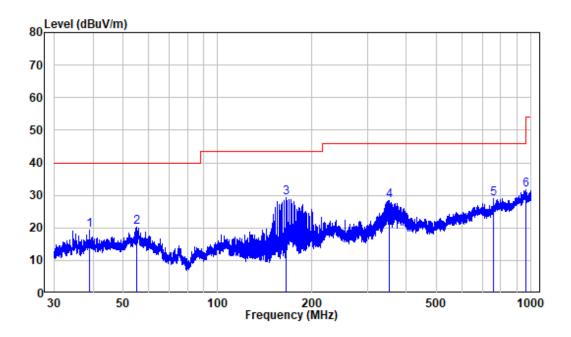
The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude–Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

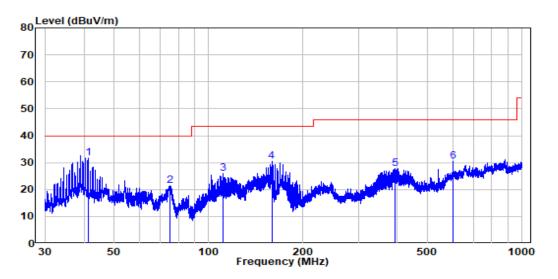
Environmental Conditions

Temperature:	23°C
Relative Humidity:	62 %
ATM Pressure:	101.0 kPa


The testing was performed by Level Li on 2022-11-15.

EUT operation mode: 2.4G Wi-Fi Transmitting (Pre-scan all modes, the worst case was recorded)

30MHz-1GHz: (Worst case)


Wi-Fi: 802.11B mode, Middle Channel

Horizontal

Site : chamber Condition: 3m HORIZONTAL Job No. : BJ220706-30561E-RF Test Mode: 2.4G WIFI

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	38.939	-10.60	29.91	19.31	40.00	-20.69	Peak
2	55.293	-10.26	30.38	20.12	40.00	-19.88	Peak
3	164.908	-14.15	43.30	29.15	43.50	-14.35	Peak
4	351.862	-7.37	35.72	28.35	46.00	-17.65	Peak
5	760.037	-0.55	29.55	29.00	46.00	-17.00	Peak
6	965.542	2.43	29.33	31.76	54.00	-22.24	Peak

Vertical

Site : chamber Condition: 3m VERTICAL Job No. : BJ220706-30561E-RF Test Mode: 2.4G WIFI

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	41.186	-10.15	41.81	31.66	40.00	-8.34	Peak
2	75.347	-16.30	37.88	21.58	40.00	-18.42	Peak
3	110.763	-12.06	37.98	25.92	43.50	-17.58	Peak
4	158.877	-14.37	44.79	30.42	43.50	-13.08	Peak
5	393.818	-6.82	34.56	27.74	46.00	-18.26	Peak
6	600.110	-2.43	32.92	30.49	46.00	-15.51	Peak

1-25 GHz:

Frequency	Receiver		Turntable Angle	Rx An	itenna	Factor	Absolute Level	Limit	Margin
(MHz)	Reading (dBuV)	PK/AV	Degree	Height (m)	Polar (H/V)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)
				802.11B, Lo	w Channel				
2310	53.10	РК	203	1.7	Н	-7.23	45.87	74	-28.13
2310	52.07	РК	260	1.7	V	-7.23	44.84	74	-29.16
2390	58.83	РК	148	1.6	Н	-7.21	51.62	74	-22.38
2390	56.38	РК	256	2.1	V	-7.21	49.17	74	-24.83
4824	46.51	РК	264	1.1	Н	-3.53	42.98	74	-31.02
4824	48.80	РК	188	1.8	V	-3.53	45.27	74	-28.73
			8	802.11B, Mid	dle Channel				
4874	47.02	РК	53	1.0	Н	-3.42	43.60	74	-30.4
4874	49.77	РК	97	1.4	V	-3.42	46.35	74	-27.65
				802.11B, Hig	gh Channel				
2483.5	57.47	PK	13	2	Н	-7.2	50.27	74	-23.73
2483.5	61.87	РК	110	1.5	V	-7.2	54.67	74	-19.33
2483.5	42.81	AV	110	1.5	V	-7.2	35.61	54	-18.39
2500	54.86	РК	228	1.2	Н	-7.18	47.68	74	-26.32
2500	56.66	РК	235	1.7	V	-7.18	49.48	74	-24.52
4924	46.65	PK	256	1.6	Н	-3.16	43.49	74	-30.51
4924	48.59	РК	31	2.1	V	-3.16	45.43	74	-28.57
				802.11G, Lo	w Channel				
2310	54.14	РК	287	1.3	Н	-7.23	46.91	74	-27.09
2310	57.31	РК	153	2.2	V	-7.23	50.08	74	-23.92
2390	67.67	РК	344	2.1	Н	-7.21	60.46	74	-13.54
2390	48.24	AV	344	2.1	Н	-7.21	41.03	54	-12.97
2390	76.44	PK	78	1.2	V	-7.21	69.23	74	-4.77
2390	57.50	AV	78	1.2	V	-7.21	50.29	54	-3.71
4824	46.34	РК	121	2.2	Н	-3.53	42.81	74	-31.19
4824	46.82	PK	187	2.2	V	-3.53	43.29	74	-30.71
			8	802.11G, Mid	dle Channel				
4874	46.47	PK	178	1.0	Н	-3.42	43.05	74	-30.95
4874	48.84	PK	333	1.8	V	-3.42	45.42	74	-28.58
				802.11G, Hig	gh Channel				
2483.5	62.7	РК	57	1.8	Н	-7.2	55.5	74	-18.5
2483.5	44.63	AV	57	1.8	Н	-7.2	37.43	54	-16.57
2483.5	76.32	РК	204	1.8	V	-7.2	69.12	74	-4.88
2483.5	57.23	AV	204	1.8	V	-7.2	50.03	54	-3.97
2500	56.62	PK	177	2	Н	-7.18	49.44	74	-24.56
2500	58.46	PK	245	1.5	V	-7.18	51.28	74	-22.72
4924	45.21	РК	137	2	Н	-3.16	42.05	74	-31.95
4924	49.03	PK	287	1.2	V	-3.16	45.87	74	-28.13

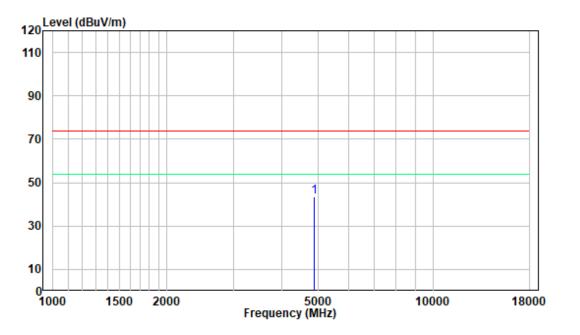
Version 12: 2021-11-09

FCC- 2.4G Wi-Fi

Frequency	Rece	eiver	Turntable	Rx Ar	itenna	Factor	Absolute	Limit	Margin
(MHz)	Reading (dBuV)	PK/AV	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	Level (dBuV/m)	(dBuV/m)	(dB)
			8	802.11N20, L	ow Channel				
2310	54.96	РК	3	1.3	Н	-7.23	47.73	74	-26.27
2310	56.19	РК	192	2.2	V	-7.23	48.96	74	-25.04
2390	68.66	РК	281	2.3	Н	-7.21	61.45	74	-12.55
2390	51.68	AV	281	2.3	Н	-7.21	44.47	54	-9.53
2390	77.04	РК	296	1.7	V	-7.21	69.83	74	-4.17
2390	57.55	AV	296	1.7	V	-7.21	50.34	54	-3.66
4824	45.52	РК	45	2.0	Н	-3.53	41.99	74	-32.01
4824	46.78	РК	56	1.5	V	-3.53	43.25	74	-30.75
			80	02.11N20, Mi	ddle Channel				
4874	45.60	РК	184	1.1	Н	-3.42	42.18	74	-31.82
4874	49.41	РК	203	2.1	V	-3.42	45.99	74	-28.01
			8	02.11N20, H	igh Channel				
2483.5	62.65	РК	281	1.3	Н	-7.2	55.45	74	-18.55
2483.5	46.01	AV	281	1.3	Н	-7.2	38.81	54	-15.19
2483.5	72.97	РК	5	2.1	V	-7.2	65.77	74	-8.23
2483.5	55.79	AV	5	2.1	V	-7.2	48.59	54	-5.41
2500	54.03	РК	136	1.6	Н	-7.18	46.85	74	-27.15
2500	58.66	РК	163	2.1	V	-7.18	51.48	74	-22.52
4924	46.75	РК	164	2.0	Н	-3.16	43.59	74	-30.41
4924	49.28	РК	210	1.5	V	-3.16	46.12	74	-27.88

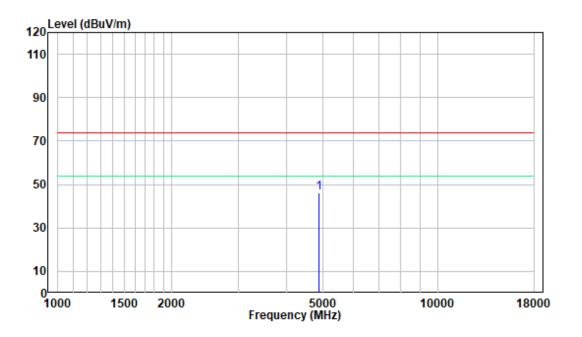
Note:

Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

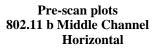

Absolute Level (Corrected Amplitude) = Factor + Reading

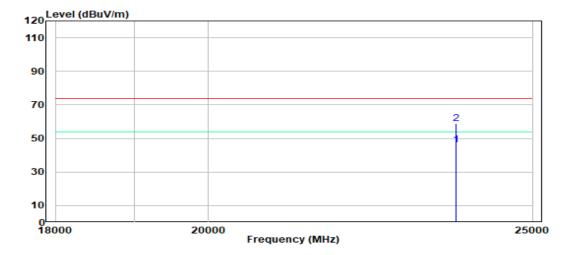
Margin = Absolute Level (Corrected Amplitude) –Limit

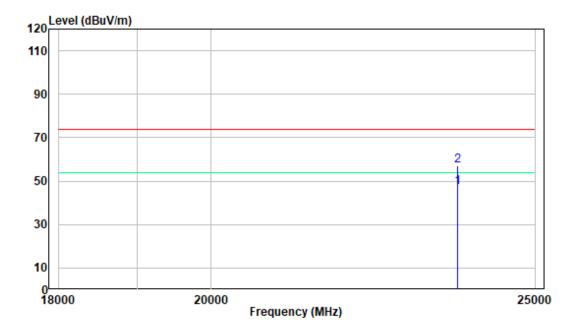
The other spurious emission which is in the noise floor level was not recorded.


For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.

1-18 GHz: (Worst case)

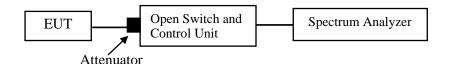



Pre-scan plots 802.11 b Middle Channel Horizontal



18 -25GHz: (Worst case)

Vertical


FCC §15.247(A) (2) – 6 DB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

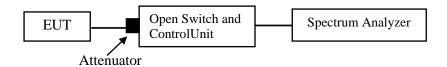
Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Glenn Jiang on 2022-07-28.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix A and Appendix B.


FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

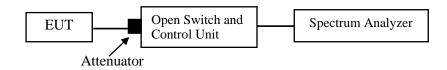
Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Glenn Jiang on 2022-07-28.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix C.


FCC §15.247(d) – 100kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

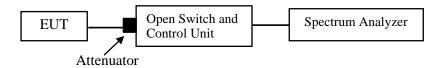
Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Glenn Jiang on 2022-07-28.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix D.


FCC §15.247(e)- POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

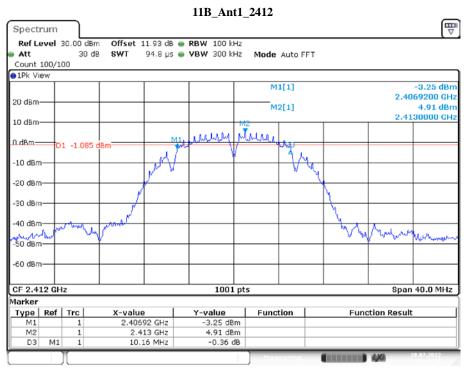
Test Data

Environmental Conditions

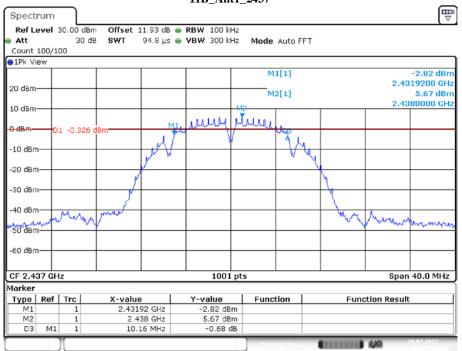
Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Glenn Jiang on 2022-07-28.

EUT operation mode: Transmitting


Test Result: Compliant. Please refer to the Appendix E.

APPENDIX A: 6dB Emission Bandwidth


Test Result

Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
		2412	10.160	0.5	PASS
11 B	Ant1	2437	10.160	0.5	PASS
		2462	10.120	0.5	PASS
	Ant1	2412	16.400	0.5	PASS
11G		2437	16.400	0.5	PASS
		2462	16.400	0.5	PASS
		2412	17.200	0.5	PASS
11N20 SISO	Ant1	2437	17.120	0.5	PASS
		2462	17.120	0.5	PASS

Test Graphs

Date: 28.JUL.2022 08:40:36

11B_Ant1_2437

Date: 28.JUL.2022 08:42:30

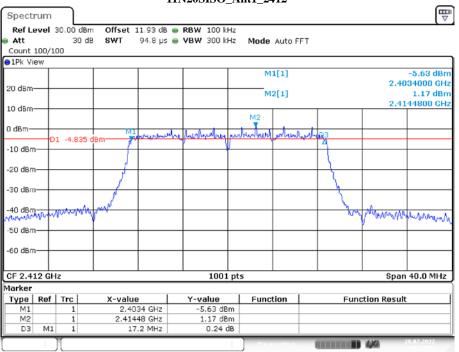
Date: 28.JUL.2022 08:44:10

									_
Spectrur	n]								T I
Ref Leve	I 30.00	dBm Offset	11.93 dB 👄	RBW 100 kH	z				
Att	31	D dB SWT	94.8 µs 😑	VBW 300 kHz	2 Mode	Auto FFT			
Count 100	/100								
1Pk View									
					M	1[1]			-5.28 dBn
oo do ee								2.4	038000 GH
20 dBm					M	2[1]			1.28 dBn
10 dBm								2.4	070000 GH
TO ODIII			M2						
0 dBm			T T						
	D1 -4.7	16 dBm	hlundryth	moundary	whenter	when	(http://www.com/alagedited.com/alag		
-10 dBm—				¥ 1			1		
			()						
-20 dBm—							\rightarrow		
		1					$+ \lambda$		
-30 dBm—	<u> </u>			+ +			+		
	Ι.	/							
-40 dBm	mound	MANY						1 rolling	Mullimon
		Ĩ						ſ	- Handling and the
-50 dBm									
-60 dBm									
-00 UBIII-									
CF 2.412	GHz			1001 (ots			Spar	n 40.0 MHz
1arker									
	of Trc	X-valu		Y-value	Func	ion	Fun	ction Resul	t
M1	1		38 GHz	-5.28 dBm					
M2	1		407 GHz	1.28 dBm					
D3 1	11 1	1	6.4 MHz	-0.24 dB					

11G_Ant1_2412

Date: 28.JUL.2022 08:45:58

11G_Ant1_2437

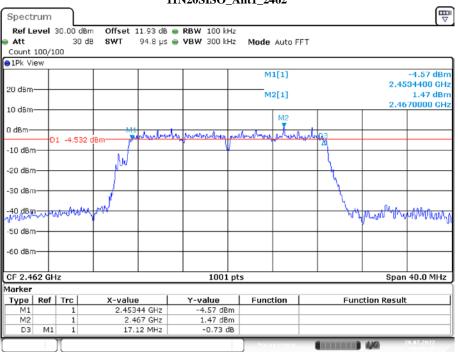

Spectr	um									
Ref Le	vel	30.00 d	Bm Offset 1	l1.93 dB 🧉	RBW 100 kH	lz				
🗎 Att		30	dB SWT	94.8 µs 🧉	• VBW 300 kH	Iz Mode	Auto FFT			
Count :		00								
⊖1Pk Vie	ЭW									
						M	1[1]			-5.00 dBm
20 d8m-									2.42	88000 GHz
20 00.00						M	2[1]			1.74 dBm
10 dBm-	\rightarrow								2.44	20000 GHz
							M2			
0 dBm—	+			the distribution	4 have broken	ميو المدر المد	whichout			
		1 -4.26	4 dBm	ALCAULANCO.	a second second	and the second of		10-1 10-1		
-10 dBm	+				1			R		
			1					N		
-20 dBm	-		*لو					1		
-30 dBm			<u>_</u>					1		
-30 UBIII			1					<u> </u>		
-40 dBm			1					<u> </u>	Alloward	
-40 dBm സ്പെഡ്	we	www	no ham						Allandorf	www.ma
-50 dBm			_							
-60 dBm	+									
CF 2.43	7 GH	lz			1001	pts			Span	40.0 MHz
Marker									•	
	Ref	Trc	X-value	• I	Y-value	Func	tion	Fund	tion Result	1
M1		1		88 GHz	-5.00 dB					
M2		1		42 GHz	1.74 dB					
D3	М1	1	16	.4 MHz	-0.64 d	В				
						Mea	suring		4/0	8.07.2022

Date: 28.JUL.2022 08:47:47

Spectrum									
Ref Level	30.00 dBi	n Offset 11.93	3 dB 🔵 RBW	100 kHz					
Att	30 d	B SWT 94.3	8 µs 👄 VBW	300 kHz	Mode	Auto FFT			
Count 100/1	.00								
1Pk View									
					M	1[1]			-4.64 dBm
an da u								2.45	38000 GH;
20 dBm					M	2[1]			1.66 dBm
10 dBm								2.46	70000 GH;
						M2			
						T.			
	1 -4.344	dBm Mar	almostry produc	much MP	tomotrony	Moundain	<u>lais</u>		
-10 dBm				¥			<u>n</u>		
		X					1		
-20 dBm		1111					<u>\</u>		
							1 2		
-30 dBm							<u> </u>		
		I N					1 3		
-40 dBm	مالمصماله	AWAY					- Un	mound	white a
• •		Î I						0.000.000	han di sebut
-50 dBm									
-60 dBm									
CF 2.462 GH	łz			1001 pt	s			Span	40.0 MHz
Marker									
Type Ref	Trc	X-value	Y-Va	alue	Func	tion	Fund	tion Result	
M1	1	2.4538 G	Hz -4	.64 dBm					
M2	1	2.467 G		.66 dBm					
D3 M1	1	16.4 M	1Hz ·	-0.49 dB					
	1							440	28.07.2022

11G_Ant1_2462

Date: 28.JUL.2022 08:49:16


11N20SISO_Ant1_2412

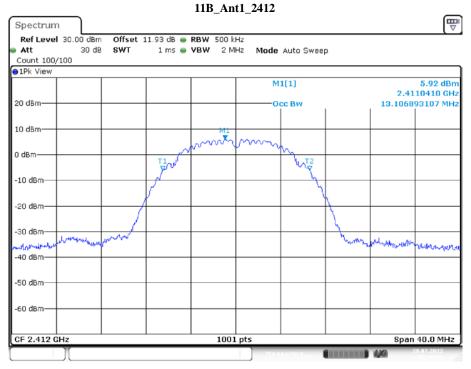
Date: 28.JUL.2022 08:53:53

					Ē
Spectrum					
Ref Level 30.00		😑 RBW 100 kHz			
	0 dB SWT 94.8 µs	😑 VBW 300 kHz	Mode Auto FF	т	
Count 100/100					
1Pk View					
			M1[1]		-4.71 dBn
20 dBm					2.4284400 GH
			M2[1]		1.39 dBn
10 dBm					2.4420000 GH
			M2		
0 dBm	M1	by historialized an	two but where he	0.02	
D1 -4.6	511 dBm	and have been been	WALNUT DA APACING	24	
-10 dBm					
-20 dBm					
-30 dBm					
-30 UBIII				Ma	
-40 dBm-	a me			- WW	Asher la Mar and
-40 ABR Mar MA	N M M M				underte ver mourie
-50 dBm					
-60 dBm					
CF 2.437 GHz		1001 pt	s		Span 40.0 MHz
larker					
Type Ref Trc		Y-value	Function	Fund	ction Result
M1 1	2.42844 GHz	-4.71 dBm			
M2 1	2.442 GHz	1.39 dBm			
D3 M1 1	17.12 MHz	-0.15 dB			
			Measuring	(Internet)	28.07.2022

11N20SISO_Ant1_2437

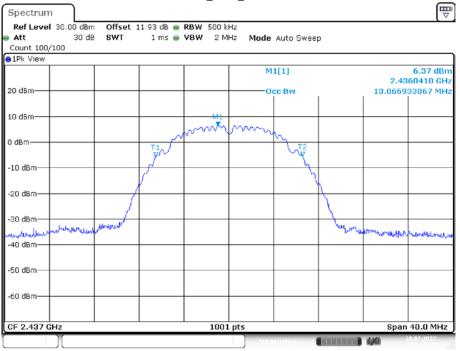
Date: 28.JUL.2022 08:55:33

11N20SISO_Ant1_2462


Date: 28.JUL.2022 08:58:43

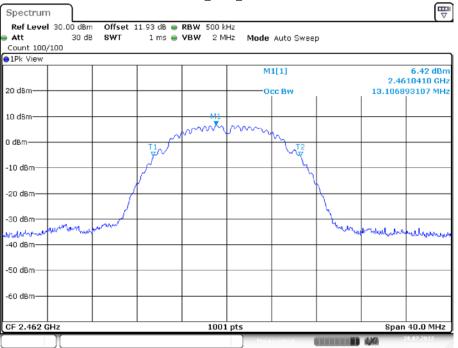
APPENDIX B: Occupied Channel Bandwidth

Test Result:

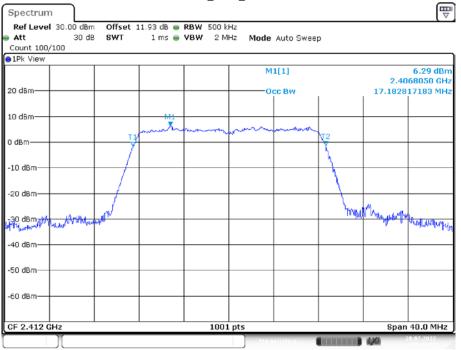

Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
		2412	13.107		PASS
11B	Ant1	2437	13.067		PASS
		2462	13.107		PASS
	Ant1	2412	17.183		PASS
11G		2437	17.183		PASS
		2462	17.183		PASS
		2412	17.822		PASS
11N20 SISO	Ant1	2437	17.902		PASS
		2462	17.862		PASS

Test Graphs:

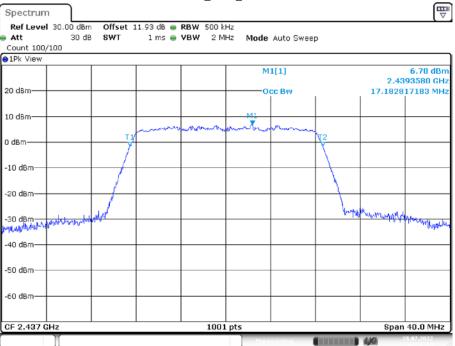
Date: 28.JUL.2022 08:40:53

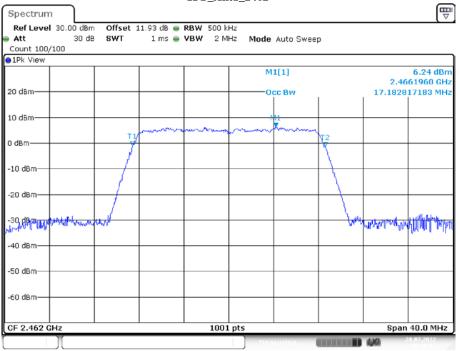

Shenzhen Accurate Technology Co., Ltd.

11B_Ant1_2437

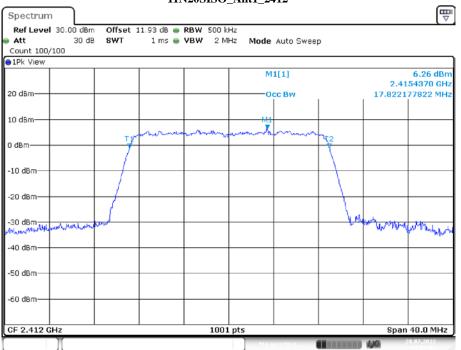

Date: 28.JUL.2022 08:42:47

Date: 28.JUL.2022 08:44:27

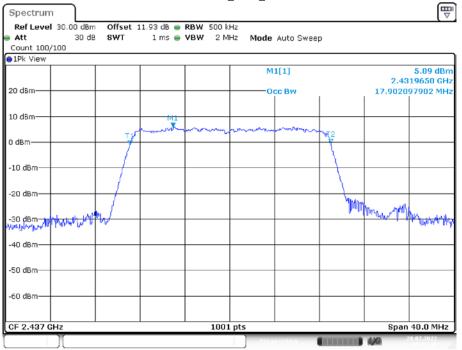

Shenzhen Accurate Technology Co., Ltd.


11G_Ant1_2412

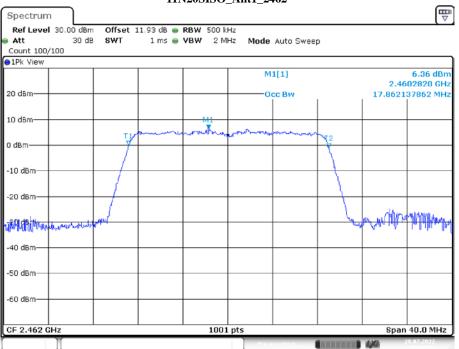
Date: 28.JUL.2022 08:46:15



Date: 28.JUL.2022 08:48:04


11G_Ant1_2462

Date: 28.JUL.2022 08:49:33


11N20SISO_Ant1_2412

Date: 28.JUL.2022 08:54:09

11N20SISO_Ant1_2437

Date: 28.JUL.2022 08:55:50

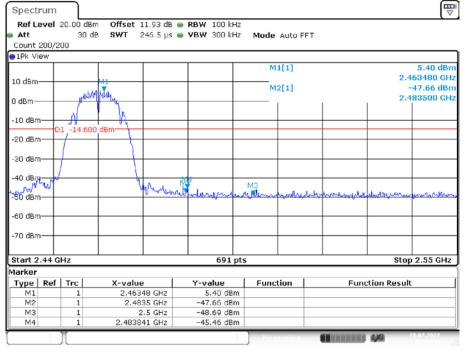
11N20SISO_Ant1_2462

Date: 28.JUL.2022 08:59:00

APPENDIX C: Maximum conducted output power

Test Result

Test Mode	Antenna	Channel	Peak Result[dBm]	Limit[dBm]	Verdict
		2412	15.16	<=30	PASS
11B	Ant1	2437	14.98	<=30	PASS
		2462 15.48		<=30	PASS
	Ant1	2412	16.83	<=30	PASS
11G		2437	16.45	<=30	PASS
		2462	16.66	<=30	PASS
	Ant1	2412	16.44	<=30	PASS
11N20 SISO		2437	16.56	<=30	PASS
		2462	16.56	<=30	PASS

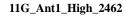

APPENDIX D: Band edge measurements

Test Graphs

11B_Ant1_Low_2412 ₽ Spectrum Ref Level 20.00 dBm Offset 11.93 dB 🖷 RBW 100 kHz 30 dB SWT 303.4 µs 🖷 VBW 300 kHz Mode Auto FFT Att Count 200/200 ●1Pk View M1[1] 3.62 dBn 2.412410 GHz 10 dBm M2[1] мi -45.90 dBn 1900000 GH2 0 dBm--10 dBm-D1 -16.380_dBm -20 dBm -30 dBm-M4 -40 dBm· Y Man mylet -sal-many -60 dBm· -70 dBm-Start 2.3 GHz 691 pts Stop 2.43 GHz Marker Type | Ref | Trc | X-value Y-value Function Function Result 2.41241 GHz 3.62 dBm -45.90 dBm Μ1 1 M2 1 2.4 GHz 2.39 GHz -48.34 dBm MЗ 1 M4 1 2.397217 GHz -40.03 dBm 4/4

Date: 28.JUL.2022 08:41:20

11B_Ant1_High_2462



Date: 28.JUL.2022 08:44:54

			IIG_AntI_L	JW_2412		
Spectrum						E Starten Star
Ref Level			🖶 RBW 100 kHz			\
Att	30 d	lB SWT 303.4 μs	😑 VBW 300 kHz	Mode Auto P	FT	
Count 200/2	00					
1Pk View						
I				M1[1]		0.60 dBn
10 dBm			_			2.404510 GH
I				M2[1]	M1	-42.45 dBn 2.400000 GH
) dBm					1 L	2.400000 GH
-10 dBm						
10 00.00						
20 dBm 0	1 -19.40	0 dBm				
30 dBm					M4 /	
10 -10		and a second			N2	\ \
40 UBIII					M3 muleur	out the second s
gerdehannen u	المحماني الإسليها	margine langer block the best	mon make and a new	sames Barrow	MARY -	
60 dBm						
70 dBm						
-/U dBm						
Start 2.3 GH	z		691 pts	5		Stop 2.43 GHz
larker		V 1				n h
Type Ref M1		2.40451 GHz	Y-value 0.60 dBm	Function	Functi	on Result
M1 M2	1	2.40451 GHz	-42.45 dBm			
M3	1	2.39 GHz	-47.32 dBm			
M4	1	2.399478 GHz	-37.78 dBm			
	1			1	Concerns 4	20.07.2022

11G_Ant1_Low_2412

Date: 28.JUL.2022 08:46:42

Spectrum					-			1	Ē
Ref Level Att Count 200/2	30 d8			 RBW 100 kHz VBW 300 kHz 	Mode Au	ito FFT			
1Pk View									
10 dBm					M1[1	-		-1.47 d 2.463000 (-49.08 d	GH
D dBm	monorm	11					I	2.483500	
-10 dBm									
	1 -21.470	dBm							
-30 dBm									
-40 dBm			haventer	M2 Manufinghaman	M3 Studeney	M4 what	au francisco de secondo a	musel and the second second	date:
60 dBm									
-70 dBm									
Start 2.44 G	Hz			691 pts	5			Stop 2.55 G	Hz
1arker									_
Type Ref	Trc	X-valu	e	Y-value	Functio	n	Fun	ction Result	
M1	1	2.4	63 GHz	-1.47 dBm					
M2	1	2.48	35 GHz	-49.08 dBm					
M3 M4	1		2.5 GHz I01 GHz	-48.14 dBm -45.88 dBm					
)[]				Measur	sing		28.07.2022	

Date: 28.JUL.2022 08:50:00

Report No.:BJ220706-30561E-RF

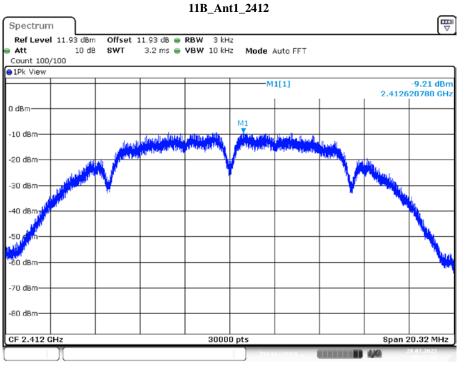
Spectrum												₩
Ref Level				RBW 100 k								
Att Count 200/	30 c	JB SWT 3	103.4 µs	😑 VBW 300 k	HZ	Mode	Auto I	-FT				
1Pk View	200											
						м	1[1]					41 dBm 050 GHz
10 dBm		+			\vdash	M	2[1]					12 dBm
0 dBm										Jul Jul		JOO GHz
-10 dBm					-							
-20 dBm	D1 -19.59	0 dBm									_	
-30 dBm					\vdash				M4 /			\leftarrow
-40 dBm					<u> </u>			MS	M45			the
150 april -	<u>www.dows</u> y	Manuar	entretrome	mondissages	et-in,	under	Jak	w	AU - 0			
-60 dBm					_							
-70 dBm												
Start 2.3 G	Hz			691	pts						Stop 2.4	13 GHz
Marker												
Type Ref	Trc	X-value		Y-value		Func	tion		Fur	nction R	esult	
M1	1		95 GHz	0.41 dB								
M2	1		.4 GHz	-41.12 dB								
M3	1		39 GHz	-45.47 dB								
M4	1	2.3992	29 GHz	-38.85 dB	m							
	1					Mea	suring			100	28.07	2022

11N20SISO_Ant1_Low_2412

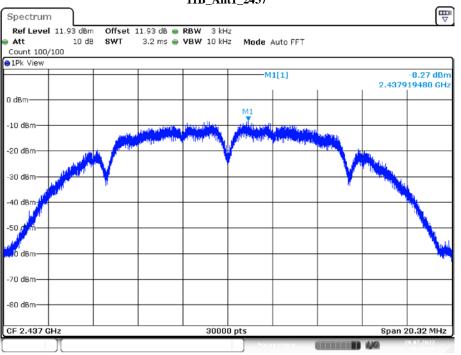
Date: 28.JUL.2022 08:54:36

11N20SISO_Ant1_High_2462

Spect	rum											
Ref L	evel	20.00 dBn	n Offset	11.93 dB	RBW	100 kHz						
🔵 Att		30 di	B SWT	246.5 µs	VBW	300 kHz	Mode	Auto F	FT			
Count	200/2	200		-								
😑 1Pk Vi	ew											
							M	1[1]				1.06 dBm
10 dBm	\rightarrow				_							164440 GHz
20 0.00			M1				M	2[1]				-47.06 dBm
0 dBm-			Urservenha		_						. 2.4	183500 GHz
		myrande	Mund									
-10 dBm	∩—+			+	<u> </u>			<u> </u>				<u> </u>
		1										
-20 dBm		01 -18.940 J	aBm									
co do		[1 1									
-30 dBm	די											
-40 dBrr												
-40 dBg	v -1		1	Thomas	MP.	T.	MЗ	Ι.				Monaria
-50 dBm	n-+-				Month Street	hollower,		سلنقح	mph	mar have	and sizely	Montoria
			1									
-60 dBm	+−י				_			<u> </u>				<u> </u>
			1									
-70 dBm	∩_+			+		-+						
Start 2	.44 0	GHz				691 pt	s				Stop	2.55 GHz
Marker												
Type	Ref	Trc	X-valu	e	Y-va	alue	Func	tion		Fund	tion Result	t
M1		1	2.46	444 GHz		.06 dBm						
M2		1		B35 GHz		.06 dBm						
M3		1		2.5 GHz		.63 dBm						
M4		1	2.491	174 GHz	-44	.99 dBm						
		1					. Maria				4.46	28.07.2022

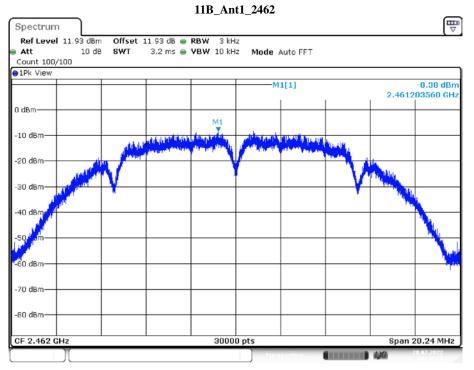

Date: 28.JUL.2022 08:59:27

APPENDIX E: Maximum power spectral density


Test Result

Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2412	-9.21	<=8	PASS
11B	Ant1	2437	-8.27	<=8	PASS
110		2462	-8.38	<=8	PASS
	Ant1	2412	-13.09	<=8	PASS
11G		2437	-11.83	<=8	PASS
		2462	-13.5	<=8	PASS
		2412	-12.13	<=8	PASS
11N20 SISO	Ant1	2437	-13.54	<=8	PASS
		2462	-11.83	<=8	PASS

Test Graphs

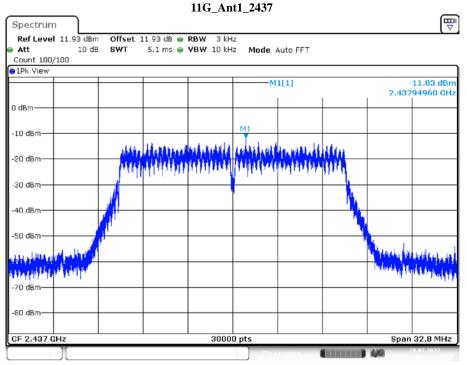


Date: 28.JUL.2022 08:41:05

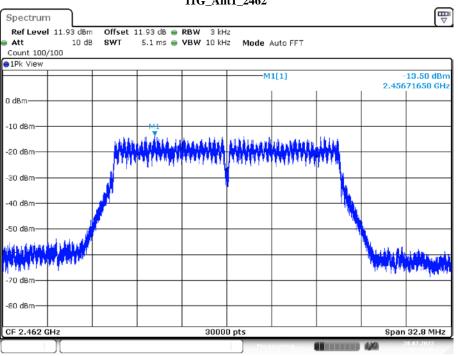


11B_Ant1_2437

Date: 28.JUL.2022 08:42:59

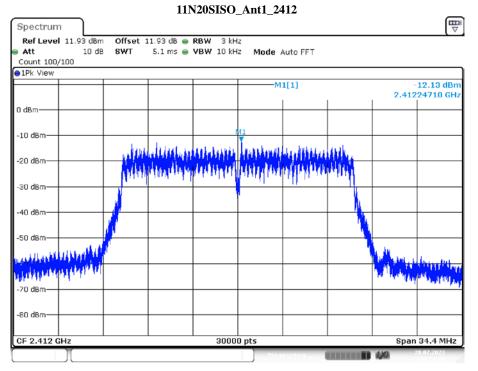


Date: 28.JUL.2022 08:44:39



11G_Ant1_2412

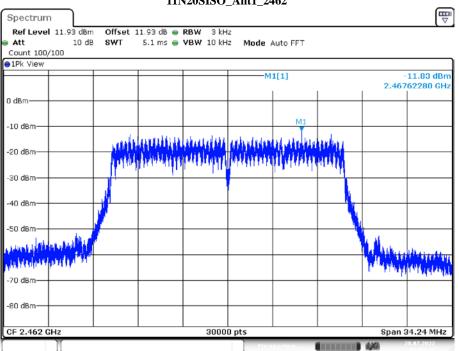
Date: 28.JUL.2022 08:46:27



Date: 28.JUL.2022 08:48:16

11G_Ant1_2462

Date: 28.JUL.2022 08:49:45

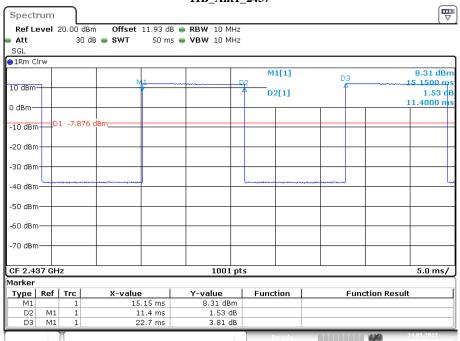


Date: 28.JUL.2022 08:54:21

11N20SISO_Ant1_2437

Date: 28.JUL.2022 08:56:36

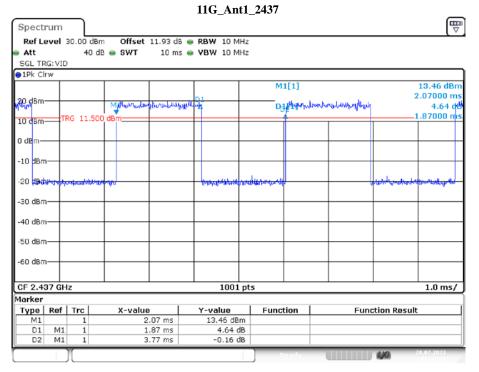
11N20SISO_Ant1_2462

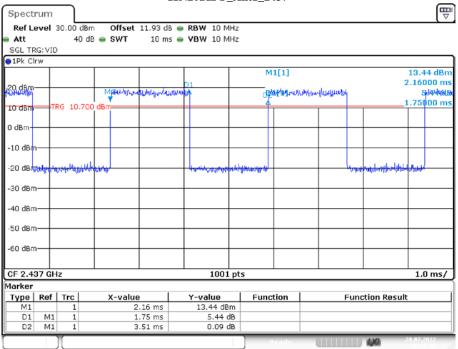

Date: 28.JUL.2022 08:59:12

APPENDIX F: Duty Cycle

Test Result

Test Mode	Antenna Channel		Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	
11B	Ant1	2437	11.4	22.7	50.22	
11G	Ant1	2437	1.87	3.77	49.60	
11N20 SISO	Ant1	2437	1.75	3.51	49.86	


Test Graphs


11B_Ant1_2437

Date: 24.AUG.2022 16:25:14

Report No.:BJ220706-30561E-RF

Date: 28.JUL.2022 08:47:21

11N20SISO_Ant1_2437

Date: 28.JUL.2022 08:55:07

***** END OF REPORT *****