

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

RF Exposure

Reference: CFR 47 FCC Part 1.1310

<u>Description</u>: The worse-case of each power setting and frequency were investigate to report the worse-case power density at the specified distance.

All measurements were peak or RMS power readings taken from test reports from accredited test labs. Antenna gains were taken from the manufacturer's specifications.

<u>Limits</u>: Maximum exposure limits from CFR 47, FCC Part 1.1310:

Table 1 - Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
	(A) Limits for O	ccupational/Controlled Expos	sure		
0.3-3.0	614	1.63	*100	6	
3.0-30	1842/f	4.89/f	*900/f2	6	
30-300	61.4	0.163	1.0	6	
300-1,500			f/300	6	
1,500-100,000			5	6	
	(B) Limits for Gener	al Population/Uncontrolled E	xposure		
0.3-1.34	614	1.63	*100	30	
1.34-30	824/f	2.19/f	*180/f ²	30	
30-300	27.5	0.073	0.2	30	
300-1,500			f/1500	30	
1,500-100,000			1.0	30	

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

RF Exposure

Calculations:

Transmitter	Frequency	Antenna Gain	Duty cycle	Power	Power	Power + 10%	Power Density	Limit at specified distance	% of limit Percent of	Туре
	MHz	numerical		dBm	mW	mW	mW/cm^2	mW/cm^2	limit	
1	902.3	1	100%	20.23	105.44	115.98	0.02309	0.60	3.84%	Peak
1	908.5	1	100%	19.98	99.54	109.49	0.02179	0.61	3.60%	Peak
1	914.9	1	100%	20.38	109.14	120.06	0.02390	0.61	3.92%	Peak

Distance 20 cm

The power density is calculated as shown below:

 $S = (P \times G \times DC)/(4 \times \pi \times d^2)$ – used to calculate exposure at 20 cm

 $d = \sqrt{(S/(P \times G) \times 4 \times \pi)}$ – used to calculate minimum distance to meet limits

 $1 \, mW/cm^2 = 10 \, W/m^2$

S= power density P = transmitter power (in mw). G = antenna numeric gain d = distance to radiation center

DC = Duty Cycle *Power values taken from EIRP, so antenna gain was set to 1 (numeric)