

NTEK北测

FCC RADIO TEST REPORT FCC ID: 2AOWKGQ3086

Product: Mobile Phone

Trade Mark: ulefone

Model Name: GQ3086

Armor 9, Armor 9E, Armor 9S, Armor 9P,

Family Model: Armor 7X, Armor 7A, Armor 9 Pro, Armor 9

Lite

Report No.: STR200327001007E

Prepared for

Shenzhen Gotron Electronic CO.,LTD.
518, 5F, R&D building, Tsinghua Hi-Tech park, Nanshan district, Shenzhen
518057 P.R.China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599
Website:http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's name:	Shenzhei	n Gotron Electronic CO.,LTD.				
Address:		R&D building, Tsinghua Hi-Tech park, Nanshan district, n 518057 P.R.China				
Manufacturer's Name:	Shenzhei	n Gotron Electronic CO.,LTD.				
Address:		R&D building, Tsinghua Hi-Tech park, Nanshan district, n 518057 P.R.China				
Product description						
Product name:	Mobile Pl	none				
Model and/or type reference :	GQ3086	GQ3086				
Family Model:		Armor 9E, Armor 9S, Armor 9P, Armor 7X, Armor 7A, Pro, Armor 9 Lite				
Standards:	FCC Part	15.225				
Test procedure	. ANSI C6	3.10-2013				
	n compliar	sted by NTEK, and the test results show that the ace with the FCC requirements. And it is applicable only t.				
This report shall not be reprodu	ced excep	t in full, without the written approval of NTEK, this				
•	/ised by N∃	TEK, personnel only, and shall be noted in the revision of				
the document.						
Date of Test		40.14				
Date (s) of performance of tests		•				
Date of Issue		,				
Test Result	:	Pass				
Testing Engine	eer :	Cheny Jiawan				
		(Cheng Jiawen)				
		, , , , , , , , , , , , , , , , , , ,				
Technical Mar	nager :					
recriffical mai	iagei .	Juson chen				
		(Jason Chen)				
Authorized Sig	gnatory:	Sam. Chen				
		(Sam Chen)				

24

24

25

26

Table of Contents	Page
1 . SUMMARY OF TEST RESULTS	4
1.1 TEST FACILITY	5
1.2 MEASUREMENT UNCERTAINTY	5
2 . GENERAL INFORMATION	6
2.1 GENERAL DESCRIPTION OF EUT	6
2.2 DESCRIPTION OF TEST MODES	7
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	D 8
2.4 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)	9
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	10
3 . ANTENNA REQUIREMENT	11
3.1 STANDARD REQUIREMENT	11
3.2 EUT ANTENNA	11
4 . EMC EMISSION TEST	12
4.1 CONDUCTED EMISSION MEASUREMENT	12
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	12
4.1.2 TEST CONFIGURATION	12
4.1.3 TEST PROCEDURE	12
4.1.4 TEST RESULT	13
4.2 RADIATED EMISSION MEASUREMENT	15
4.2.1 RADIATED EMISSION LIMITS	15
4.2.2 TEST PROCEDURE	16
4.2.3 DEVIATION FROM TEST STANDARD	16
4.2.4 TEST SETUP	17
4.2.5 TEST RESULTS (BELOW 30MHZ)	18
4.2.6 TEST RESULTS (BETWEEN 30 – 1000 MHZ)	22
5 . BANDWIDTH TEST	24
5.1 TEST PROCEDURE	24

5.2 DEVIATION FROM STANDARD

5.3 TEST SETUP

5.4 TEST RESULTS

6. FREQUENCY TOLERANCE

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15, Subpart C (15.225)						
Standard Section	Test Item	Judgment	Remark			
15.207	Conducted Emission	Pass				
15.205(a) 15.209 15.225 (a, b, c, d)	Radiated Spurious Emission Field Strength of Fundamental Emission	Pass				
15.225 15.215(c)	20dB Bandwidth	Pass				
15.225(e)	Frequency Tolerance	Pass				
15.203	Antenna Requirement	Pass				

NOTE:

(1) " N/A" denotes test is not applicable in this Test Report.

1.1 TEST FACILITY

All measurement facilities used to collect the measurement data are located at 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

Site Description

CNAS-Lab. : The Laboratory has been assessed and proved to be in

compliance with CNAS-CL01:2006 (identical to ISO/IEC

17025:2005)

The Certificate Registration Number is L5516.

IC-Registration The Certificate Registration Number is 9270A.

CAB identifier: CN0074

FCC- Accredited Test Firm Registration Number: 463705.

Designation Number: CN1184

A2LA-Lab. The Certificate Registration Number is 4298.01

This laboratory is accredited in accordance with the recognized

International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration

laboratories.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality

management system

(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Name of Firm : Shenzhen NTEK Testing Technology Co., Ltd.

Site Location : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang

Street, Bao'an District, Shenzhen 518126 P.R. China.

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power,conducted	±0.16dB
3	Spurious emissions,conducted	±0.21dB
4	All emissions,radiated(<1G)	±4.68dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Mobile Phone			
Trade Mark	ulefone			
Model Name	GQ3086			
Family Model	Armor 9, Armor 9E, Arm 7A, Armor 9 Pro, Armor	nor 9S, Armor 9P, Armor 7X, Armor 9 Lite		
Model Difference	All models are the same except the model name	e circuit and RF module,		
Product Description	The EUT is a Mobile Pr Operation Frequency: Modulation Type: Number Of Channel Antenna Designation:	13.56MHz ASK 1CH.		
Adapter	Model: APS-KI018WU-G Input: 100-240V~50/60Hz 0.5A Max Output: 5V/7V/9V2.0A, 12V1.5A			
Rating	DC 3.85V/6600mAh from Battery or DC 5V from Adapter			
HW Version	S95_V1.1			
SW Version	Armor 9_TF1_EEA_V0	1		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

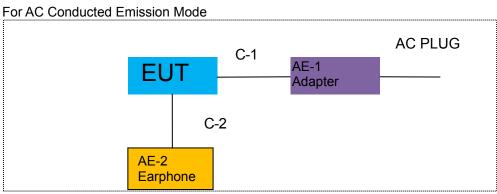
Table for Filed Antenna

Ant	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	N/A	N/A	Induction coil	N/A	N/A	Antenna

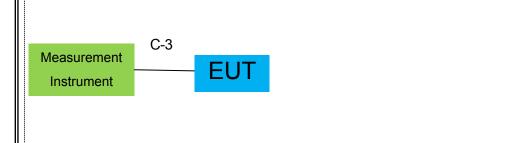
2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX-13.56MHz


For Conducted Emission		
Final Test Mode	Description	
Mode 1	TX-13.56MHz	

For Radiated Emission				
Final Test Mode Description				
Mode 1	TX-13.56MHz			


2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

For Radiated Test Cases

For Conducted Test Cases

Note:1.The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

2.EUT built-in battery-powered, the battery is fully-charged.

2.4 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	APS-KI018WE-G	N/A	Peripherals
AE-2	Earphone	N/A	N/A	N/A	Peripherals

Item	Shielded Type	Ferrite Core	Length	Note
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2020.05.11	2021.05.10	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2019.08.28	2020.08.27	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2019.08.28	2020.08.27	1 year
4	Test Receiver	R&S	ESPI7	101318	2020.05.11	2021.05.10	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2020.04.11	2021.04.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2020.04.11	2021.04.10	1 year
8	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2019.12.11	2020.12.10	1 year
9	LF Cable	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
10	PSG Analog Signal Generator	Agilent	E8257D	MY51110112	2019.08.06	2020.08.05	1 year
11	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
12	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2020.08.05	3 year

AC Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2020.05.11	2021.05.10	1 year
2	LISN	R&S	ENV216	101313	2020.05.11	2021.05.10	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2020.05.11	2021.05.10	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	2 year 3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2021.05.10	1 year

Note:

- 1.We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list
- 2. Each piece of equipment is scheduled for calibration once a year except the Test Cable& Aux Equipment which is scheduled for calibration every 3 years.

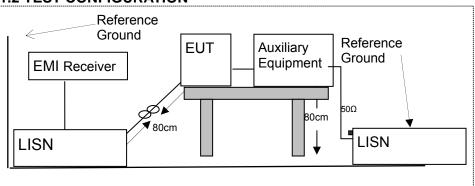
3. ANTENNA REQUIREMENT

3.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.						
3.2 EUT ANTENNA						
he EUT antenna is permanent attached antenna. It comply with the standard requirement.						

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT


4.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

Frequency(MHz)	Conducted Emission Limit		
Frequency(wiriz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

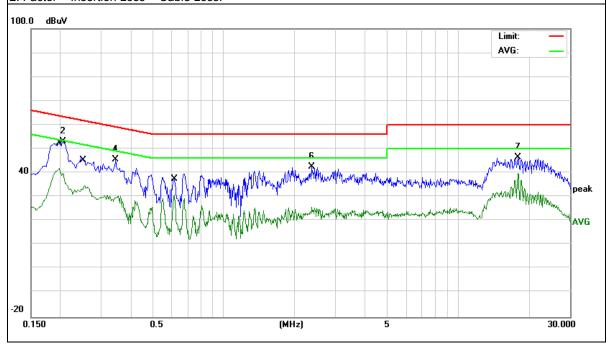
- 2. The lower limit shall apply at the transition frequencies
- 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.1.2 TEST CONFIGURATION

4.1.3 TEST PROCEDURE

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

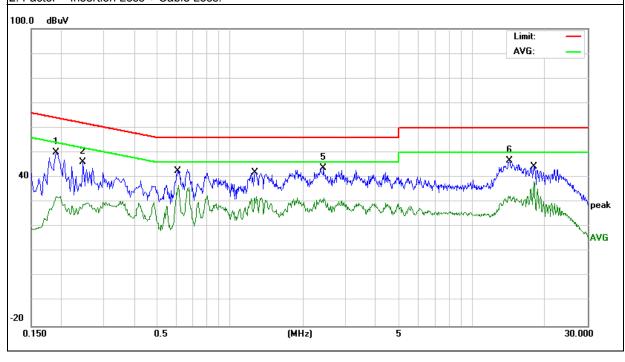

4.1.4 TEST RESULT

EUT:	Mobile Phone	Model Name :	GQ3086
Temperature :	176 7	Relative Humidity :	54%
Pressure :	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode :	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1980	32.26	9.76	42.02	53.69	-11.67	QP
0.2060	43.32	9.76	53.08	63.36	-10.28	AVG
0.2540	25.04	9.76	34.80	51.62	-16.82	QP
0.3460	35.71	9.73	45.44	59.06	-13.62	AVG
0.6140	21.12	9.74	30.86	46.00	-15.14	QP
2.3780	32.63	9.79	42.42	56.00	-13.58	AVG
18.0340	36.23	10.17	46.40	60.00	-13.60	QP
18.0340	29.79	10.17	39.96	50.00	-10.04	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.



EUT:	Mobile Phone	Model Name :	GQ3086
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1900	40.46	9.73	50.19	64.03	-13.84	QP
0.2460	36.37	9.74	46.11	61.89	-15.78	AVG
0.6100	26.97	9.75	36.72	46.00	-9.28	QP
1.2860	22.73	9.76	32.49	46.00	-13.51	AVG
2.4340	34.02	9.82	43.84	56.00	-12.16	QP
14.2300	36.66	10.09	46.75	60.00	-13.25	AVG
18.0340	28.30	10.16	38.46	50.00	-11.54	QP
0.1900	40.46	9.73	50.19	64.03	-13.84	AVG

Remark:

- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 Radiated Emission Limits (FCC 15.209)

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission level (dBuV/m)=20log Emission level (uV/m).

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a) must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

11			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

LIMITS OF RADIATED EMISSION MEASUREMENT (FCC 15.225)

- (a)The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters, equal to 124dBuV/m at 3 meters.
- (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters, equal to 90.5dBuV/m at 3 meters.
- (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters, equal to 80.5dBuV/m at 3 meters...
- (d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1MHz / 1MHz for Peak

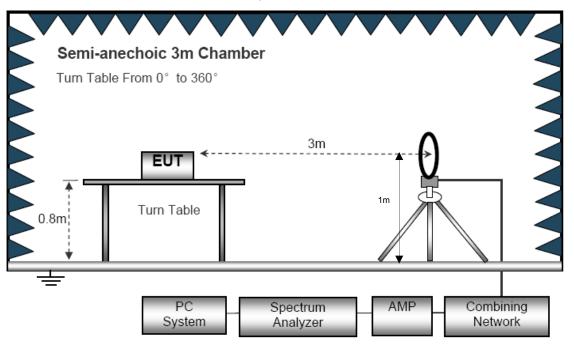
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

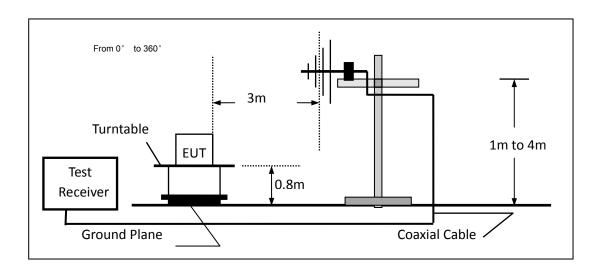
4.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz And above 1GHz,
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3m meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD

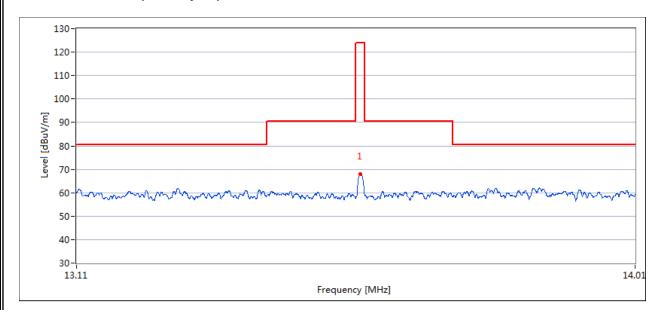

No deviation



4.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

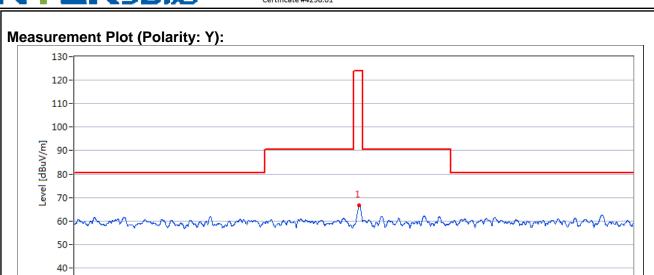


4.2.5 TEST RESULTS (BELOW 30MHz)

EUT:	Mobile Phone	Model Name. :	GQ3086
Temperature :	1 20 °C	Relative Humidtity:	54%
Pressure :	1010 hPa	Test Voltage :	DC 3.85V
Test Mode :	TX-13.56MHz		

Measurement Plot (Polarity: X):

Measurement Result:

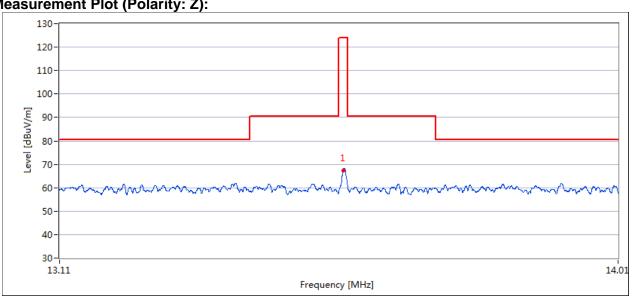

Frequency MHz	Pre-scan Level MaxPeak dBuV/m	Final Test Level MaxPeak dBuV/m	Limit MaxPeak dBuV/m	Margin dB
13.509	67.5	55.8	90.5	34.7

.

14.01

Measurement Result:

30-13.11


 Wedsarement result.								
Frequency MHz	Pre-scan Level MaxPeak dBuV/m	Final Test Level MaxPeak dBuV/m	Limit MaxPeak dBuV/m	Margin dB				
13.513	67.1	57.4	80.5	23.1	ı			

Frequency [MHz]

Measurement Result:

Frequency MHz	Pre-scan Level MaxPeak dBuV/m	Final Test Level MaxPeak dBuV/m	Limit MaxPeak dBuV/m	Margin dB
13.543	68.5	58.4	124.0	65.6

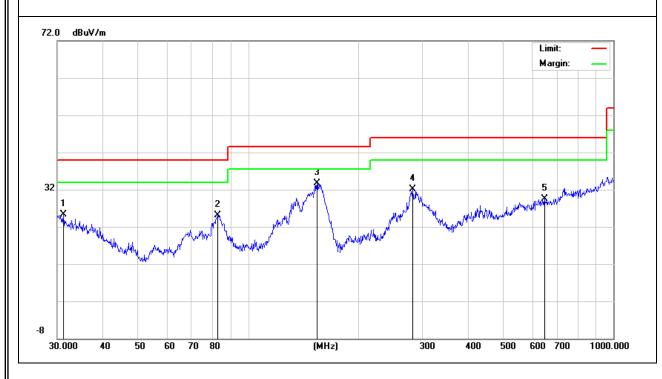
Spurious emissions at 9KHz~13.110MHz & 14.010MHz~30MHz

Frequency	Ant.Pol.	Emission Level (dBuV/m)	Limits	Margin	Detector
(MHz)	dBµV @3m	@3m	dBµV/m @3m	(dB)	
0.238	Х	64.82	100.083	-35.266	QP
1.131	Х	26.56	66.536	-39.971	QP
9.772	Х	38.09	69.542	-31.456	QP
20.427	Х	39.27	69.542	-30.273	QP
26.463	Х	44.52	69.542	-25.018	QP

Note:

Below 30MHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data.

- X: Field strength which this device generates since the position of the charging coil and loop antenna differ by 0 degrees.
- Y: Field strength which this device generates since the position of the charging coil and loop antenna differ by 90 degrees.
- Z: Field strength which this device generates since the position of the charging coil and loop antenna differ by 180 degrees

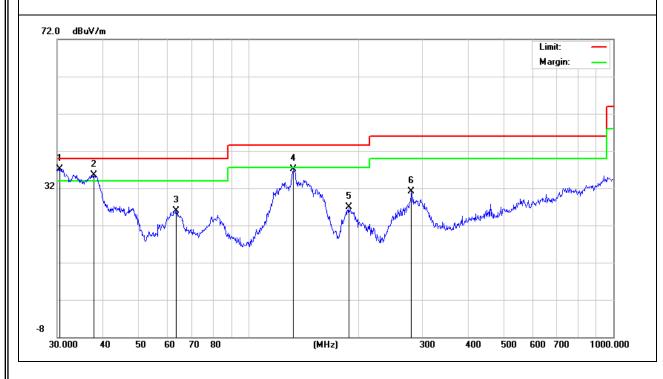

4.2.6 TEST RESULTS (BETWEEN 30 - 1000 MHZ)

EUT:	Mobile Phone	Model Name :	GQ3086
Temperature :	20 ℃	Relative Humidity:	54%
Pressure:	1010 hPa	Test Voltage :	DC 3.85V
Test Mode :	TX	Polarization :	Horizontal

Freq.	Reading	Factor	Measurement	Limit	Over	Detector
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector
31.1798	7.12	18.21	25.33	40	-14.67	QP
82.3588	16.9	8.27	25.17	40	-14.83	QP
154.2786	21.94	11.72	33.66	43.5	-9.84	QP
281.9946	16.78	15.33	32.11	46	-13.89	QP
647.3856	6.89	22.64	29.53	46	-16.47	QP

Remark:

Factor = Antenna Factor + Cable Loss.



EUT:	Mobile Phone	Model Name :	GQ3086
Temperature :	20 ℃	Relative Humidity:	54%
Pressure:	1010 hPa	Test Voltage :	DC 3.85V
Test Mode :	TX	Polarization :	Vertical

Freq.	Reading	Factor	Measurement	Limit	Over	Detector
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector
30.5304	18.55	18.56	37.11	40	-2.89	QP
37.8121	20.6	14.99	35.59	40	-4.41	QP
63.5356	19.62	6.2	25.82	40	-14.18	QP
132.685	24.48	12.53	37.01	43.5	-6.49	QP
188.4122	17.63	9.35	26.98	43.5	-16.52	QP
280.0237	15.04	16	31.04	46	-14.96	QP

Remark:

Factor = Antenna Factor + Cable Loss.

5. BANDWIDTH TEST

5.1 TEST PROCEDURE

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak mode.
- 2. 20dB Bandwidth the resolution bandwidth of 1 kHz and the video bandwidth of 1 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.

5.2 DEVIATION FROM STANDARD

15.215

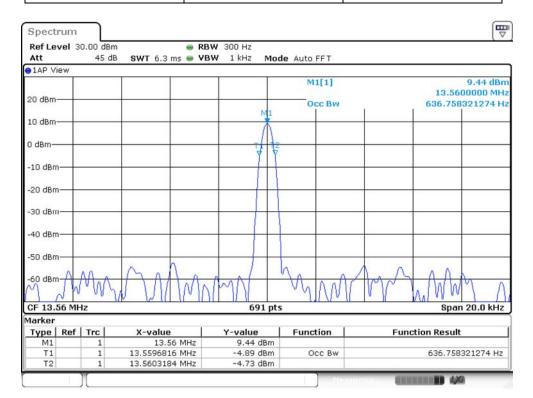
(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated

FCC Part15.225

Operation within the band 13.553 - 13.567MHz

5.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER



5.4 TEST RESULTS

EUT:	Mobile Phone	Model Name :	GQ3086
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	1020 hPa	Test Power :	DC 3.85V
Test Mode :	TX		

Test Channel	Frequency	20 dBc Bandwidth	
Tool Oriannoi	(MHz)	(kHz)	
CH01	13.56	0.637	

6. FREQUENCY TOLERANCE

6.1 Requirement:

Test FCC Part15.225

Requirement: Test Method:

ANSI C63.10:2013

Requirement: The frequency tolerance of the carrier signal shall be maintained

within +/- 0.01% of the operating frequency over a temperature variation of –20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests

shall be performed using a new battery.

6.2 Test Procedure

1. The EUT was placed on a turn table which is 0.8m above ground plane.

2.Set EUT as normal operation

 ${\it 3.Set SPA Center Frequency = fundamental frequency, RBW, VBW=10kHz, Span}$

=100kHz.

4.Set SPA Max hold. Mark peak.

Test Result

Power Supply	Temperature (°C)	Measured Frequency (MHz)	Frequency Error (MHz)	Result (ppm)	Part 15.225 Limit
	-20	13.560691	0.000691	50.958900	+/- 0.01%(100ppm)
DC 3.4V	20	13.560594	0.000594	43.800789	+/- 0.01%(100ppm)
	50	13.560284	0.000284	20.960709	+/- 0.01%(100ppm)
	-20	13.560677	0.000677	49.944554	+/- 0.01%(100ppm)
DC 3.85V	20	13.560192	0.000192	14.134004	+/- 0.01%(100ppm)
	50	13.560673	0.000673	49.595408	+/- 0.01%(100ppm)
	-20	13.560792	0.000792	58.380572	+/- 0.01%(100ppm)
DC 4.4V	20	13.560114	0.000114	8.371035	+/- 0.01%(100ppm)
	50	13.560953	0.000953	70.257966	+/- 0.01%(100ppm)

END REPORT