

SAR Test Report

For

Applicant Name: Shenzhen Gotron Electronic CO., LTD

Address: 7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua

District, Shenzhen City, Guangdong Province China

EUT Name: Mobile Phone

Brand Name ulefone Model Number: GQ3060

Series Model Number: Refer to section 2

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park,

Address: Tantou Community, Songgang Street, Bao'an District, Shenzhen,

China

Report Number: BTF230322R01501

47 CFR Part 2.1093 IEEE1528-2013 IEEE C95.1-2019

Test Standards: KDB447498 D01 KDB447498 D04 KDB865664 D01

KDB865664 D02 KDB643646 D01 KDB648474 D04

KDB690783 D01

FCC ID: 2AOWK-3060

Test Conclusion: Pass

Test Date: 2023-03-23 to 2023-03-24

Date of Issue: 2023-03-24

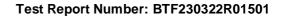
Prepared By:

Approved By:

Monica Zhou

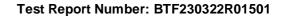
Monica Zhou

Date: 2023-03-24


6. 2025-05-24

Ryan.CJ / EMC Manager

Date: 2023-03-24


Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Project Enginee

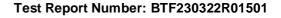

Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-03-24	Original	
Note:	Once the revision has t	Once the revision has been made, then previous versions reports are invalid.	

Table of Contents

1. Introduction	
1.1 Identification of Testing Laboratory	4
1.2 Identification of the Responsible Testing Location	
1.3 Laboratory Condition	4
1.4 Announcement	
2. Product Information	5
2.1 Application Information	
2.2 Manufacturer Information	5
2.3 Factory Information	5
2.4 General Description of Equipment under Test (EUT)	5
2.5 Equipment under Test Ancillary Equipment	
2.6 Technical Information	
2.7 Test frequency list	
3. Summary of Test Results	7
3.1 Test Standards	
3.2 Device Category and SAR Limit	7
3.3 Test Result Summary	
3.4 Test Uncertainty	8
4. Measurement System	10
4.1 Specific Absorption Rate (SAR) Definition	10
4.2 MVG SAR System	10
5. System Verification	14
5.1 Purpose of System Check	
5.2 System Check Setup	15
6. TEST POSITION CONFIGURATIONS	15
6.1 Front-of-face Exposure Conditions	
6.2 Body Position Conditions	16
7. Measurement Procedure	
7.1 Measurement Process Diagram	
7.2 SAR Scan General Requirement	
7.3 Measurement Procedure	
7.4 Area & Zoom Scan Procedure	19
8. Conducted RF Output Power	
9. Test Result	
10. Test Equipment List	
ANNEX A Simulating Liquid Verification Result	
ANNEX B System Check Result	
ANNEX C Test Data	
ANNEX D SAR Test Setup Photos	
ANNEX E EUT External and Internal Photos	
ANNEX F Calibration Report	33

1. Introduction

1.1 Identification of Testing Laboratory

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	

1.2 Identification of the Responsible Testing Location

Test Location:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Description:	All measurement facilities used to collect the measurement data are located at F101,201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
FCC Registration Number	518915	
Designation Number	CN1330	

1.3 Laboratory Condition

Ambient Temperature:	21 ℃ to 25 ℃
Ambient Relative Humidity:	48% to 59%
Ambient Pressure:	100 kPa to 102 kPa

1.4 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Test Report Number: BTF230322R01501

2. Product Information

2.1 Application Information

Company Name:	Shenzhen Gotron Electronic CO., LTD
Address:	7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China

2.2 Manufacturer Information

Company Name:	Shenzhen Gotron Electronic CO., LTD
Address:	7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China

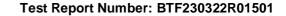
2.3 Factory Information

Company Name:	Shenzhen Gotron Electronic CO., LTD	
Address:	7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China	

2.4 General Description of Equipment under Test (EUT)

EUT Name	Mobile Phone	
Under Test Model Name	GQ3060	
Series Model Name	Armor 20WT, Armor 20W, Armor 20W Pro, Armor 20 Pro, Armor 20W Lite, Armor 20 Lite	
Description of Model name differentiation	Only the model name and outlook color are different, others are the same.	
HW version	E7_V03	
SW version	Armor 20WT_TF3_EEA_V10	
Sample No.	BTFSN230317E004-1/2	

2.5 Equipment under Test Ancillary Equipment


	Rechargeable Battery	
Ancillary Equipment 1	Capacity	10850mAh
	Rated Voltage	3.85V

2.6 Technical Information

The requirement for the following technical information of the EUT was tested in this report:

Operation Frequency Range	400 ~ 480 MHz	
Permitted Frequency Range	400MHz~406MHz, 406.1MHz~480MHz	
Rated Output Power ⊠ High Power 2W (33dBm) ⊠ Low Power 0.5W (27dBm)		

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

	Analog: FM		
Modulation Type	Digital: 4FSK		
	Analog: 12.5kHz	Analog: 12.5kHz	
Channel Separation	Digital: 12.5kHz	Digital: 12.5kHz	
Antenna Type	External	External	
Exposure Category	Occupational/Controlled Expos	Occupational/Controlled Exposure	
EUT Stage	Portable Device	Portable Device	
Product	Туре		
	☐ Production unit	⊠ Identical prototype	
Remark: 1. The EUT battery must be fully charged a	nd checked periodically during the test to ascertain un	form power.	

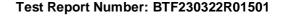
2.7 Test frequency list

When the frequency channels required for SAR testing are not specified, the following should be applied todetermine the number of required test channels. The test channels should be evenly spread across the transmission frequency band of each wireless mode.

$$N_{\rm c} = Round \Big\{ \Big[100 \Big(f_{\rm high} - f_{\rm low} \Big) \big/ f_{\rm c} \Big]^{0.5} \times \big(f_{\rm c} / 100 \big)^{0.2} \Big\},$$

2. The maximum duty cycle supported by the device is 50%

 N_c is the number of test channels, rounded to the nearest integer,


 $f_{\rm high}$ and $f_{\rm low}$ are the highest and lowest channel frequencies within the transmission band,

 f_c is the mid-band channel frequency,

all frequencies are in MHz.

Operation	Test Frequency	
Start Frequency	Stop Frequency	number
400MHz	480MHz	6

Modulation Type	Channel Bandwidth	Test Channel	Test Frequency (MHz) TX
		CH1	400.1
		CH2	416.1
Avarian	40 5141-	CH3	(MHz) TX 400.1
Analog	12.5kHz	CH4	448.1
		CH5	464.1
		CH6	479.9
		CH1	400.1
		CH2	416.1
D: 2.1	40.5111	CH3	432.1
Digital	12.5kHz	CH4	448.1
		CH5	464.1
		CH6	479.9

3. Summary of Test Results

3.1 Test Standards

No.	Identity	Document Title			
1	47 CFR Part 2.1093	Radio frequency radiation exposure evaluation: portable devices			
2 IEEE1528-2013 Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate in the Human Head from V Communications Devices: Measurement Techniques					
3 IEEE C95.1-2019 IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to					
4	KDB447498 D01	General RF Exposure Guidance v06			
5	KDB447498 D04	Interim General RF Exposure Guidance v01			
6	KDB865664 D01	SAR measurement 100MHz to 6GHz v01r04			
7	KDB865664 D02	RF Exposure Reporting v01r02			
8	KDB643646 D01	SAR Test for PTT Radios v01r03			
9	KDB648474 D04	Handset SAR v01r03			
10	KDB690783 D01	SAR Listings on Grant v01r03			

3.2 Device Category and SAR Limit

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 8.0 W/kg as averaged over any 1 gram of tissue.

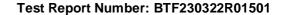
	SAR Valu	ue (W/Kg)		
Body Position	General Population/	Occupational/		
	Uncontrolled Exposure	Controlled Exposure		
Whole-Body SAR	0.08	0.4		
(averaged over the entire body)	0.08	0.4		
Partial-Body SAR	1.60	8.0		
(averaged over any 1 gram of tissue)	1.00	8.0		
SAR for hands, wrists, feet and ankles	4.0	20.0		
(averaged over any 10 grams of tissue)	4.0	20.0		

NOTE:

General Population/Uncontrolled Exposure: Locations where there is the exposure of individuals who have no knowledge or control of their exposure. General population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment- related; for example, in the case of a wireless transmitter that

exposes persons in its vicinity.

Occupational/Controlled Exposure: Locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, in general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means

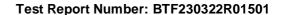

3.3 Test Result Summary

The maximum results of Specific Absorption Rate (SAR) found during test as bellows:

<Highest Reported standalone SAR Summary>

Exposure Position	Equipment Class	Highest Reported SAR (W/kg)
Front-of-facef 1-g SAR (25 mm Gap)	TNF	3.105
Exposure Position	Equipment Class	Highest Reported SAR (W/kg)
Body-worn 1-g SAR (0 mm Gap)	TNF	3.457

This device is in compliance with Specific Absorption Rate(SAR) for Occupational/Controlled Exposure limits (8.0 W/kg) specified in FCC47 CFR part 2(2.1093) and ANSI/IEEE C95.1-2019, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.


3.4 Test Uncertainty

3.4.1 Measurement uncertainly evaluation for SAR test

Measurement uncertainly evaluation for SAR test (300MHz to 6GHz)

Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+- %)	10 g Ui (+-%)	Vi veff
	(1	ement Sys		(3)	,	(,,,,	
Probe calibration	5.8	N	1	1	1	5.80	5.80	∞
Axial Isotropy	3.5	R	√3	√0.5	√0.5	1.43	1.43	∞
Hemispherical Isotropy	5.9	R	√3	√0.5	√0.5	2.41	2.41	∞
Boundary effect	1.0	R	√3	1	1	0.58	0.58	∞
Linearity	4.7	R	√3	1	1	2.71	2.71	∞
System detection limits	1.0	R	√3	1	1	0.58	0.58	∞
Modulation response	3.0	R	√3	1	1	1.73	1.73	∞
Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞
Response Time	0	R	√3	1	1	0.00	0.00	∞
Integration Time	1.4	R	√3	1	1	0.81	0.81	∞
RF ambient Conditions - Noise	3.0	R	√3	1	1	1.73	1.73	∞
RF ambient Conditions - Reflections	3.0	R	√3	1	1	1.73	1.73	∞0
Probe positioner Mechanical Tolerance	1.4	R	√3	1	1	0.81	0.81	∞
Probe positioning with respect to Phantom Shell	1.4	R	√3	1	1	0.81	0.81	∞
Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	2.3	R	√3	1	1	1.33	1.33	∞
		Test sa	mple Rela	ted				
Test sample positioning	2.6	N	1	1	1	2.60	2.60	11
Device Holder Uncertainty	3.0	N	1	1	1	3.00	3.00	7
Output power Variation - SAR drift measurement	5.0	R	√3	1	1	2.89	2.89	∞
SAR scaling	2.0	R	√3	1	1	1.15	1.15	∞
	Ph	antom and	Tissue Pa	rameters				
Phantom Shell Uncertainty - Shape, Thickness and Permittivity	4	R	√3	1	1	2.31	2.31	∞
Uncertainty in SAR correction for deviation in permittivity and conductivity	2.0	N	1	1	0.84	2.00	1.68	∞
Liquid conductivity measurement	4.0	N	1	0.78	0.71	3.12	2.84	5
Liquid permittivity measurement	5.0	N	1	0.23	0.26	1.15	1.30	5
Liquid Conductivity - Temperature Uncertainty	2.5	R	√3	0.78	0.71	1.13	1.02	∞
Liquid permittivity - Temperature Uncertainty	2.5	R	√3	0.23	0.26	0.33	0.38	∞
Combined Standard Uncertainty		RSS				10.47	10.34	
Expanded Uncertainty (95% Confidence interval)		k				20.95	20.69	

^{*} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement uncertainly evaluation for system check 3.4.2

Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10 g)	1g Ui (+- %)	10 g Ui (+-%)	Vi vef
		Measure	ment Sys	tem				
Probe calibration	5.8	N	1	1	1	5.80	5.80	∞
Axial Isotropy	3.5	R	√3	1	1	2.02	2.02	∞
Hemispherical Isotropy	5.9	R	√3	0	0	0.00	0.00	∞
Boundary effect	1	R	√3	1	1	0.58	0.58	∞
Linearity	4.7	R	√3	1	1	2.71	2.71	∞
System detection limits	1	R	√3	1	1	0.58	0.58	∞
Modulation response	0	N	√3	0	0	0.00	0.00	∞
Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞
Response Time	0	R	√3	0	0	0.00	0.00	∞
Integration Time	1.4	R	√3	0	0	0.00	0.00	∞
RF ambient Conditions - Noise	3	R	√3	1	1	1.73	1.73	∞
RF ambient Conditions - Reflections	3	R	√3	1	1	1.73	1.73	∞
Probe positioner Mechanical Tolerance	1.4	R	√3	1	1	0.81	0.81	∞
Probe positioning with respect to Phantom Shell	1.4	R	√3	1	1	0.81	0.81	∞
Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	2.3	R	√3	1	1	1.33	1.33	∞
	1		Dipole	•		1		•
eviation of experimental source from numerical source	5	N	1	1	1	5.00	5.00	∞
Input Power and SAR driftmeasurement	0.5	R	√3	1	1	0.29	0.29	∞
Dipole Axis to Liquid Dist.	2.0	R	√3	1	1	1.15	1.15	∞
	Pha	ntom and	Tissue Pa	arameters	l.			1
Phantom Shell Uncertainty - Shape,Thickness and Permittivity	4	R	√3	1	1	2.31	2.31	∞
Uncertainty in SAR correction for deviation in permittivity and conductivity	2.0	N	1	1	0.84	2.00	1.68	∞
Liquid conductivity measurement	4	N	1	0.78	0.71	3.12	2.84	5
Liquid permittivity measurement	5.0	N	1	0.23	0.26	1.15	1.30	5
Liquid Conductivity - Temperature Uncertainty	2.5	R	√3	0.78	0.71	1.13	1.02	∞
Liquid permittivity - Temperature Uncertainty	2.5	R	√3	0.23	0.26	0.33	0.38	∞
Combined Standard Uncertainty		RSS				10.16	10.03	
Expanded Uncertainty (95% Confidence interval)		k				20.32	20.06	

Test Report Number: BTF230322R01501

4. Measurement System

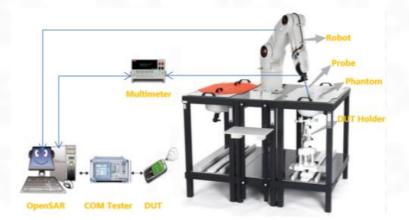
4.1 Specific Absorption Rate (SAR) Definition

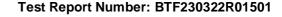
SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$SAR = \frac{\sigma E^2}{\rho}$$


Where: σ is the conductivity of the tissue,

ρ is the mass density of the tissue and E is the RMS electrical field strength.

4.2 MVG SAR System

4.2.1 SAR system diagram

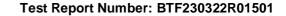
4.2.2 Robot

A standard high precision 6-axis robot (Denso) with teaches pendant with Scanning System

- It must be able to scan all the volume of the phantom to evaluate the tridimensional distribution of SAR.
- Must be able to set the probe orthogonal of the surface of the phantom (±30°).
- Detects stresses on the probe and stop itself if necessary to keep the integrity of the probe.

4.2.3 E-Field Probe

For the measurements, the Specific Dosimetric SSE2 E-Field Probe with following specifications is used:


- Dynamic range: 0.01-100 W/kg
- Tip diameter: 2mm for SSE2
- Distance between probe tip and sensor centre: 1mm for SSE2
- Distance between sensor centre and the inner phantom surface: 2mm for f>=4GHz.
- Probe linearity: <0.25dB.
- Axial Isotropy: <0.25dB.
- Spherical Isotropy: <0.50dB.
- Calibration range: 150 to 6000 MHz for head & body simulating liquid
- Angle between probe axis (evaluation axis) and surface normal line: less than 20°.

4.2.4 Phantoms

SAM Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The probe scanning of the E-Field is done in the 2 halves of the normalized head. The normalized shape of the phantom corresponds to the dimensions of 90% of an adult head size. It enables the dosimetric evaluation of left and right-hand phone usage and includes an additional flat phantom part for the simplified body performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

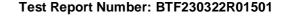
The thickness of the phantom amounts to 2 mm±0.2 mm. The materials for the phantom do not affect the radiation of the device under test (DUT): ɛr' <5
The head is filled with tissue simulating liquid. The hand do not have to be modeled.

SAM Phantom

	TWIN SAM phanto	om	
	Mechanical	Electrica	ıl
Overall thickness	2±0.2 mm(except ear area)	Relative permittivity	3.4
Dimensions	1000 mm(L) x 500 mm(W) x 200 mm(H)	Loss tangent	0.02
Maximum volume	27	L	
Material	Fiberglas	s based	

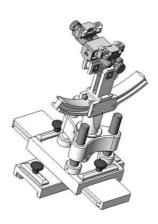
ELLIPTICAL Phantom

The phantom is for Body performance check filled with tissue-equivalent liquid to a depth of at least 150 mm, whose shell material is resistant to damage or reaction with tissue-equivalent liquid chemicals.

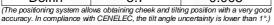


ELLI Phantom

The shape of the phantom is an ellipse with length 600mm \pm 5mm and width 400mm \pm 5mm. The phantom shell is made of low-loss and low-permittivity material, having loss tangent $\tan\delta \le 0.05$ and relative permittivity: $\epsilon r' \le 5$ for $f \le 3$ GHz $3 \le \epsilon r' \le 5$ for f > 3 GHz The thickness of the bottom-wall of the flat phantom is 2.0 mm with a tolerance of \pm 0.2 mm.

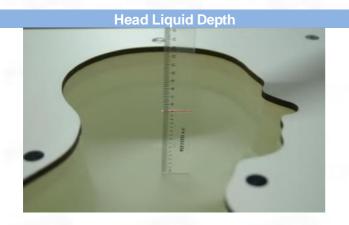

Technical & mechanical characteristics

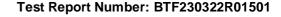
 $\begin{array}{lll} \text{Shell thickness} & 2 \text{ mm} \pm 0.2 \text{ mm} \\ \text{Filling volume} & 25 \text{ L} \\ \text{Dimensions} & 600 \text{ mm} \times 400 \text{ mm} \times 200 \text{mm} \\ \text{Permittivity} & 4.4 \\ \text{Loss tangent} & 0.017 \end{array}$



4.2.5 Device Holder

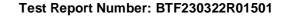
System	Permittivity	Loss
Material	Fermittivity	tangent
Delrin	3.7	0.005




System	Permittivity	Loss
Material	Permittivity	tangent
PMMA	2.9	0.028

4.2.6 Simulating Liquid

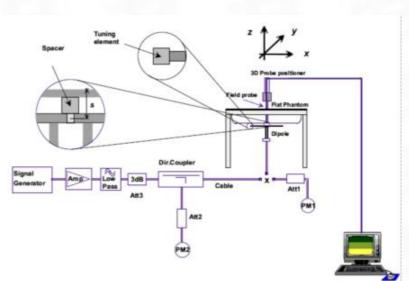
For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5%.


The following table gives the recipes for tissue simulating liquid and the theoretical Conductivity/Permittivity.

			Head (Referen	ce IEEE1528)				
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ (S/m)	3
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.4	40.0
2450	55.0	0	0	0.1	0	44.9	1.80	39.2
2600	54.9	0	0	0.1	0	45.0	1.96	39.0
Frequency	Water		Hexyl Carbitol		Triton	X-100	Conductivity	Permittivity
(MHz)	(%)		(%)		(%	6)	σ (S/m)	3
5200	62.52		17.24		17.	24	4.66	36.0
5800	62.52		17.24		17.	24	5.27	35.3
		Во	dy (From instrun	nent manufact	urer)			
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ (S/m)	3
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0.1	0	31.3	1.95	52.7
2600	68.2	0	0	0.1	0	31.7	2.16	52.5
Frequency(MHz)	Water		DGBE		Sa	alt	Conductivity	Permittivity
r roquericy(ivii iz)	vvalei		(%)		(%	6)	σ (S/m)	3
5200	78.60		21.40		/	1	5.30	49.00
5800	78.50		21.40		0.	1	6.00	48.20

5. System Verification

5.1 Purpose of System Check

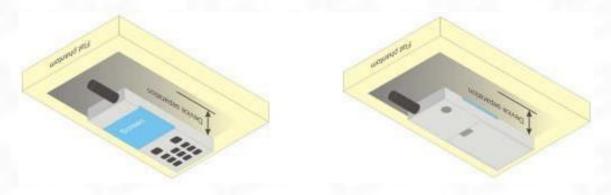

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. The setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

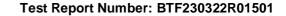
5.2 System Check Setup

6. TEST POSITION CONFIGURATIONS

6.1 Front-of-face Exposure Conditions

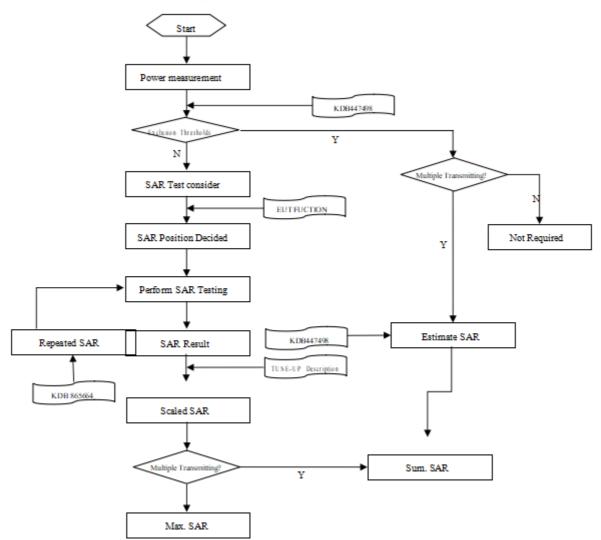
A typical example of a front-of-face device is a two-way radio that is held at a distance from the face of the user when transmitting. In these cases the device under test shall be positioned at the distance to the phantom surface that corresponds to the intended use as specified by the manufacturer in the user instructions. If the intended use is not specified, a separation distance of 25 mm between the phantom surface and the device shall be used.

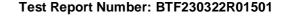




6.2 Body Position Conditions

A typical example of a body-won device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.





7. Measurement Procedure

7.1 Measurement Process Diagram

Body SAR

7.2 SAR Scan General Requirement

Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1 g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013.

			≤3GHz	>3GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface			5±1 mm	½·δ·ln(2)±0.5 mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location		30°±1°	20°±1°	
			≤ 2 GHz: ≤ 15 mm	3–4 GHz: ≤ 12 mm
			2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolu	ution: Δx Area , Δ	y Area	When the x or y dimension of the test device, in the m above, the measurement resolution must be ≤ the corr least one measurement point on the test device.	
Maximum zoom scan spatial resolution: Δx Zoom , Δy Zoom			≤ 2 GHz: ≤ 8 mm	3–4 GHz: ≤ 5 mm*
		2 –3 GHz: ≤ 5 mm*	4 – 6 GHz: ≤ 4 mm*	
				3–4 GHz: ≤ 4 mm
	uniform grid: Δ	z Zoom (n)	≤ 5 mm	4–5 GHz: ≤ 3 mm
				5–6 GHz: ≤ 2 mm
		Δz Zoom (1):		3–4 GHz: ≤ 3 mm
		between 1st		4–5 GHz: ≤ 2.5 mm
Maximum zoom scan spatial resolution, normal to phantom surface	mal to phantom closest to phantom	nal to phantom closest to phantom	5–6 GHz: ≤ 2 mm	
100	Δz Zoom (n>1): between subsequent points		≤ 1.5·Δz.	Zoom (n-1)
				3–4 GHz: ≥ 28 mm
Minimum zoom scan volume	x, y, z		≥30 mm	4–5 GHz: ≥ 25 mm
				5–6 GHz; ≥ 22 mm

Note:

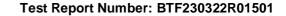
447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

^{1.} δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528- 2011 for details

^{2. *}When zoom scan is required and the reported SAR from the area scan based 1 g SAR estimation procedures of KDB

Test Report Number: BTF230322R01501

7.3 Measurement Procedure


The following steps are used for each test position

- a. Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- b. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- c. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- d. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 *32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

7.4 Area & Zoom Scan Procedure

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r04 guoted below.

When the 1 g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

8. Conducted RF Output Power

Madulatian Tons	Channel	Frequen	су	Conducted Bower (dBm)	Marrian Trus cur (dDas)	
Modulation Type Bandwidth	Bandwidth	Channel	MHz	Conducted Power (dBm)	Maximum Tune-up(dBm)	
		CH1	400.1	36.10		
		CH2	416.1	36.05		
Analan	40.5141-	CH3	432.1	36.07	20.50	
Analog	12.5kHz	CH4	448.1	36.20	36.50	
		CH5	464.1	36.11		
		CH6	479.9	36.20		
		CH1	400.1	35.60		
		CH2	416.1	35.55		
Digital 12.5kHz	10 EkUa	CH3	432.1	35.52	26.00	
	12.5KHZ	CH4	448.1	35.80	36.00	
		CH5	464.1	35.51		
		CH6	479.9	35.60		

9. Test Result

Front-of-face(25mm gap)										
Position	Ch.	Freq. (MHz)	Power Drift (%)	1g Meas. SAR (W/kg)	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	1g Scaled SAR (W/kg)	50% Duty Factor SAR (W/kg)	Meas. No.
Front	CH4	448.1	-1.020	5.793	36.20	36.50	1.072	6.210	3.105	1#
Front	CH4	448.1	-0.860	2.582	35.80	36.00	1.047	2.703	1.352	2#
				Body-worn	(0mm Gap)					
Position	Ch.	Freq. (MHz)	Power Drift (%)	1g Meas. SAR (W/kg)	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	1g Scaled SAR (W/kg)	50% Duty Factor SAR (W/kg)	Meas. No.
Back	CH4	448.1	-0.580	6.450	36.20	36.50	1.072	6.914	3.457	3#
Back	CH4	448.1	0.800	3.541	35.80	36.00	1.047	3.707	1.854	4#
	Front Front Position Back	Front CH4 Front CH4 Position Ch. Back CH4	Front CH4 448.1 Front CH4 448.1 Position Ch. Freq. (MHz) Back CH4 448.1	Position Ch. Freq. (MHz) (%) Front CH4 448.1 -1.020 Front CH4 448.1 -0.860 Position Ch. Freq. (MHz) Power Drift (%) Back CH4 448.1 -0.580	Position Ch. Freq. (MHz) Power Drift (%) 1g Meas. SAR (W/kg) Front CH4 448.1 -1.020 5.793 Front CH4 448.1 -0.860 2.582 Body-worm Position Ch. Freq. (MHz) Power Drift (%) 1g Meas. SAR (W/kg) Back CH4 448.1 -0.580 6.450	Position Ch. Freq. (MHz) Power Drift (%) 1g Meas. SAR (W/kg) Meas. Power (dBm) Front CH4 448.1 -1.020 5.793 36.20 Front CH4 448.1 -0.860 2.582 35.80 Body-worn(0mm Gap) Position Ch. Freq. (MHz) Power Drift (%) 1g Meas. SAR (W/kg) Meas. Power (dBm) Back CH4 448.1 -0.580 6.450 36.20	Position Ch. Freq. (MHz) Power Drift (%) 1g Meas. SAR (W/kg) Meas. Power (dBm) Max. tune-up power (dBm) Front CH4 448.1 -1.020 5.793 36.20 36.50 Front CH4 448.1 -0.860 2.582 35.80 36.00 Body-worn(0mm Gap) Position Ch. Freq. (MHz) Power Drift (%) 1g Meas. SAR (W/kg) Meas. Power (dBm) Max. tune-up power (dBm) Back CH4 448.1 -0.580 6.450 36.20 36.50	Position Ch. Freq. (MHz) Power Drift (%) 1g Meas. SAR (W/kg) Meas. Power (dBm) Max. tune-up power (dBm) Scaling Factor Front CH4 448.1 -1.020 5.793 36.20 36.50 1.072 Front CH4 448.1 -0.860 2.582 35.80 36.00 1.047 Body-worn(0mm Gap) Position Ch. Freq. (MHz) Power Drift (%) 1g Meas. SAR (W/kg) Meas. Power (dBm) power (dBm) Scaling Factor power (dBm) Back CH4 448.1 -0.580 6.450 36.20 36.50 1.072	Position Ch. Freq. (MHz) Power Drift (%) 1g Meas. SAR (W/kg) Meas. Power (dBm) Max. tune-up power (dBm) Scaling Factor 1g Scaled SAR (W/kg) Front CH4 448.1 -1.020 5.793 36.20 36.50 1.072 6.210 Front CH4 448.1 -0.860 2.582 35.80 36.00 1.047 2.703 Body-worn(0mm Gap) Position Ch. Freq. (MHz) Power Drift (%) 1g Meas. SAR (W/kg) Meas. Power (dBm) Scaling Factor SAR (W/kg) 1g Scaled SAR (W/kg) Back CH4 448.1 -0.580 6.450 36.20 36.50 1.072 6.914	Position Ch. Freq. (MHz) Power Drift (%) 1g Meas. SAR (W/kg) Meas. Power (dBm) Max. tune-up power (dBm) Scaling Factor 1g Scaled SAR (W/kg) 50% Duty Factor SAR (W/kg) Front CH4 448.1 -1.020 5.793 36.20 36.50 1.072 6.210 3.105 Front CH4 448.1 -0.860 2.582 35.80 36.00 1.047 2.703 1.352 Body-worn(0mm Gap) Position Ch. Freq. (MHz) Power Drift (%) 1g Meas. SAR (W/kg) Max. tune-up power (dBm) Scaling Factor SAR (W/kg) 1g Scaled SAR (W/kg) 50% Duty Factor SAR (W/kg) Back CH4 448.1 -0.580 6.450 36.20 36.50 1.072 6.914 3.457

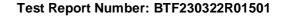
- The distance of the Front-of-face/Body-worn test is 25mm/0mm respectively.
- 1. The distance of the Front-of-face/Body-worn test is 25mm/0mm respectively.

 2. Batteries are fully charged at the beginning of the SAR measurements.

 4. When the SAR for all antennas tested using the default battery is ≤ 3.5 W/kg (50% PTT duty factor), testing of all other required channels is not necessary.

 5. When the SAR of an antenna tested on the highest output power using the default battery is > 3.5 W/kg and ≤4.0 W/kg (50% PTT duty factor), testing of the immediately adjacent channel (s) is not necessary, but testing of other required channels may still be required.

 6. The calculated SAR is obtained by the following formula:

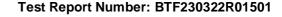

 Reported SAR=Measured SAR*10 [Pitropt-Pressured])/710

 Scaling factor= 10 [Pitropt-Pressured])/710

 Reported SAR= Measured SAR* Scaling factor

Plarget is the power of manufacturing upper limit; Pmeasured is the measured power; Measured SAR is measured SAR at measured power which including power drift. Reported(Scaled) SAR which including Power Drift (%) and Scaling factor.

6. SAR Test Data Plots to the Appendix C.



10. Test Equipment List

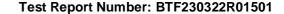
Description	Manufacturer	Model	Serial No./Version	Cal. Date	Cal. Due
E-Field Probe	MVG	SSE2	04/22 EPGO365	2023/02/06	2024/02/05
6 1/2 Digital Multimeter	Keithley	DMM6500	4527164	2022/11/24	2023/11/23
Videband Radio Communication Tester	ROHDE & SCHWARZ	CMW500	161997	2022/11/24	2023/11/23
MXG Vector Signal Generator	Agilent	N5182A	MY46240163	2022/11/24	2023/11/23
E-Series Avg. Power Sensor	KEYSIGHT	E9300A	MY55050017	2022/03/26	2023/03/25
EPM Series Power Meter	KEYSIGHT	E4418B	MY41293435	2022/03/26	2023/03/25
10dB Attenuator	MIDWEST MICROWAVE	263-10dB	/	2022/03/26	2023/03/25
Coupler	MERRIMAC	CWM-10R-10.8G	LOT-83391	2022/03/26	2023/03/2
450MHz Validation Dipole	MVG	SID450	07/22 DIP 0G450-654	2023/02/06	2024/02/0
LIMESAR Dielectric Probe	MVG	SCLMP	06/22 OCPG88	/	1
ENA Series Network Analyzer	Agilent	E5071B	MY42301221	2022/11/24	2023/11/23
Thermometer	Riters	DT-232	21A11	2022/03/26	2023/03/2
Antenna network emulator	MVG	ANT A 74	07/22 ANT A 74	/	/
SAM Phantom	MVG	SAM	07/22 SAM149	/	/
Mobile Phone Positioning System	MVG	MSH 118	07/22 MSH 118	/	/
Mechanical Calibration Kit	PNA	/	1	/	/
Open SAR test software	MVG	/	V5.3.5	/	/

Note: For dipole antennas, BTF has adopted 3 years as calibration intervals, and on annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss in within 20% of calibrated measurement.
- ${\bf 4.}\,\,{\rm Impedance}\,({\rm real}\,{\rm or}\,{\rm imaginary}\,{\rm parts})\,{\rm in}\,\,{\rm within}\,{\bf 5}\,{\rm Ohms}\,{\rm of}\,{\rm calibrated}\,{\rm measure}\,{\rm ment}.$

ANNEX A Simulating Liquid Verification Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an SCLMP Dielectric Probe Kit.


	Dielectric performance of tissue simulating liquid								
Frequency		εr	c	o(s/m)	Delta	Delta	Limete	Temp	Data
(MHz)	Target	Measured	Target	Measured	(εr)	(σ)	Limit	(℃)	Date
450	42.80	42.09	0.91	0.90	-1.66%	-1.10%	±5%	20.0	23/3/2023

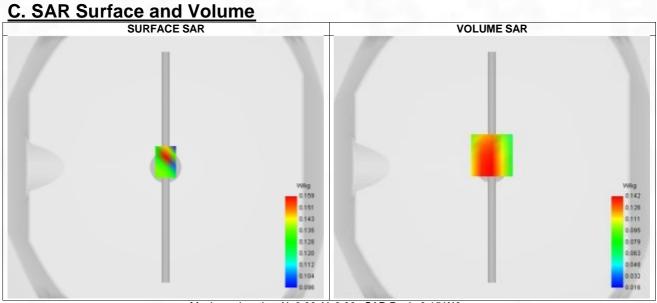
NOTE: The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

ANNEX B System Check Result

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of 10 %(for 1 g).

Frequency (MHz)	Input Power (mW)	1g SAR (W/Kg)	10g SAR (W/Kg)	1g SAR 1W input power normalized (W/Kg)	10g SAR 1W input power normalized (W/Kg)	1g SAR Standard target (1W) (W/Kg)	10g SAR Standard target (1W) (W/Kg)	1g SAR Deviation	10g SAR Deviation
450	16	0.071	0.046	4.42	2.88	4.69	3.10	-5.76%	-7.10%

System Performance Check Data (450 MHz)


System check at 450 MHz Date of measurement: 23/3/2023

A. Experimental conditions.

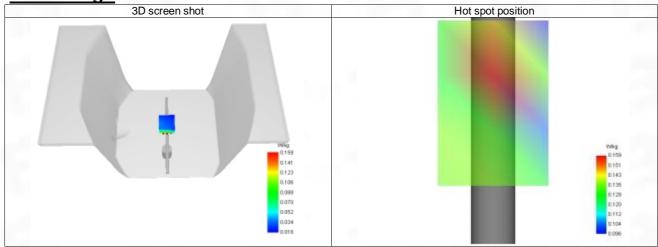
Probe	SN 04/22 EPGO365	
ConvF	1.82	
Area Scan	dx=8mm dy=8mm, Adaptative 1 max	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete	
Phantom	Validation plane	
Device Position	Dipole	
Band	CW450	
Channels	Middle	
Signal	CW	

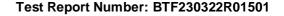
B. Permitivity

<u>=::-::::::::::::</u>	
Frequency (MHz)	450.000
Relative permitivity (real part)	42.091
Relative permitivity (imaginary part)	21.460
Conductivity (S/m)	0.904


Maximum location: X=0.00, Y=9.00; SAR Peak: 0.15 W/kg

D. SAR 1a & 10a


SAR 10g (W/Kg)	0.046
SAR 1g (W/Kg)	0.071
Variation (%)	-2.190
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000

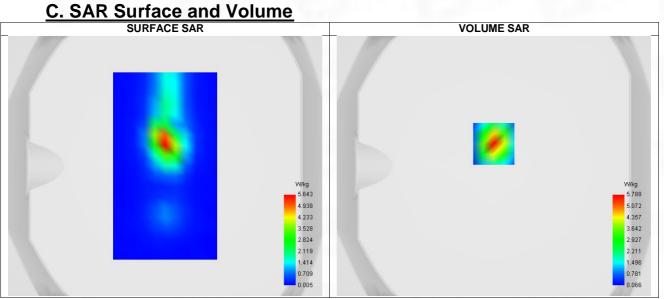

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.287	0.142	0.092	0.073	0.042

F. 3D Image

ANNEX C Test Data

1-Front-of-face with Front position in dist. 25mm on Middle Channel

SAR Measurement at CUSTOM (New_CustomBand_1) (Push-to-Talk, Validation Plane)

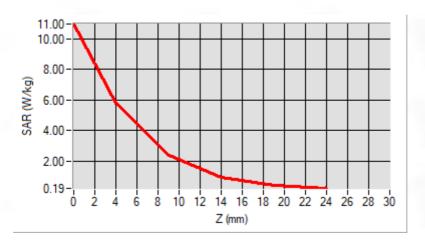

Date of measurement: 23/3/2023

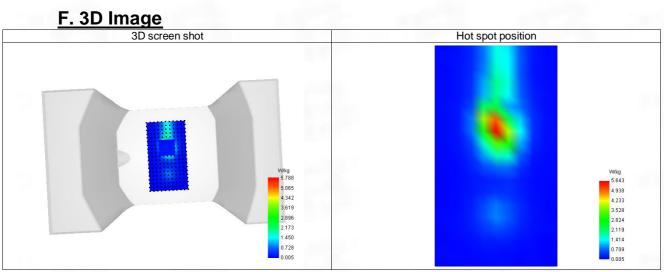
A. Experimental conditions.

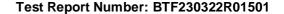
Probe	SN 04/22 EPGO365
ConvF	1.82
Area Scan	surf_sam_plan.txt
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Pust-to-Talk
Band	New_CustomBand_1
Channels	Middle
Signal	Custom

B. Permitivity

<u>=11 0111101110</u>	
Frequency (MHz)	448.100
Relative permitivity (real part)	42.101
Relative permitivity (imaginary part)	21.302
Conductivity (S/m)	0.901

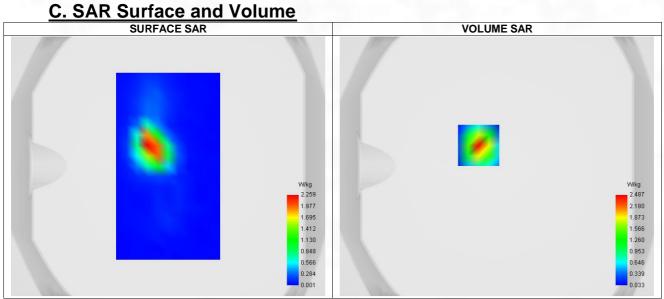

Maximum location: X=0.00, Y=17.00; SAR Peak: 11.02 W/kg


D. SAR 1a & 10a


SAR 10g (W/Kg)	2.187
SAR 1g (W/Kg)	5.793
Variation (%)	-1.020
Horizontal validation criteria: minimum distance (mm)	0.00000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	10.995	5.788	2.351	0.914	0.400

2-Front-of-face with Front position in dist. 25mm on Middle Channel

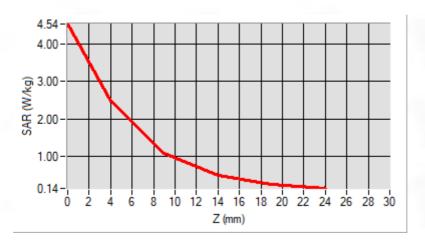

SAR Measurement at CUSTOM (New CustomBand 1) (Push-to-Talk, Validation Plane) Date of measurement: 23/3/2023

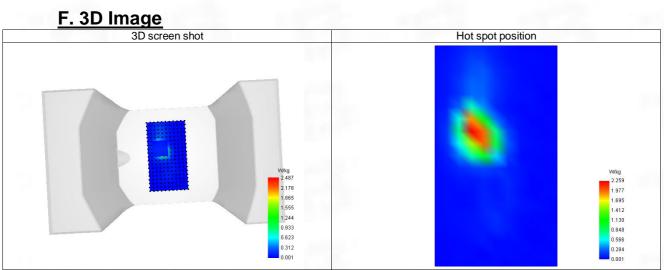
A. Experimental conditions.

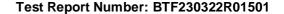
Probe	SN 04/22 EPGO365
ConvF	1.82
Area Scan	surf_sam_plan.txt
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Pust-to-Talk
Band	New_CustomBand_1
Channels	Middle
Signal	Custom

B. Permitivity

Frequency (MHz)	448.100
Relative permitivity (real part)	42.101
Relative permitivity (imaginary part)	21.302
Conductivity (S/m)	0.901

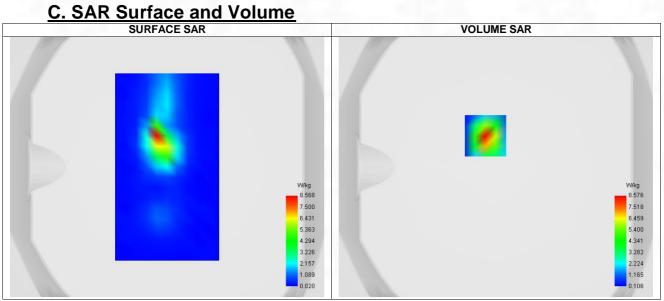

Maximum location: X=-14.00, Y=16.00; SAR Peak: 4.55 W/kg


D. SAR 1a & 10a


SAR 10g (W/Kg)	0.945
SAR 1g (W/Kg)	2.582
Variation (%)	-0.860
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	4.541	2.487	1.092	0.481	0.246

3-Body with Back position in dist. 0mm on Middle Channel

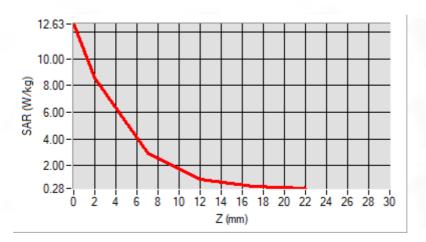

SAR Measurement at CUSTOM (New CustomBand 1) (Push-to-Talk, Validation Plane) Date of measurement: 23/3/2023

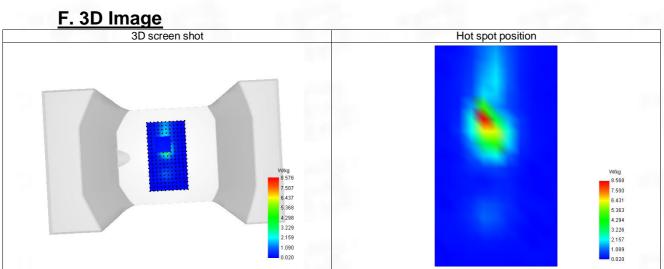
A. Experimental conditions.

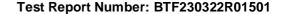
<u> </u>	
Probe	SN 04/22 EPGO365
ConvF	1.82
Area Scan	surf_sam_plan.txt
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Pust-to-Talk
Band	New_CustomBand_1
Channels	Middle
Signal	Custom

B. Permitivity

Frequency (MHz)	448.100
Relative permitivity (real part)	42.101
Relative permitivity (imaginary part)	21.302
Conductivity (S/m)	0.901

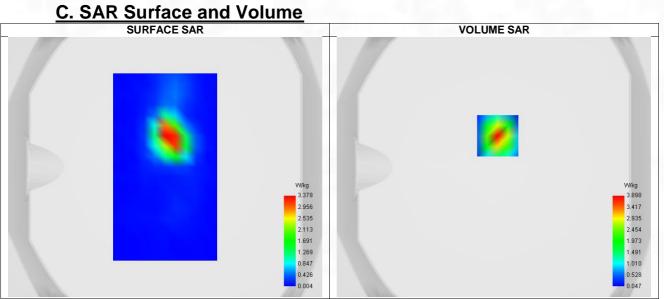

Maximum location: X=-8.00, Y=24.00; SAR Peak: 12.95 W/kg


D SAR 1a & 10a


Di Oriti 19 a 109	
SAR 10g (W/Kg)	2.183
SAR 1g (W/Kg)	6.450
Variation (%)	-0.580
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000

	Z (mm)	0.00	2.00	7.00	12.00	17.00
Ī	SAR (W/Kg)	12.627	8.576	2.890	0.922	0.409

4-Body with Back position in dist. 0mm on Middle Channel

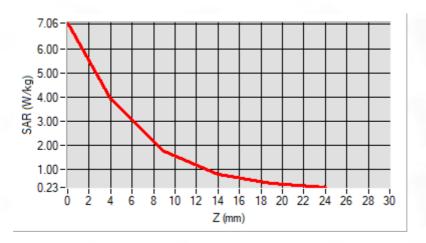

SAR Measurement at CUSTOM (New_CustomBand_1) (Push-to-Talk, Validation Plane) Date of measurement: 23/3/2023

A. Experimental conditions.

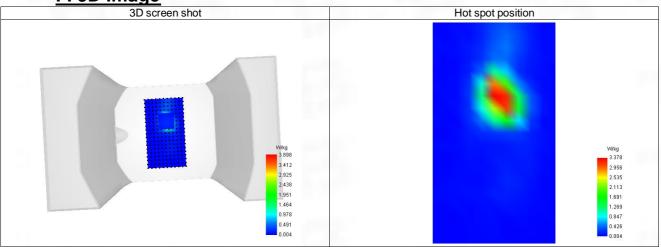
SN 04/22 EPGO365
1.82
surf_sam_plan.txt
5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Validation plane
Pust-to-Talk
New_CustomBand_1
Middle
Custom

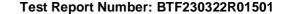
B. Permitivity

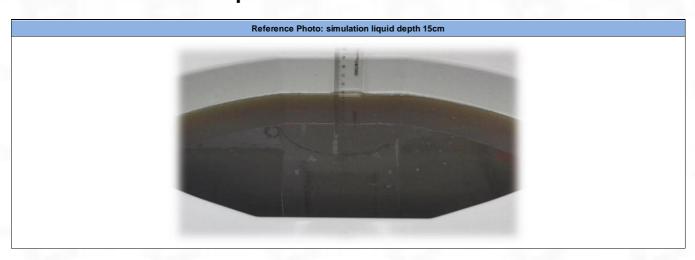
<u>=====================================</u>	
Frequency (MHz)	448.100
Relative permitivity (real part)	42.101
Relative permitivity (imaginary part)	21.302
Conductivity (S/m)	0.901

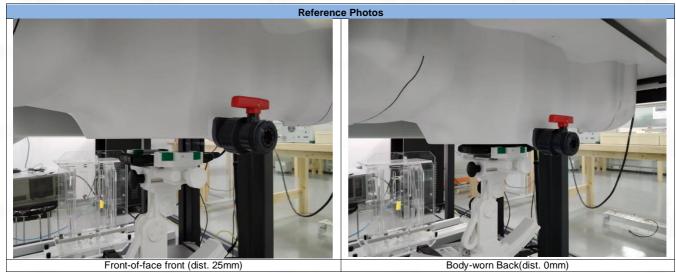

Maximum location: X=3.00, Y=24.00; SAR Peak: 7.05 W/kg

D. SAR 1a & 10a

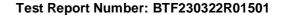

<u> </u>	
SAR 10g (W/Kg)	1.500
SAR 1g (W/Kg)	3.541
Variation (%)	0.800
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000


Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	7.062	3.898	1.736	0.776	0.401


F. 3D Image



ANNEX D SAR Test Setup Photos



ANNEX E EUT External and Internal Photos

Please refer to RF Report.

ANNEX F Calibration Report

Please refer the document "CALIBRATION REPORT.pdf".

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT--