

RADIO TEST REPORT FCC ID: 2AOWK-5003TF

Product: Smart Phone

Trade Mark: ulefone

Model No.: GQ5003

Family Model:Power Armor 19T, Power Armor 19,
Power Armor 19 Pro, Power Armor
19E, Power Armor 19S, Power Armor
19 Plus, Power Armor 19 Lite
Report No.: STR221128003001E

Issue Date: Dec 22. 2022

Prepared for

Shenzhen Gotron Electronic CO.,LTD

7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1	TE	ST RESULT CERTIFICATION	3
2	SUI	MMARY OF TEST RESULTS	4
3	FA	CILITIES AND ACCREDITATIONS	5
3.	.1	FACILITIES	
	.2	LABORATORY ACCREDITATIONS AND LISTINGS	5
	.3	MEASUREMENT UNCERTAINTY	
4		NERAL DESCRIPTION OF EUT	
5		SCRIPTION OF TEST MODES	
6	SET	TUP OF EQUIPMENT UNDER TEST	9
6.	.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
	.2	SUPPORT EQUIPMENT	
6.		EQUIPMENTS LIST FOR ALL TEST ITEMS	
7	TE	ST REQUIREMENTS	
7.		CONDUCTED EMISSIONS TEST	
	.2 .3	RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL	
	.3 .4	HOPPING CHANNEL SEPARATION MEASUREMENT	
	.5	AVERAGE TIME OF OCCUPANCY (DWELL TIME)	
	.6	20DB BANDWIDTH TEST	
	.7	PEAK OUTPUT POWER	30
7.		CONDUCTED BAND EDGE MEASUREMENT	
	.9	SPURIOUS RF CONDUCTED EMISSION	
	.10	ANTENNA APPLICATION	
	.11	FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	
8	TES	ST RESULTS	
8.		DWELL TIME	
8.		MAXIMUM CONDUCTED OUTPUT POWER	
8.		OCCUPIED CHANNEL BANDWIDTH	
8.		CARRIER FREQUENCIES SEPARATION	
8.		NUMBER OF HOPPING CHANNEL	
8.		BAND EDGE	
8.	.7	CONDUCTED RF SPURIOUS EMISSION	

1 TEST RESULT CERTIFICATION

	Okanakan Ostan Eksteris 00 J.TD
Applicant's name:	Shenzhen Gotron Electronic CO.,LTD
Address:	7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China
Manufacturer's Name:	Shenzhen Gotron Electronic CO.,LTD
Address:	7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China
Product description	
Product name:	Smart Phone
Model and/or type reference:	GQ5003
Family Model:	Power Armor 19T, Power Armor 19, Power Armor 19 Pro, Power Armor 19E, Power Armor 19S, Power Armor 19 Plus, Power Armor 19 Lite
Sample number	T221128002R002

Measurement Procedure Used:

APPLICABLE STANDARDS

STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied
	-

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	Nov 29, 2022 ~ Dec 21, 2022
Testing Engineer	:	Johan Lin
		(Allen Liu)
Authorized Signatory	:	Alese
		(Alex Li)

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	Smart Phone			
Trade Mark	ulefone			
FCC ID	2AOWK-5003TF			
Model No.	GQ5003			
Family Model	Power Armor 19T, Power Armor 19, Power Armor 19 Pro, Power Armor 19E, Power Armor 19S, Power Armor 19 Plus, Power Armor 19 Lite			
Model Difference	All models are the same circuit and RF module, except the model name.			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK, π/4-DQPSK, 8-DPSK			
Number of Channels	79 Channels			
Antenna Type	PIFA Antenna			
Antenna Gain	3.28 dBi			
Adapter	Model: HJ-PD66W-US Input: 100-240V~50/60Hz 1.5A Output: 5.0V3.0A OR 9.0V3.0A OR 12.0V3.0A OR 15.0V3.0A OR 20.0V3.25A OR 11.0V6.0A 66W MAX			
Battery	DC 3.87V, 9600mAh			
Power supply	DC 3.87V from battery or DC 5V from Adapter.			
HW Version	M118-MUB-V2			
SW Version	Power_Armor_19_TF1_EEA_V10			

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Certificate #4298.01				
Revision History				
Report No.	Version	Description	Issued Date	
STR221128003001E	Rev.01	Initial issue of report	Dec 22, 2022	
L	I	L		

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

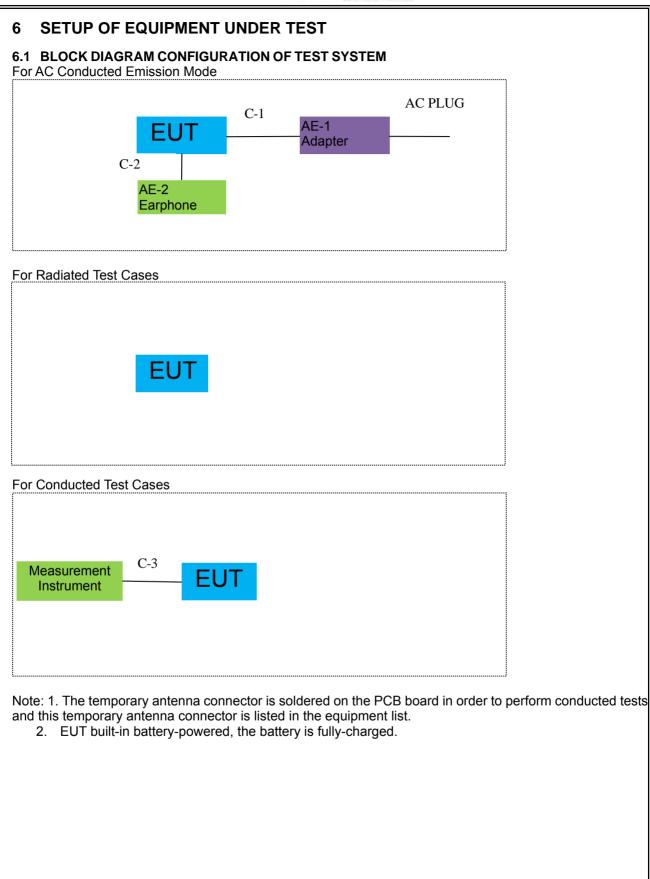
Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode	Description	
Mode 1 normal link mode		
Note: AQ assumption. Quandante di Englis di anno tente di un den anno fine un suttante succes		

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	


Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode Description		
Mode 2 CH00(2402MHz)		
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	HJ-PD66W-US	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

uuuu		cor equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.06	2023.04.05	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.06	2023.04.05	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.08	2023.11.07	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.08	2023.11.07	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN O84	2022.11.08	2023.11.07	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2022.11.08	2023.11.07	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

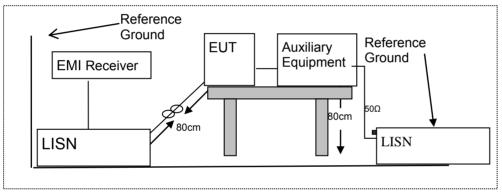
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted	Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

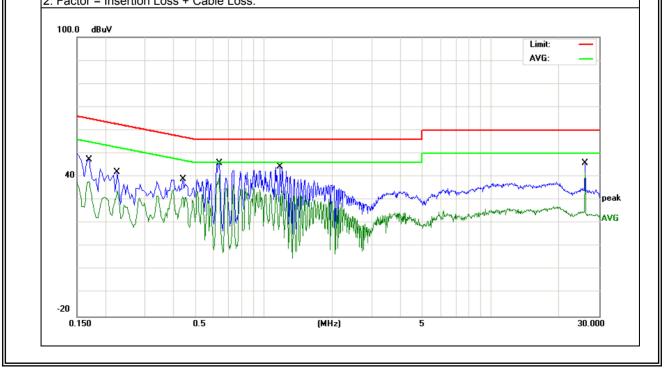
7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass


7.1.6 Test Results

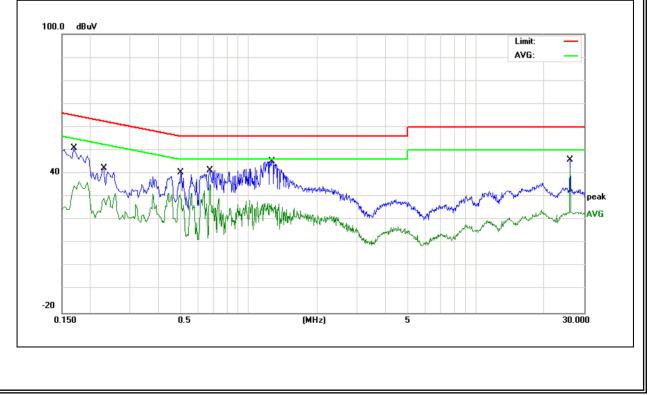
EUT:	Smart Phone	Model Name :	GQ5003
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.1700	37.84	9.61	47.45	64.96	-17.51	QP
0.1700	27.54	9.61	37.15	54.96	-17.81	AVG
0.2260	32.18	9.63	41.81	62.59	-20.78	QP
0.2260	21.39	9.63	31.02	52.59	-21.57	AVG
0.4420	29.43	9.66	39.09	57.02	-17.93	QP
0.4420	19.59	9.66	29.25	47.02	-17.77	AVG
0.6340	36.24	9.67	45.91	56.00	-10.09	QP
0.6340	25.35	9.67	35.02	46.00	-10.98	AVG
1.1820	34.70	9.68	44.38	56.00	-11.62	QP
1.1820	24.47	9.68	34.15	46.00	-11.85	AVG
26.0020	35.67	10.31	45.98	60.00	-14.02	QP
26.0020	24.95	10.31	35.26	50.00	-14.74	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

NTEK 北测[®]


EUT:	Smart Phone	Model Name :	GQ5003
Temperature:	25 ℃	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1700	41.28	9.65	50.93	64.96	-14.03	QP
0.1700	30.67	9.65	40.32	54.96	-14.64	AVG
0.2300	32.48	9.62	42.10	62.45	-20.35	QP
0.2300	22.40	9.62	32.02	52.45	-20.43	AVG
0.5020	30.82	9.66	40.48	56.00	-15.52	QP
0.5020	20.46	9.66	30.12	46.00	-15.88	AVG
0.6740	31.71	9.67	41.38	56.00	-14.62	QP
0.6740	21.34	9.67	31.01	46.00	-14.99	AVG
1.2660	35.60	9.67	45.27	56.00	-10.73	QP
1.2660	25.48	9.67	35.15	46.00	-10.85	AVG
26.0020	35.62	10.22	45.84	60.00	-14.16	QP
26.0020	25.11	10.22	35.33	50.00	-14.67	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 dit 10.20			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Froguopov(MHz)	Class B (dBuV/	/m) (at 3M)
Frequency(MHz)	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

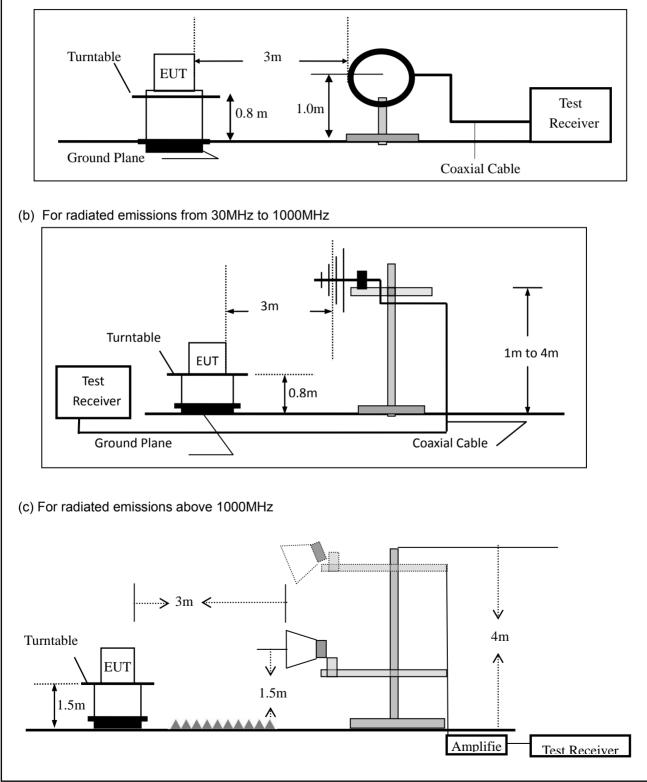
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission to	uring the radiated emission test, the Spectrum Analyzer was set with the following configurations:									
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth							
30 to 1000	QP	120 kHz	300 kHz							
Abaua 1000	Peak	1 MHz	1 MHz							
Above 1000	Average	1 MHz	1 MHz							

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Smart Phone	Model No.:	GQ5003
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over	r(dB)
(MHz)	H/V	PK AV		PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below: EUT: Smart Phone Model Name : GQ5003 **25°**℃ Relative Humidity: 55% Temperature: Test Mode: Pressure: 1010hPa Mode 3 GFSK DC 3.87V Test Voltage : Meter Emission

Polar	Frequency	Reading	Factor	Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.7454	6.96	25.87	32.83	40.00	-7.17	QP
V	45.5347	9.69	17.54	27.23	40.00	-12.77	QP
V	90.5374	13.35	16.95	30.30	43.50	-13.20	QP
V	145.3505	14.02	18.56	32.58	43.50	-10.92	QP
V	170.1948	16.13	17.57	33.70	43.50	-9.80	QP
V	315.4808	10.91	20.59	31.50	46.00	-14.50	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

NTEK 北测[®]

(H/V) (MHz) (dBuV) (dB (dBuV/m) (dBuV/m) (dB H 30.7454 6.71 25.87 32.58 40.00 -7.42 QP H 90.8554 11.55 17.01 28.56 43.50 -14.94 QP H 160.9089 11.52 18.27 29.79 43.50 -13.71 QP H 242.5252 11.08 18.44 29.52 46.00 -16.48 QP H 291.0360 11.68 20.13 31.81 46.00 -14.19 QP H 315.4808 13.94 20.59 34.53 46.00 -11.47 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit -11.47 QP	H	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
H 90.8554 11.55 17.01 28.56 43.50 -14.94 QP H 160.9089 11.52 18.27 29.79 43.50 -13.71 QP H 242.5252 11.08 18.44 29.52 46.00 -16.48 QP H 291.0360 11.68 20.13 31.81 46.00 -14.19 QP H 315.4808 13.94 20.59 34.53 46.00 -11.47 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m		(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
H 160.9089 11.52 18.27 29.79 43.50 -13.71 QP H 242.5252 11.08 18.44 29.52 46.00 -16.48 QP H 291.0360 11.68 20.13 31.81 46.00 -14.19 QP H 315.4808 13.94 20.59 34.53 46.00 -11.47 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit Limit: Margin: Margin: <th< td=""><th></th><td>30.7454</td><td>6.71</td><td>25.87</td><td>32.58</td><td></td><td>-7.42</td><td></td></th<>		30.7454	6.71	25.87	32.58		-7.42	
H 242.5252 11.08 18.44 29.52 46.00 -16.48 QP H 291.0360 11.68 20.13 31.81 46.00 -14.19 QP H 315.4808 13.94 20.59 34.53 46.00 -11.47 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit Imit: Margin: Margin: Margin: 72.0 dBuV/m dBuV/m 6 dddddddddddddddddddddddddddddd		90.8554	11.55	17.01	28.56	43.50	-14.94	QP
H 291.0360 11.68 20.13 31.81 46.00 -14.19 QP H 315.4808 13.94 20.59 34.53 46.00 -11.47 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit The second se		160.9089	11.52					
H 315.4808 13.94 20.59 34.53 46.00 -11.47 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m		242.5252						
Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m								
Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m			13.94	20.59	34.53	46.00	-11.47	QP
			Reading+ Fa	ctor, Margir	n= Emission Lo	evel - Limit		
	32	Marine and a company and a	2 water of the second s		5 Marine 1	6 × Walther whether and a super strate	un and a second	

■ Spurious Emission Above 1GHz (1GHz to 25GHz)										
EUT:	EUT: Smart Phone			Model	No.:		GQ50	03		
Temperature	: 20 °	С		Relativ	Relative Humidity: 48%					
Test Mode:	Moc	le2/Mode	3/Mode4	Test B	y:		Allen I	_iu		
All the modulation modes have been tested, and the worst result was report as below:										
	Deed	Ochie	Austaura	Deserver	Enviroien					
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Li	mits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dB	µV/m)	(dB)		
	Low Channel (2402 MHz)(GFSK)Above 1G									
4804.214	64.29	5.21	35.59	44.30	60.79	74	4.00	-13.21	Pk	Vertical
4804.214	40.57	5.21	35.59	44.30	37.07	54	4.00	-16.93	AV	Vertical
7206.265	61.62	6.48	36.27	44.60	59.77	74	4.00	-14.23	Pk	Vertical
7206.265	43.93	6.48	36.27	44.60	42.08	54	4.00	-11.92	AV	Vertical
4804.109	60.88	5.21	35.55	44.30	57.34	57.34 74		-16.66	Pk	Horizontal
4804.109	42.39	5.21	35.55	44.30	38.85		4.00	-15.15	AV	Horizontal
7206.224	62.63	6.48	36.27	44.52	4.52 60.86		4.00	-13.14	Pk	Horizontal
7206.224	48.42	6.48	36.27	44.52			4.00	-7.35	AV	Horizontal
	Mid Channel (2441 MHz)(GFSK)Above 1G									
4882.396	64.30	5.21	35.66	44.20	60.97	74	4.00	-13.03	Pk	Vertical
4882.396	43.60	5.21	35.66	44.20	40.27	54	4.00	-13.73	AV	Vertical
7323.241	60.06	7.10	36.50	44.43	59.23	74	4.00	-14.77	Pk	Vertical
7323.241	48.64	7.10	36.50	44.43	47.81	54	4.00	-6.19	AV	Vertical
4882.108	61.53	5.21	35.66	44.20	58.20	74	4.00	-15.80	Pk	Horizontal
4882.108	49.72	5.21	35.66	44.20	46.39	54	4.00	-7.61	AV	Horizontal
7323.132	61.64	7.10	36.50	44.43	60.81	74	4.00	-13.19	Pk	Horizontal
7323.132	42.16	7.10	36.50	44.43	41.33		4.00	-12.67	AV	Horizontal
			High Chanr	nel (2480 N	lHz)(GFSK)-	- Abc	ve 1G		[
4960.397	67.55	5.21	35.52	44.21	64.07	74	4.00	-9.93	Pk	Vertical
4960.397	42.50	5.21	35.52	44.21	39.02	54	4.00	-14.98	AV	Vertical
7440.201	60.98	7.10	36.53	44.60	60.01	74	4.00	-13.99	Pk	Vertical
7440.201	44.99	7.10	36.53	44.60	44.02	54	4.00	-9.98	AV	Vertical
4960.225	67.62	5.21	35.52	44.21	64.14	74	4.00	-9.86	Pk	Horizontal
4960.225	47.64	5.21	35.52	44.21	44.16	54	4.00	-9.84	AV	Horizontal
7440.298	61.33	7.10	36.53	44.60	60.36	74	4.00	-13.64	Pk	Horizontal
7440.298	44.66	7.10	36.53	44.60	43.69	54	4.00	-10.31	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

	Spurious Emission in Restricted Band 2310									
EUT:	Smart Pho	ne		Model			25003			
Temperature	: 20 ℃			Relativ	e Humidity	r: 48	48%			
Test Mode:	Mode2/ Mo	ode4		Test By	/:	All	Allen Liu			
All the modu	lation mode	s have be	en tested	, and the	worst resu	lt was r	eport as belo	•		
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/r	n) (dB)	Туре		
	1Mbps(GFSK)-Non-hopping									
2310.00	58.02	2.97	27.80	43.80	44.99	74	-29.01	Pk	Horizontal	
2310.00	43.95	2.97	27.80	43.80	30.92	54	-23.08	AV	Horizontal	
2310.00	58.24	2.97	27.80	43.80	45.21	74	-28.79	Pk	Vertical	
2310.00	42.97	2.97	27.80	43.80	29.94	54	-24.06	AV	Vertical	
2390.00	57.67	3.14	27.21	43.80	44.22	74	-29.78	Pk	Vertical	
2390.00	42.82	3.14	27.21	43.80	29.37	54	-24.63	AV	Vertical	
2390.00	56.95	3.14	27.21	43.80	43.50	74	-30.50	Pk	Horizontal	
2390.00	42.27	3.14	27.21	43.80	28.82	54	-25.18	AV	Horizontal	
2483.50	58.93	3.58	27.70	44.00	46.21	74	-27.79	Pk	Vertical	
2483.50	43.60	3.58	27.70	44.00	30.88	54	-23.12	AV	Vertical	
2483.50	60.52	3.58	27.70	44.00	47.80	74	-26.20	Pk	Horizontal	
2483.50	43.46	3.58	27.70	44.00	30.74	54	-23.26	AV	Horizontal	
				1Mbps(GFS	K)-hopping					
2310.00	53.07	2.97	27.80	43.80	40.04	74.00	-33.96	Pk	Vertical	
2310.00	44.35	2.97	27.80	43.80	31.32	54.00	-22.68	AV	Vertical	
2310.00	53.34	2.97	27.80	43.80	40.31	74.00	-33.69	Pk	Horizontal	
2310.00	43.63	2.97	27.80	43.80	30.60	54.00	-23.40	AV	Horizontal	
2390.00	54.63	3.14	27.21	43.80	41.18	74.00	-32.82	Pk	Vertical	
2390.00	40.83	3.14	27.21	43.80	27.38	54.00	-26.62	AV	Vertical	
2390.00	54.24	3.14	27.21	43.80	40.79	74.00	-33.21	Pk	Horizontal	
2390.00	43.34	3.14	27.21	43.80	29.89	54.00	-24.11	AV	Horizontal	
2483.50	54.51	3.58	27.70	44.00	41.79	74.00	-32.21	Pk	Vertical	
2483.50	42.26	3.58	27.70	44.00	29.54	54.00	-24.46	AV	Vertical	
2483.50	52.32	3.58	27.70	44.00	39.60	74.00	-34.40	Pk	Horizontal	
2483.50	40.57	3.58	27.70	44.00	27.85	54.00	-26.15	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

	Spurious Emission in Restricted Band 3260MHz-18000MHz											
EUT	:	Smart	Phone			Model No.:			GQ5003			
Tem	perature:	20 ℃	20 ℃			Relati	Relative Humidity: 48%					
Test	Mode:	Mode2	Mode2/ Mode4 Test By:					Aller	n Liu			
All t	he modulati	on modes	have b	een teste	d, a	and the	e worst res	ult wa	is rep	ort as be	elow:	
	Frequency	Reading Level	Cable Loss	Antenna Factor		eamp actor	Emission Level	Lin	nits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	((dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
	3260	61.15	4.04	29.57	4	4.70	50.06	7	4	-23.94	Pk	Vertical
	3260	57.07	4.04	29.57	4	4.70	45.98	5	4	-8.02	AV	Vertical
	3260	61.21	4.04	29.57	4	4.70	50.12	7	4	-23.88	Pk	Horizontal
	3260	57.69	4.04	29.57	4	4.70	46.60	5	4	-7.40	AV	Horizontal
	3332	65.64	4.26	29.87	4	4.40	55.37	7	4	-18.63	Pk	Vertical
	3332	54.54	4.26	29.87	4	4.40	44.27	5	4	-9.73	AV	Vertical
	3332	62.20	4.26	29.87	4	4.40	51.93	7	4	-22.07	Pk	Horizontal
	3332	53.12	4.26	29.87	4	4.40	42.85	5	4	-11.15	AV	Horizontal
	17797	42.92	10.99	43.95	4	3.50	54.36	7	4	-19.64	Pk	Vertical
	17797	33.06	10.99	43.95	4	3.50	44.50	5	4	-9.50	AV	Vertical
	17788	45.12	11.81	43.69	4	4.60	56.02	7	4	-17.98	Pk	Horizontal
	17788	31.24	11.81	43.69	4	4.60	42.14	5	4	-11.86	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Smart Phone	Model No.:	GQ5003
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Smart Phone	Model No.:	GQ5003
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 **Test Results**

EUT: Smart Phone		Model No.:	GQ5003	
Temperature: 20 °C		Relative Humidity:	GQ5003 48%	
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu	

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Smart Phone	Model No.:	GQ5003
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$ bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Smart Phone	Model No.:	GQ5003
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Smart Phone	Model No.:	GQ5003
Temperature:	20 °C	Relative Humidity:	
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: 3.28dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmission sover the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

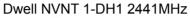
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

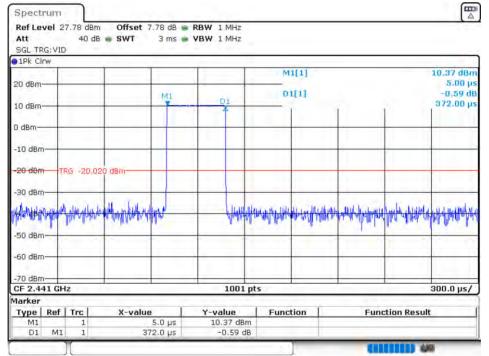
This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

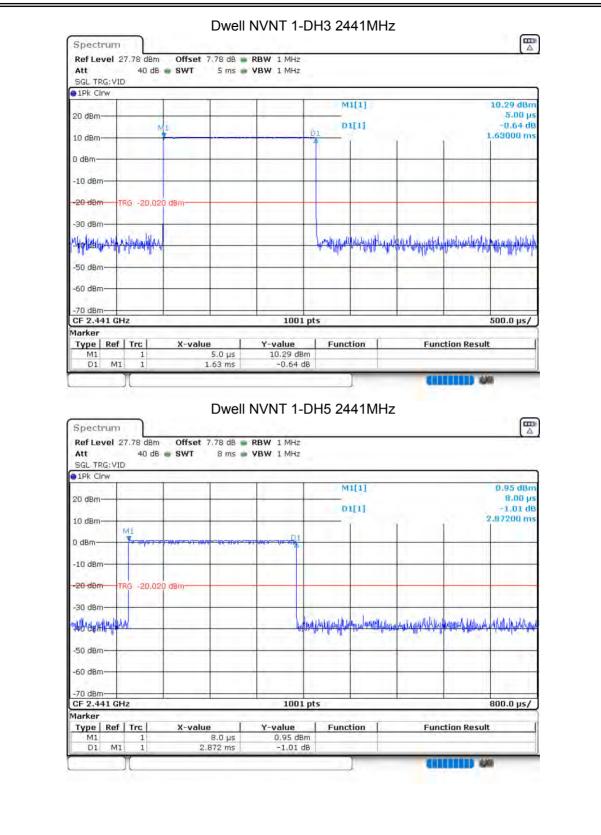
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

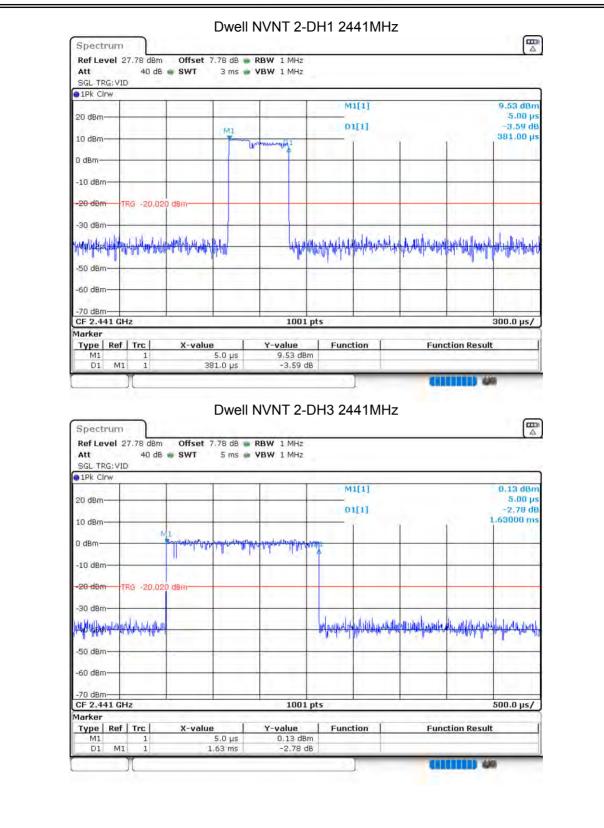




8 TEST RESULTS

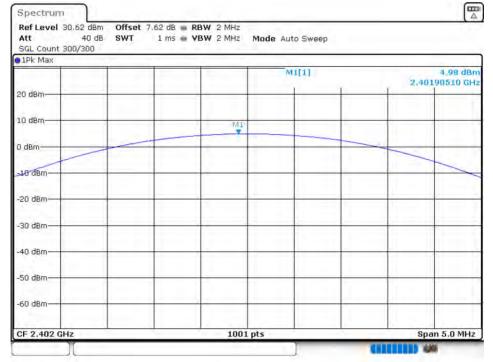
8.1 DWELL TIME


υ.									
	Condition	Mode	Frequency	Pulse	Total Dwell	Period	Limit	Verdict	
			(MHz)	Time (ms)	Time (ms)	Time (ms)	(ms)		
	NVNT	1-DH1	2441	0.372	119.04	31600	400	Pass	
	NVNT	1-DH3	2441	1.63	260.8	31600	400	Pass	
	NVNT	1-DH5	2441	2.872	306.347	31600	400	Pass	
	NVNT	2-DH1	2441	0.381	121.92	31600	400	Pass	
	NVNT	2-DH3	2441	1.63	260.8	31600	400	Pass	
	NVNT	2-DH5	2441	2.88	307.2	31600	400	Pass	
	NVNT	3-DH1	2441	0.381	121.92	31600	400	Pass	
	NVNT	3-DH3	2441	1.625	260	31600	400	Pass	
	NVNT	3-DH5	2441	2.872	306.347	31600	400	Pass	

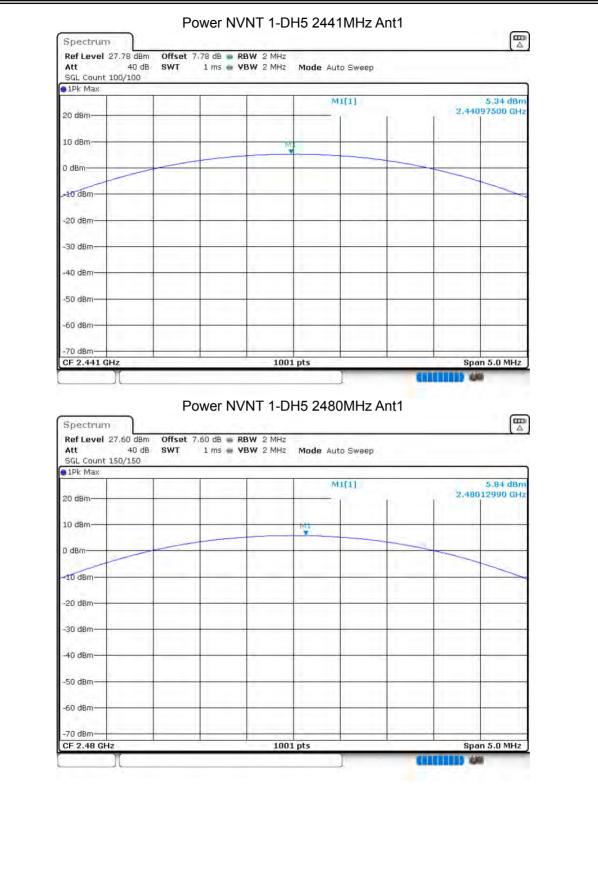


Att 40 dB s S SGL TRG:VID 1Pk Clrw	WT 8 ms 🖝 VBW	1 MHz			
20 dBm-		N	11[1]		4.32 dBm 8.00 µs
WT		D	1[1]		-1.87 dB 2.88000 ms
10 dBm M1	a proper and a proper proper property of the p	DI	1	1	2.00000 113
D dBm		Î			11 7
-10 dBm				-	1
-20 dBm TRG -20,020 dBm	-				-
-30 dBm					6.00
welle and the second se		Marthlander	and a stranger and the second	white the second second second	Hayllilla a land a land
-50 dBm-					
-60 dBm					
-70 dBm-		1.4			
CF 2.441 GHz Marker	4 4	1001 pts			800.0 µs/
M1 1 D1 MI 1	2.88 ms	-1.87 dB] 141MHz		
DI MI I		NT 3-DH1 24] 441MHz		
D1 M1 1 Spectrum Ref Level 27.78 dBm O Att 40 dB S SGL TRG: VID		NT 3-DH1 24 1 MH2 1 MH2			9.51 dBm
D1 M1 1 Spectrum Ref Level 27.78 dBm O Att 40 dB S SGL TRG: VID	Dwell NVI ffset 7.78 dB • RBW wr 3 ms • VBW	NT 3-DH1 24	11[1]		9.51 dBm 5.00 µs
D1 M1 1 Spectrum Ref Level 27.78 dBm O Att 40 dB S SGL TRG: VID 9 1Pk Clrw		NT 3-DH1 24		1	9.51 dBm
D1 M1 1 Spectrum	Dwell NVI ffset 7.78 dB RBW WT 3 ms VBW	NT 3-DH1 24	11[1]		9.51 dBm 5.00 µs -2.72 dB
D1 M1 1 Spectrum Image: Constraint of the system of the syst	Dwell NVI ffset 7.78 dB RBW WT 3 ms VBW	NT 3-DH1 24	11[1]		9.51 dBm 5.00 µs -2.72 dB
D1 M1 1 Spectrum Image: Constraint of the second seco	Dwell NVI ffset 7.78 dB RBW WT 3 ms VBW	NT 3-DH1 24	11[1]		9.51 dBm 5.00 µs -2.72 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm O Att 40 dB St SGL TRG: VID 10 dBm 10 dBm -10 dBm TRG -10,020 dBm	Dwell NVI ffset 7.78 dB RBW WT 3 ms VBW	NT 3-DH1 24	11[1]		9.51 dBm 5.00 µs -2.72 dB
D1 M1 1 Spectrum 40 dB Si Att 40 dB Si SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 10 dBm 10 dBm -10 dBm TRG -10,020 dBm -20 dBm -10,020 dBm -10,020 dBm	Dwell NVI ffset 7.78 dB RBW WT 3 ms VBW	NT 3-DH1 24			9.51 dBm 5.00 µs -2.72 dB
D1 M1 1 Spectrum 40 dB S1 Att 40 dB S1 SGL TRG: VID 1Pk Clrw S1 20 dBm 0 Bm 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm	Dwell NVI ffset 7.78 dB RBW WT 3 ms VBW	NT 3-DH1 24			9.51 dBm 5.00 µs -2.72 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm O Att 40 dB S SGL TRG:VID 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dB	Dwell NVI ffset 7.78 dB RBW WT 3 ms VBW	NT 3-DH1 24			9.51 dBm 5.00 µs -2.72 dB
D1 M1 1 Spectrum	Dwell NVI ffset 7.78 dB RBW WT 3 ms VBW	NT 3-DH1 24			9.51 dBm 5.00 µs -2.72 dB
D1 M1 1 Ref Level 27.78 dBm O' Att 40 dB S' SGL TRG: VID I IPk Clrw 20 dBm I 10 dBm TRG 10.020 dBm -20 dBm -30 dBm I -30 dBm -40 dB I -70 dBm -70 dBm I -70 dBm -60 dBm I	Dwell NVI ffset 7.78 dB RBW WT 3 ms VBW	NT 3-DH1 24			9.51 dBm 5.00 µs -2.72 dB
D1 M1 1 Ref Level 27.78 dBm O Att 40 dB ST SGL TRG: VID 10 dBm ST 10 dBm 0 ST ST 10 dBm 0 Bm 10 dBm 0 20 dBm 0 0 Bm 0 -10 dBm TRG -10.020 dBm 0 -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm CF 2.441 GHz Marker Type Ref Trc X	Dwell NVI	NT 3-DH1 24		Function Result	9.51 dBm 5.00 µs -2.72 dB 381.00 µs 381.00 µs
D1 M1 1 Spectrum Ref Level 27.78 dBm O Att 40 dB St SGL TRG: VID PR Clrw 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -	Dwell NVI	NT 3-DH1 24		and half the and a second	9.51 dBm 5.00 µs -2.72 dB 381.00 µs 381.00 µs

Ref Level 27 Att		Offset 7		BW 1 MHz BW 1 MHz					
SGL TRG: VID		7 5 0			-				
1				1	м	1[1]			0.08 dBn
20 dBm					D	1[1]			10.00 µ -2,74 di
10 dBm	h	1			-	Ē.		1	L.62500 m
D dBm		and the fall of the	performantly the	apparented by the	MAL		-		-
-10 dBm	-	ų		-	-		-		
-20 dBm TRO	3 -20,020) dBm					-		
-30 dBm			-						
Hapled at lugarity	Alappellow Ala			-	Mantie	ad all but raching	the anti-	and the second sec	tallal in the data to
1 0 1000	A 1-14-1				Had make	and have a	1.040 1.1	J. N. L. 248 14	
-50 dBm								1	
-60 dBm	= [1 = 1	1.1					1 2 1
-70 dBm CF 2.441 GHz		-		1001	pts				500.0 µs/
Marker Type Ref	Tec	X-value	1	Y-value	Func	tion [Eun	ction Result	
			.0.0 µs	0.08 dBr	n		T di	ctrom (coour	
M1 D1 M1	1		DE me	-0.74 d					
M1 D1 M1 Spectrum Ref Level 27		1,6	in the	-2.74 d JVNT 3-I RBW 1 MHz] 41MHz	-		
Spectrum	1	1,6		IVNT 3-I] 41MHz			
Spectrum Ref Level 27 Att SGL TRG: VID IPK Cirw	1	1,6 Offset 7		IVNT 3-I RBW 1 MHz	DH5 24] 441MHz 1[1]			-4.48 dBm
Spectrum Ref Level 27 Att SGL TRG: VID IPK Clrw 20 dBm	1	1,6 Offset 7		IVNT 3-I RBW 1 MHz	DH5 24				-4.48 dBm 8.00 µs -0.48 dB
D1 M1 Spectrum Ref Level 27 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm	1	1,6 Offset 7		IVNT 3-I RBW 1 MHz	DH5 24	1[1]			-4,48 dBn 8.00 µs
D1 M1 Spectrum Ref Level 27 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm	1 78 dBm 40 dB	1,6 Offset 7	Dwell N 7.78 dB F 8 ms F V	IVNT 3-I	DH5 24	1[1]			-4.48 dBm 8.00 µs -0.48 dB
D1 M1 Spectrum Ref Level 27 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm	1 78 dBm 40 dB	Offset 7 SWT	Dwell N 7.78 dB F 8 ms F V	IVNT 3-I	DH5 24	1[1]			-4.48 dBm 8.00 µs -0.48 dB
D1 M1 Spectrum Ref Level 27 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm -10 dBm	1 78 dBm 40 dB	0ffset 7 ● SWT	Dwell N 7.78 dB F 8 ms F V	IVNT 3-I	DH5 24	1[1]			-4.48 dBm 8.00 µs -0.48 dB
D1 M1 Spectrum Ref Level 27 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm -10 dBm	1 .78 dBm 40 dB	0ffset 7 ● SWT	Dwell N 7.78 dB F 8 ms F V	IVNT 3-I	DH5 24	1[1]			-4,48 dBm 8.00 µs -0,48 dE 2,87200 ms
D1 M1 Spectrum Ref Level 27 Att SGL TRG: VID IPk Clrw 20 dBm 10 dBm -10 dBm -20 dBm TR	1 .78 dBm 40 dB	0ffset 7 ● SWT	Dwell N 7.78 dB F 8 ms F V	IVNT 3-I	DH5 24	1[1]			-4,48 dBm 8.00 µs -0,48 dE 2,87200 ms
D1 M1 Spectrum Ref Level 27 Att SGL TRG: VID PIPK CIrw 20 dBm 10 dBm -10 dBm -10 dBm -30 dBm	1 .78 dBm 40 dB	0ffset 7 ● SWT	Dwell N 7.78 dB F 8 ms F V	IVNT 3-I	DH5 24	1[1]			-4,48 dBm 8.00 µs -0,48 dE 2,87200 ms
D1 M1 Spectrum Ref Level 27 Att SGL TRG: VID IPk Cirw 20 dBm 10 dBm -10 dBm -30 dBm -30 dBm	1 .78 dBm 40 dB	0ffset 7 ● SWT	Dwell N 7.78 dB F 8 ms F V	IVNT 3-I	DH5 24	1[1]			-4,48 dBm 8.00 µs -0,48 dE 2,87200 ms
D1 M1 Spectrum Ref Level 27 Att SGL TRG: VID PIPK CIrw 20 dBm 10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm	1 .78 dBm 40 dB	0ffset 7 ● SWT	Dwell N 7.78 dB F 8 ms F V	IVNT 3-I	DH5 24	1[1]			-4,48 dBm 8.00 µs -0,48 dE 2,87200 ms
D1 M1 Ref Level 27 Att SGL TRG: VID IPk Clrw 20 dBm 10 dBm M -10 dBm M -20 dBm TR -30 dBm M -50 dBm -60 dBm -60 dBm CF 2.441 GHz	1 .78 dBm 40 dB	0ffset 7 ● SWT	Dwell N 7.78 dB F 8 ms F V	IVNT 3-I	DH5 24	1[1]		thereby blacket are	-4,48 dBm 8.00 µs -0,48 dE 2,87200 ms
D1 M1 Ref Level 27 Att SGL TRG: VID SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 10 dBm M -10 dBm M -30 dBm M -50 dBm TR -60 dBm -70 dBm -70 dBm CF 2.441 GHz Marker Type Ref	1 .78 dBm 40 dB	offset 7 SWT کوهار این کارکسوندار کار علاقه	Dwell N 7.78 dB 8 ms	IVNT 3-I	DH5 24	1[1] 1[1] Main Junu	hlyapalka shinapiy	thereby blacket are	-4,48 dBm 8.00 µs -0,48 dE 2,87200 ms
D1 M1 Ref Level 27 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 10 dBm M -10 dBm M -30 dBm M -50 dBm -50 dBm -60 dBm CF 2.441 GHz Marker -70 dBm	1 .78 dBm 40 dB	Offset 7	Dwell N 7.78 dB F 8 ms F 9 ms F 9 ms	IVNT 3-I	DH5 24	1[1] 1[1] Main Junu	hlyapalka shinapiy	Brodungsladgeren.	-4,48 dBn 8.00 µ -0,48 dE 2,87200 ms


NTEK 北测[®]

8.2 MAXIMUM CONDUCTED OUTPUT POWER


			•			
Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	4.983	30	Pass
NVNT	1-DH5	2441	Ant 1	5.34	30	Pass
NVNT	1-DH5	2480	Ant 1	5.837	30	Pass
NVNT	2-DH5	2402	Ant 1	4.509	21	Pass
NVNT	2-DH5	2441	Ant 1	4.71	21	Pass
NVNT	2-DH5	2480	Ant 1	5.092	21	Pass
NVNT	3-DH5	2402	Ant 1	4.506	21	Pass
NVNT	3-DH5	2441	Ant 1	4.552	21	Pass
NVNT	3-DH5	2480	Ant 1	4.734	21	Pass

Power NVNT 1-DH5 2402MHz Ant1



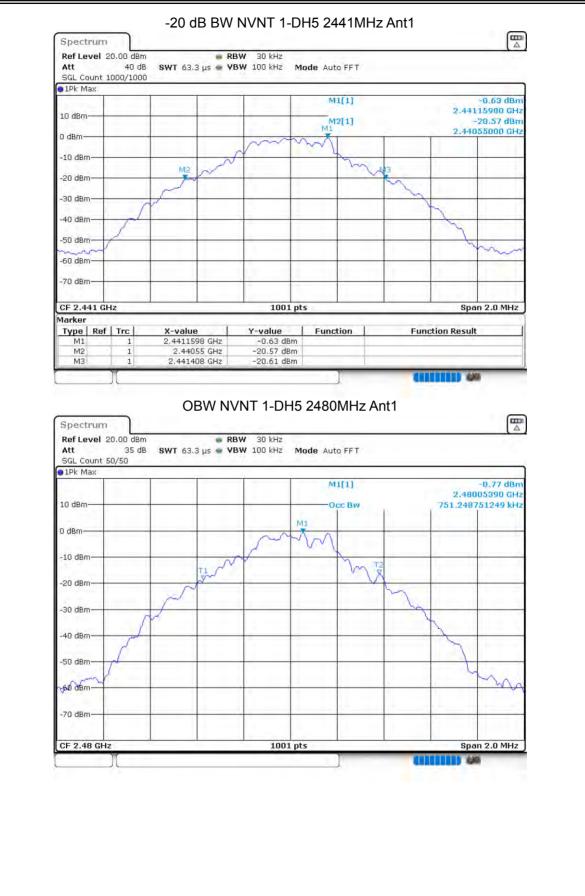
8.3 OCCUPIED CHANNEL BANDWIDTH

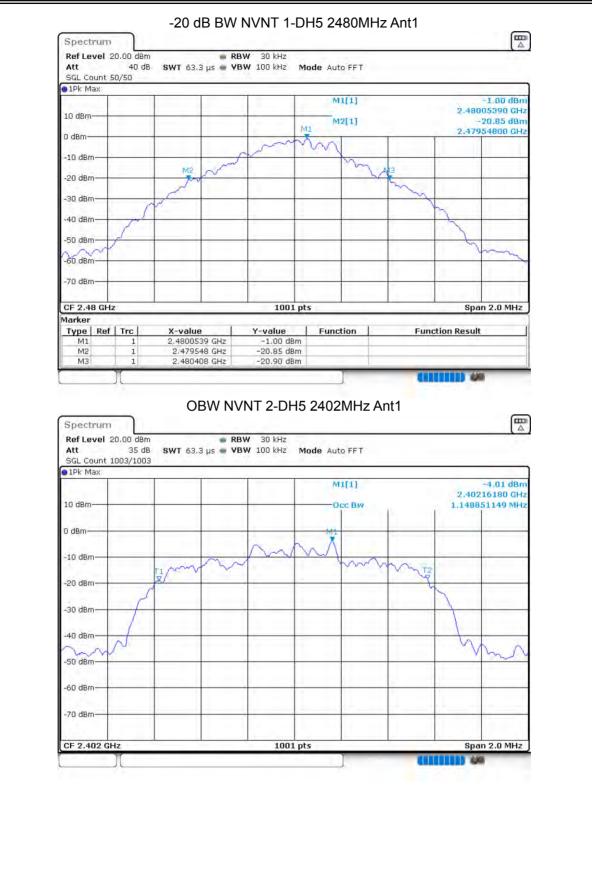
Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	1-DH5	2402	Ant 1	0.7712	0.858	Pass
NVNT	1-DH5	2441	Ant 1	0.7532	0.858	Pass
NVNT	1-DH5	2480	Ant 1	0.7512	0.86	Pass
NVNT	2-DH5	2402	Ant 1	1.1489	1.268	Pass
NVNT	2-DH5	2441	Ant 1	1.1409	1.25	Pass
NVNT	2-DH5	2480	Ant 1	1.1409	1.254	Pass
NVNT	3-DH5	2402	Ant 1	1.1528	1.258	Pass
NVNT	3-DH5	2441	Ant 1	1.1449	1.246	Pass
NVNT	3-DH5	2480	Ant 1	1.1449	1.252	Pass

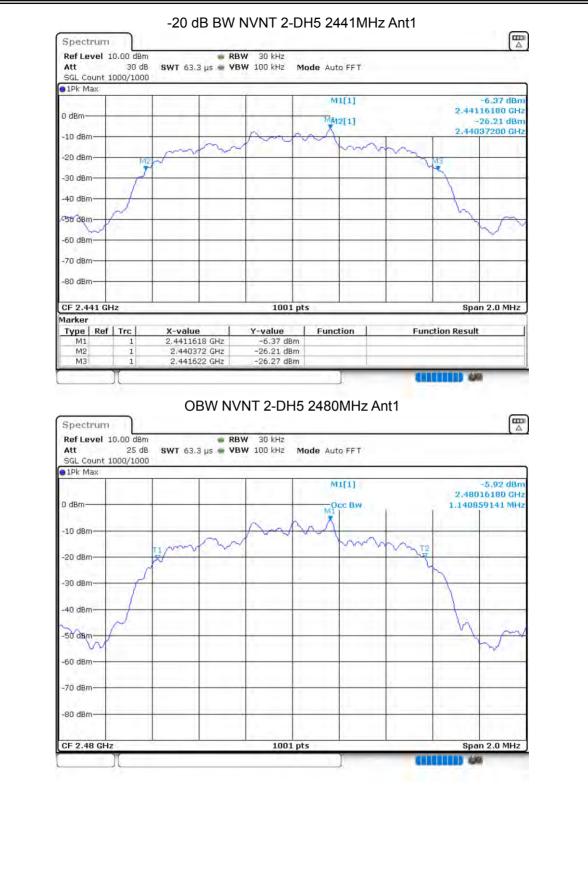


OBW NVNT 1-DH5 2402MHz Ant1

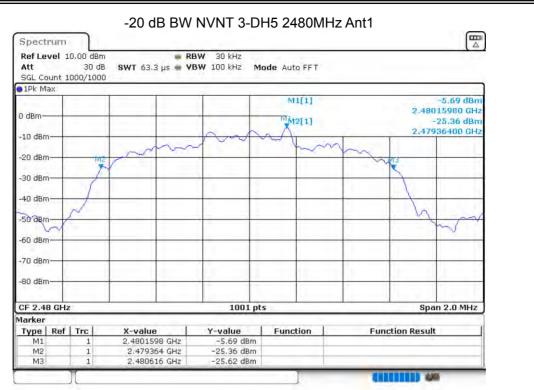
-20 dBm--30 dBm 40 dBm -50 dBm -60 dBm -70 dBm 1001 pts CF 2.402 GHz Span 2.0 MHz 100

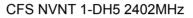


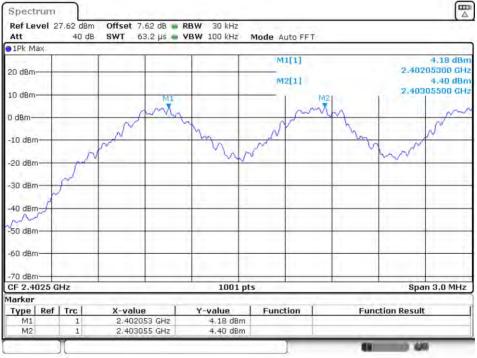




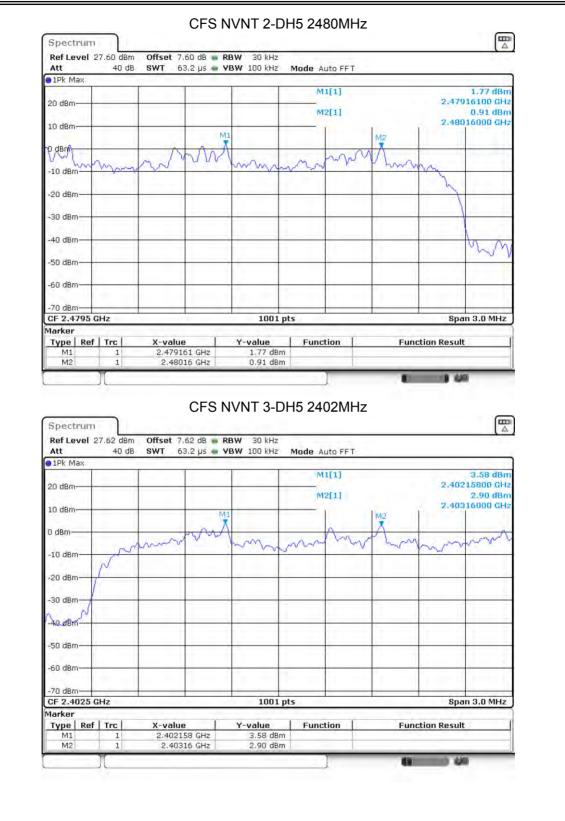


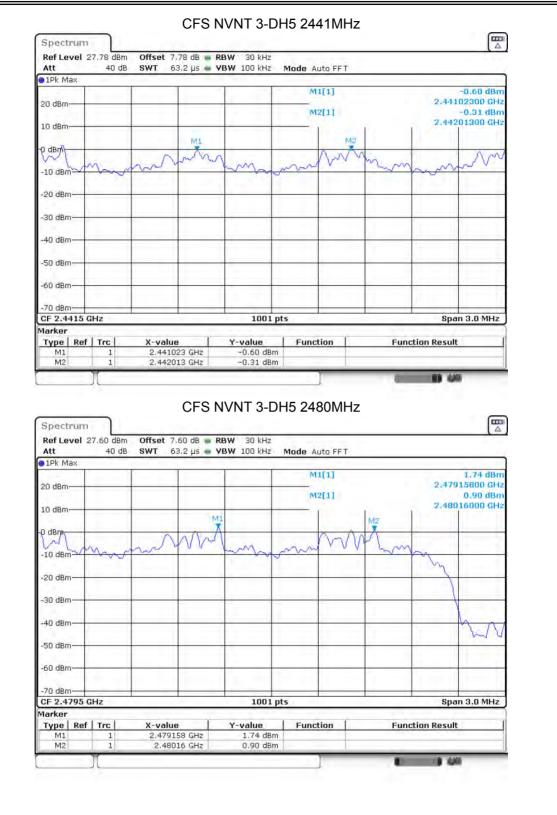


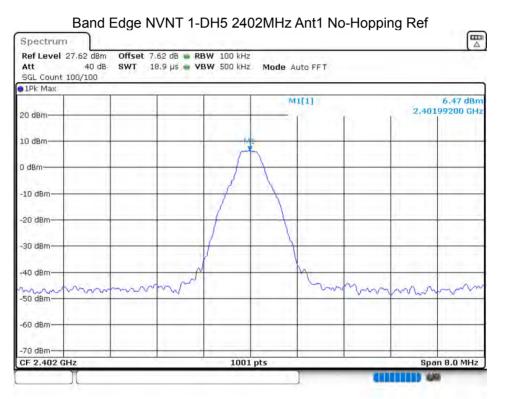




8.4 CARRIER FREQUENCIES SEPARATION Condition Mode Hopping Freq1 Hopping Freq2 HFS Limit Verdict (MHz) (MHz) (MHz) (MHz) NVNT 1-DH5 2402.053 2403.055 1.002 0.858 Pass NVNT 1-DH5 0.999 0.858 2441.056 2442.055 Pass 1-DH5 **NVNT** 2479.056 2480.16 1.104 0.86 Pass **NVNT** 2-DH5 2402.161 2403.16 0.999 0.845 Pass **NVNT** 2-DH5 2441.161 2442.163 1.002 0.833 Pass **NVNT** 2-DH5 2479.161 Pass 2480.16 0.999 0.836 2402.158 1.002 **NVNT** 3-DH5 2403.16 0.839 Pass NVNT 3-DH5 2441.023 2442.013 0.99 0.831 Pass NVNT 3-DH5 2479.158 2480.16 1.002 0.835 Pass






IVNT 1-DH5 79 15 Pass Hopping No. NVNT 1-DH5 2402MHz	Image: NVNT 1-DH5 79 15 Pass Hopping No. NVNT 1-DH5 2402MHz Marker A to get seven offset 7.62 dB RBW 100 kHz Att 40 dB SWT 1 ms VBW 300 kHz Marker 20 dBm MI[1] 2.4020040 GHz 0 REM MI[1] 2.4020040 GHz 0 REM MI[1] 2.400706 GHz 0 REM 0 REM 0 REM MI[1] 2.400706 GHz 0 REM 10 REM 10 REM 10 REM 10 REM 1001 pts Stop 2.4835 GHz Narker	JVNT 1-DH5 79 15 Pass Hopping No. NVNT 1-DH5 2402MHz Marker Add B Sectrum Ref Level 27.62 dB RBW 100 kHz Marker Marker Marker Marker Marker You de m Stop 2.4835 GHz	NT 1-DH5 79 15 Pass Hopping No. NVNT 1-DH5 2402MHz Ref Level 27.62 db Offset 7.62 db RBW 100 kHz Att 40 db SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 IPK Max	ndition	Mode	PING CHANN Hopping N		Limit	Verdict				
Hopping No. NVNT 1-DH5 2402MHz Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image:	Hopping No. NVNT 1-DH5 2402MHz Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image:	Hopping No. NVNT 1-DH5 2402MHz Image: Spectrum Ref Level 27.62 dB e RBW 100 kHz Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 Image: Support 7 O BBm MI[1] 2.480076 GHz O BBm O BBm SGL Count 7000/7000 O Image: Support 7 O Image: Suppo	Hopping No. NVNT 1-DH5 2402MHz Ref Level 27.62 dBm Offset 7.62 dB RBW 100 kHz Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 70000/7000 IPK Max 20 dBm M1[1] 2.4020040 dH 10 dBm 10 dBm M1[1] 2.402040 dH SGL Count 7000/7000 M1[1] 2.402040 dH 20 dBm M2[1] 2.402040 dH 10 dBm 2.400765 CH 0 dBm 30 dBm 40 dBm 50 dBm 100 1pts Stop 2.4835 CHz Marker Type Ref Trc X-value Y-value Function Result	NVNT									
Spectrum The sector of the secto	Spectrum The sector Ref Level 27.62 dBm Offset 7.62 dB RBW 100 kHz Att 40 dB SWT 1 ms YBW 300 kHz Mode Auto Sweep SGL Court 7000/7000 SGL Court 7000/7000 MI[1] 6.94 dBm 9.46 gBm 20 dBm M2[1] 9.46 gBm 9.46 gBm 9.46 gBm 10 dBm M2[1] 2.4800765 GHz 9.46 gBm 0 dBm M2[1] 2.4800765 GHz 9.46 gBm 10 dBm M2[1] 2.4800765 GHz 9.46 gBm 50 dBm M1 1 1 1 50 dBm M1 1 2.420040 GHz 1001 pts	Spectrum The sector of the secto	Spectrum Mail Ref Level 27.62 dBm Offset 7.62 dB @ RBW 100 kHz Att 40 dB SWT 1 ms @ VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 91Pk Max @ 1Pk Max						r.	1			
Spectrum The image with the image withe image withe image with the image withe image with the image w	Spectrum The image with the image withe image withe image with the image withe image with the image w	Spectrum The sector of the secto	Spectrum Mail Ref Level 27.62 dBm Offset 7.62 dB @ RBW 100 kHz Att 40 dB SWT 1 ms @ VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 91Pk Max @ 1Pk Max				Hoppi	ng No.	NVNT 1-	DH5 240	D2MHz		
Ref Level 27.62 dBm Offset 7.62 dB RBW 100 kHz Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 SGL Count 7000/7000 Max Max 0.94 dBm 0.94 dBm 20 dBm 2.4020040 GHz 9.46 dBm 9.46 dBm 9.46 dBm 9.46 dBm 10 dBm 9.46 dBm 9.46 dBm 9.46 dBm 9.46 dBm 9.46 dBm -10 dBm 9.46 dBm 9.46 dBm 9.46 dBm 9.46 dBm 9.46 dBm -20 dBm 9.46 dBm 9.46 dBm 9.46 dBm 9.46 dBm 9.46 dBm -20 dBm 9.46 dBm 9.46 dBm 9.46 dBm 9.46 dBm 9.46 dBm -20 dBm 9.46 dBm 9.46 dBm 9.46 dBm 9.46 dBm 9.46 dBm -30 dBm 9.40 dBm 9.40 dBm 9.46 dBm 9.46 dBm 9.46 dBm -50 dBm 9.40 dBm 9.40 dBm 9.40 dBm 9.40 dBm 9.40 dBm 9.4835 GHz	Ref Level 27.62 dB RBW 100 kHz Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/700 Ims VBW 300 kHz Mode Auto Sweep 20 dBm 2.4020040 GHz 9.46 dBm 9.46 dBm 9.46 dBm 9.46 dBm 10 dBm 9.46 dBm M2[1] 9.46 dBm 9.46 dBm 9.46 dBm -10 dBm 9.46 dBm 9.46 dBm 9.46 dBm 9.46 dBm 9.46 dBm -20 dBm -30 dBm -40 dBm	Ref Level 27.62 dBm Offset 7.62 dB RBW 100 kHz Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/700 1 ms VBW 300 kHz Mode Auto Sweep 20 dBm 2.4920040 GHz .9.46 dBm 10 dBm 9.46 dBm 2.4920040 GHz 0 eBm	Ref Level 27.62 dBm Offset 7.62 dB RBW 100 kHz Mode Auto Sweep SGL Count 7000/7000 SWT 1 ms VBW 300 kHz Mode Auto Sweep 1Pk Max 6.94 dBm 9.46 dBm 9.46 dBm 20 dBm 9.46 dBm 9.46 dBm 9.46 dBm 10 dBm 9.46 dBm 9.46 dBm 9.46 dBm -10 dBm 9.46 dBm 9.46 dBm 9.46 dBm -20 dBm -10 dBm 9.46 dBm 9.46 dBm -20 dBm -10 dBm -10 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -10 dBm -10 dBm -70 dBm -10 dBm -1001 pts Stop 2.4835 GHz Marker -70 dBm -70 dBm -70 dBm -70 dBm		Spectr	um							
SGL Count 7000/7000 • 1Pk Max 20 dBm	SGL Count 7000/7000 • 1Pk Max 20 dBm	SGL Count 7000/7000 • IPk Max 20 dBm	SGL Count 7000/7000 • IPk Max 20 dBm M1[1] 6.94 dBr 2.400040 GH 10 dBm 9.46 dBr -10 dBm 2.40076 5 GH -20 dBm -2.40076 5 GH -20 dBm -30 dBm -20 dBm -40 dBm -20 dBm -40 dBm -20 dBm -40 dBm -20 dBm -40 dBm -30 dBm -40 dBm -40 dBm -40 dBm -50 dBm -40 dBm -60 dBm -50 dBm -10 dBm -50 dBm		Ref Lev	el 27.62 dBm C				X I			1-
• 1Pk Max • M1[1] • 6.94 dBm 20 dBm • M2[1] • 2.400040 GHz 11 dBm • 9.46 dBm 0 dBm • 10 dBm -10 dBm • 10 dBm -20 dBm • 10 dBm -20 dBm • • • • • • • • • • • • •	• 1Pk Max 6.94 dBm 20 dBm M1[1] 6.94 dBm 10 dBm 9.46 dBm 0 dBm 2.460075 CHz 0 dBm 2.460075 CHz -10 dBm 2.460075 CHz -20 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -30 dBm -20 dBm -50 dBm -20 dBm -60 dBm -20 dBm -70 dBm -20 dBm <t< td=""><td>• 1Pk Max 6.94 dBm 20 dBm 2.4020040 GHz 10 dBm 9.46 dBm 0 dBm 2.480075 CHz 0 dBm 100 dBm -10 dBm 2.480075 CHz -20 dBm -10 dBm -20 dBm -10 dBm -20 dBm -10 dBm -20 dBm -10 dBm -30 dBm -10 dBm -50 dBm -10 dBm -50 dBm -10 dBm -70 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -1001 pts Storp 2.4835 GHz Marker -1001 pts M1 1 2.402004 GHz 6.94 dBm</td><td>• 1Pk Max 6.94 dBm 20 dBm 2.4020040 GH 10 dBm 9.46 dBm 10 dBm 2.4800765 GH 0 dBm 2.4800765 GH -20 dBm -2.4800765 GH -20 dBm -30 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -30 dBm -50 dBm -30 dBm -50 dBm -30 dBm -10 1 pts Stop 2.4835 GHz Marker -70 dBm Type Ref Trc X-value Y-value Function Type Ref Trc Y-value Function Function Result</td><td></td><td></td><td></td><td>WT 1 m</td><td>s 🖷 VBW</td><td>300 kHz Mo</td><td>de Auto Sw</td><td>еер</td><td></td><td></td></t<>	• 1Pk Max 6.94 dBm 20 dBm 2.4020040 GHz 10 dBm 9.46 dBm 0 dBm 2.480075 CHz 0 dBm 100 dBm -10 dBm 2.480075 CHz -20 dBm -10 dBm -20 dBm -10 dBm -20 dBm -10 dBm -20 dBm -10 dBm -30 dBm -10 dBm -50 dBm -10 dBm -50 dBm -10 dBm -70 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -1001 pts Storp 2.4835 GHz Marker -1001 pts M1 1 2.402004 GHz 6.94 dBm	• 1Pk Max 6.94 dBm 20 dBm 2.4020040 GH 10 dBm 9.46 dBm 10 dBm 2.4800765 GH 0 dBm 2.4800765 GH -20 dBm -2.4800765 GH -20 dBm -30 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -30 dBm -50 dBm -30 dBm -50 dBm -30 dBm -10 1 pts Stop 2.4835 GHz Marker -70 dBm Type Ref Trc X-value Y-value Function Type Ref Trc Y-value Function Function Result				WT 1 m	s 🖷 VBW	300 kHz Mo	de Auto Sw	еер		
20 dBm 2.4020040 GHz 10 dBm 9.46 dBm 0 dBm 2.4800765 GHz 0 dBm 9.46 dBm -10 dBm 9.46 dBm -20 dBm 9.46 dBm -80 dBm 9.46 dBm -20 dBm 9.46 dBm -50 dBm 9.46 dBm -60 dBm 9.46 dBm -70 dBm 9.46 dBm -70 dBm 9.46 dBm -70 dBm 9.46 dBm -70 dBm 9.4835 GHz Marker 1001 pts 9.4835 GHz Marker 11 2.402004 GHz 6.94 dBm	20 dBm	20 dBm 2.4020040 GHz 10 dBm 9.46 dBm 0 dBm 2.480075 s GHz 0 dBm 9.46 dBm -10 dBm -10 dBm -20 dBm -10 dBm -30 dBm -10 dBm -50 dBm -10 dBm -50 dBm -10 dBm -70 dBm -10 dBm	20 dBm 2.4020040 GH 10 dBm 9.46 dBn 0 dBm 2.4800765 GH -10 dBm 2.4800765 GH -20 dBm -20 dBm -20 dBm -20 dBm -80 dBm -20 dBm -80 dBm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -30 dBm -50 dBm -30 dBm -10 dBm -30 dBm <tr< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></tr<>					-					
M2[1] 9.46 dBm 0 dBm 2.4800765 GHz -40 dBm -40 dBm -20 dBm -40 dBm -80 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -10 dBm -50 dBm <	111 dBm 9.46 dBm 0 dBm 2.4800765 GHz -10 dBm -10 dBm -20 dBm -10 dBm -80 dBm -10 dBm -50 dBm -10 dBm -10 dBm -10 dBm	M2[1] 9.46 dBm 0 dBm 2.4800765 GHz 0 dBm 2.4800765 GHz -10 dBm -10 dBm -20 dBm -10 dBm -30 dBm -10 dBm -50 dBm -10 dBm -50 dBm -10 dBm -70 dBm -10 dBm -70 dBm -1001 pts Start 2.4 GHz 1001 pts Start 2.4 GHz -1001 pts Marker -1001 pts Type Ref M1 1	M2[1] 9.46.dBr 0 88m 2.480076.5 CH -10 88m -10 48m -20 dBm -10 48m -80 dBm -10 48m -50 dBm -10 48m -50 dBm -10 48m -50 dBm -10 48m -70 dBm -10 48m		00 10-					M1[1]		2.40	
10 dBm 2.4800765CHz 0 dBm -10 dBm -20 dBm -10 dBm -80 dBm -10 dBm -80 dBm -10 dBm -50 dBm -1001 pts Start 2.4 GHz 1001 pts Start 2.4 GHz 1001 pts Start 2.4 GHz 1001 pts Marker -10 dBm M1 1 2.402004 GHz 6.94 dBm	10 dBm 2.4800765CHz 0 dBm -10 dBm -20 dBm -20 dBm -80 dBm -20 dBm -80 dBm -20 dBm -80 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -30 dBm -20 dBm -30 dBm -20 dBm -30 dBm -30 dBm -50 dBm -30 dBm <t< td=""><td>10 dBm 2.480076 5 CHz 0 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -20 dBm -10 dBm -30 dBm -10 dBm -50 dBm -10 dBm -50 dBm -10 dBm -70 dBm -1001 pts Start 2.4 GHz 1001 pts Start 2.4 GHz -1001 pts Marker -1001 pts Type Ref M1 1 2.402004 GHz 6.94 dBm</td><td>10 dBm 2.4800765CH 0 dBm -10 dBm -20 dBm -20 dBm -80 dBm -10 dBm -50 dBm -10 dBm -10 dBm -10 dBm <td< td=""><td></td><td>1 C 💷 🎼</td><td></td><td></td><td>1</td><td></td><td>M2[1]</td><td></td><td></td><td>9.46 dBn</td></td<></td></t<>	10 dBm 2.480076 5 CHz 0 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -20 dBm -10 dBm -30 dBm -10 dBm -50 dBm -10 dBm -50 dBm -10 dBm -70 dBm -1001 pts Start 2.4 GHz 1001 pts Start 2.4 GHz -1001 pts Marker -1001 pts Type Ref M1 1 2.402004 GHz 6.94 dBm	10 dBm 2.4800765CH 0 dBm -10 dBm -20 dBm -20 dBm -80 dBm -10 dBm -50 dBm -10 dBm -10 dBm -10 dBm <td< td=""><td></td><td>1 C 💷 🎼</td><td></td><td></td><td>1</td><td></td><td>M2[1]</td><td></td><td></td><td>9.46 dBn</td></td<>		1 C 💷 🎼			1		M2[1]			9.46 dBn
-10 abm	-IQ dBm -20 dBm -20 dBm -80 dBm -30 dBm -40 dB	-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dB	-10 eBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -10 dB		10 dBm-	4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	lassadas)/	0.00000	AUVAVAU	ANANANAN	RAADAAAAAA	2.48 100000000	00765 GHz
-20 dBm -80 dBm -80 dBm -80 dBm -50 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -1001 pts Stor 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Result -100 dBm -20 dB	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -70 dBm -1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Result 	-20 dBm -B0 dBm -B0 dBm -B0 dBm -50 dBm -50 dBm -60 dBm -70	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value M1 1 2.402004 GHz 6.94 dBm -6.94		Odism	MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	11.64,114,1444		uu au un	<u>uuuuu</u> uu		PARAAA	MMARIN
-20 dBm -80 dBm -80 dBm -80 dBm -50 dBm -60 dBm -60 dBm -70	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -70	-20 dBm -B0 dBm -B0 dBm -B0 dBm -50 dBm -50 dBm -60 dBm -70	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value M1 1 2.402004 GHz 6.94 dBm -6.94			A A A A A A A A A A A A A A A A A A A	YWWWWW	YYYYYYY	TA MANANA MA	NANANA (N	HYPPAN	www.www	1111
-80 dBm 40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -70	-80 dBm -80 dBm -50 dBm -50 dBm -60 dBm -70	-80 dBm -80 dBm -50 dBm -50 dBm -60 dBm -60 dBm -70	-B0 dBm -B0 dBm -B0 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70		-10 @Bm-	184018108293	14 min calate						
40 dBm 40 dBm -50 dBm 40 dBm -60 dBm 1001 pts Start 2.4 GHz 1001 pts Start 2.4 GHz 1001 pts Marker 1001 pts Type Ref M1 1 2.402004 GHz 6.94 dBm	40 dBm 40 dBm -50 dBm 40 dBm -60 dBm 1001 pts Start 2.4 GHz 1001 pts Start 2.4 GHz 1001 pts Marker 1001 pts Type Ref Trc X-value M1 1 2.402004 GHz 6.94 dBm	40 dBm 40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm Start 2.4 GHz 1001 pts Start 2.4 GHz 1001 pts Start 2.4 GHz 1001 pts Marker -70 dBm Mail 1 2.402004 GHz 6.94 dBm	40 dBm		-20 dBm-						-		
40 dBm 40 dBm -50 dBm 40 dBm -60 dBm 40 dBm -70 dBm 40 dBm Start 2.4 GHz 1001 pts Start 2.4 GHz 1001 pts Start 2.4 GHz 1001 pts Marker 1001 pts Type Ref Trc X-value Y-value Function M1 1 2.402004 GHz 6.94 dBm 5.94 dBm	40 dBm 40 dBm -50 dBm 40 dBm -60 dBm 40 dBm -60 dBm 40 dBm -70 dBm 40 dBm Start 2.4 GHz 1001 pts Start 2.4 GHz 1001 pts Start 2.4 GHz 1001 pts Marker 1001 pts Type Ref Trc M1 1 2.402004 GHz 6.94 dBm 6.94 dBm	40 dBm 40 dBm 40 dBm -50 dBm -50 dBm 40 dBm -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker -70 dBm -70 dBm Type Ref Trc X-value M1 1 2.402004 GHz 6.94 dBm	40 dBm		-80 dBm-							1	
-50 dBm -60 dBm -60 dBm -70	-50 dBm -60 dBm -60 dBm -70	-50 dBm -60 dBm -60 dBm -70	-50 dBm -60 dBm -60 dBm -70									1	1
-60 dBm -70 dBm Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.94 dBm	-60 dBm -70 dBm Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.94 dBm	-60 dBm -70 dBm -70 dBm -70 dBm Stop 2.4835 GHz Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker -70 dBm -70 dBm -70 dBm Marker -70 dBm -70 dBm -70 dBm Marker -70 dBm -70 dBm -70 dBm M1 1 2.402004 GHz 6.94 dBm Function Function Result	-60 dBm -70 dBm Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.94 dBm		40 dBm-			- 20				-	laws
-70 dBm. 1001 pts Stop 2.4835 GHz Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.94 dBm Function Function	-70 dBm. 1001 pts Stop 2.4835 GHz Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker 70 dBm. 70 dBm. Marker 70 dBm. 70 dBm. Marker 70 dBm. 70 dBm.	-70 dBm -70 dBm Stop 2.4835 GHz Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.94 dBm 6.94 dBm 6.94 dBm	-70 dBm. Stop 2.4835 GHz Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.94 dBm		-50 dBm-								
-70 dBm. 1001 pts Stop 2.4835 GHz Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.94 dBm Function Function	-70 dBm. 1001 pts Stop 2.4835 GHz Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker 70 dBm. 1001 pts 1001 pts	-70 dBm. 1001 pts Stop 2.4835 GHz Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.94 dBm 6.94 dBm 6.94 dBm	-70 dBm. Stop 2.4835 GHz Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.94 dBm		-60 dBm-								
Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.94 dBm Function Function Function	Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.94 dBm Function Function Function	Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.94 dBm Function Function Function	Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.94 dBm Function Function Result		-00 ubiii-			10					
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.94 dBm Function Function Result	Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.94 dBm Function Function Result	Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.94 dBm Function	Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.94 dBm Function Function Result						1001 nts			Stop 2	4835 CH2
M1 1 2.402004 GHz 6.94 dBm	M1 1 2.402004 GHz 6.94 dBm	M1 1 2.402004 GHz 6.94 dBm	M1 1 2.402004 GHz 6.94 dBm			T GITE			1001 pt3			otop 2.	1000 0112
								Y-	value	Function	Fun	ction Result	
					Marker Type				6.94 dBm				
					Marker Type M1	1	2.402004 G	Hz					
					Marker Type M1	1	2.402004 G	Hz]			8
					Marker Type M1	1	2.402004 G	Hz					8
					Marker Type M1	1	2.402004 G	Hz		j	a		8
					Marker Type M1	1	2.402004 G	Hz		J	4		8
					Marker Type M1	1	2.402004 G	Hz			4		9
					Marker Type M1	1	2.402004 G	Hz]			8
					Marker Type M1	1	2.402004 G	Hz					8
					Marker Type M1	1	2.402004 G	Hz					8
					Marker Type M1	1	2.402004 G	Hz]			8
					Marker Type M1	1	2.402004 G	Hz					8
					Marker Type M1	1	2.402004 G	Hz					8
					Marker Type M1	1	2.402004 G	Hz					8
					Marker Type M1	1	2.402004 G	Hz					8

NTEK 北测[®]

8.6 BANDED	JGE						
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-47.72	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-47.55	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-51.82	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-51.54	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-46.26	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-46.75	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-48.42	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-45.91	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-47.48	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-46.17	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-42.62	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-45.27	-20	Pass

●1Pk Max	100/100								
20 dBm				2	M	[1]	-	2.40	6.35 dB
10 dBm					M	2[1]			-46.20 dB
								2.40	
0 dBm						1	1	11 I	
-10 dBm	01 -13.526	dBm		-	-				
-20 dBm				1				1	
-30 dBm			M4			-		1000	1 11
-40 dBm-	where where where	and the second	unter that	nelpower when when	with its way by	will have brach	wither show	M3	larament h
-50 dBm	1.00			1					1
-60 dBm				· · · · · · · · · · · · · · · · · · ·				1	
-70 dBm	6 GHz		1	1001	pts	-		Stop	2.406 GH
Marker Type Re	f tree	M combre	- 1	Y-value	Funct		r in	ction Resu	14
M1	1		05 GHz	6.35 dBr	n		Fui	LIUII Kesu	
M2 M3	1	2.	2.4 GHz 39 GHz	-46.20 dBr -46.76 dBr	n				
M4	1	2,34	16 GHz	-41.26 dBr	n				
Spectrun Ref Level Att	and Edg	Offset 7	ping) N	VNT 1-D	18.25		Ant1 Ho	pping F	Ref
Spectrun Ref Level Att SGL Count	and Edg 27.62 dBm 40 dB	Offset 7	ping) N	RBW 100 kHz	Mode Au		Ant1 Ho		6,97 dB 1505290 GH
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm-	and Edg 27.62 dBm 40 dB	Offset 7	ping) N	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho	2,40	6,97 dB 1505290 GH
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	and Edg 27.62 dBm 40 dB	Offset 7	ping) N	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho	2,40	6,97 dB 1505290 GH
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm-	and Edg 27.62 dBm 40 dB	Offset 7	ping) N	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho	2,40	6,97 dB 1505290 GH
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	and Edg 27.62 dBm 40 dB	Offset 7	ping) N	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho	2,40	6,97 dB 1505290 GH
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	and Edg 27.62 dBm 40 dB	Offset 7	ping) N	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho	2,40	6,97 dB 1505290 GH
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	and Edg 27.62 dBm 40 dB	Offset 7	ping) N	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho	2,40	6,97 dB 1505290 GH
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	and Edg 27.62 dBm 40 dB	Offset 7	ping) N	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho	2,40	6,97 dB 1505290 GH
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	and Edg 27.62 dBm 40 dB 8000/\$000	Offset 7	ping) N	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho	2,40	6,97 dB 1505290 G
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm	and Edg 27.62 dBm 40 dB 8000/\$000	Offset 7	ping) N	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho	2.40	6,97 dB 1505290 GH
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	and Edg 27.62 dBm 40 dB 8000/\$000	Offset 7	ping) N	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho	2.40	6,97 dB 1505290 G

Att SGL Count 70		SWT 22	27.5 µs 🖷	VBW 300 kH:	z Mode /	Auto FFT.			
●1Pk Max					M	1[1]		0.5	6.60 dBm
20 dBm					M	2[1]			415000 GHz -44.63 dBn
10 dBm						1	(
0 dBm	-		1	-			-		1 111
-10 dBm-D	1 -13.028	dBm		-			-		I YAU
-20 dBm					-		-		
-30 dBm		-			-			-	
-40 dBm		want	- and another	M4.	م أيضيح أم يُعد	and and a prose	the second section	M3	MANNE
-50 dBm	diana (hara)	an Marcon o			W HAL O A DO DA	and the second second	and Derect	and was	ar Darena
-60 dBm			_				-		
-70 dBm							1		
Start 2.306 (Marker	GHz	-		1001	pts		_	Stop	2.406 GHz
Type Ref	Trc 1	X-value	15 GHz	Y-value 6.60 dB	Func	tion	Fund	ction Resul	t
M2	1	2	.4 GHz	-44.63 dB	m				
M3 M4	1		37 GHz 33 GHz	-44.59 dB -40.58 dB					
	1					1			10
Spectrum Ref Level 27 Att SGL Count 10 1Pk Max	7.60 dBm 40 dB	Offset 7.	60 dB 🐞 F	-DH5 248	Mode A	uto FFT	o-Hoppii	ng Ref	
Spectrum Ref Level 27 Att SGL Count 10 1Pk Max	7.60 dBm 40 dB	Offset 7.	60 dB 🐞 F	RBW 100 kHz	Mode A		o-Hoppii		9,24 dBm 004000 GH:
Spectrum Ref Level 27 Att SGL Count 10	7.60 dBm 40 dB	Offset 7.	60 dB 🐞 F	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	-Hoppii		(∆ 9.24 dBm
Spectrum Ref Level 27 Att SGL Count 10 1Pk Max	7.60 dBm 40 dB	Offset 7.	60 dB 🐞 F	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	p-Hoppin		(∆ 9.24 dBm
Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm	7.60 dBm 40 dB	Offset 7.	60 dB 🐞 F	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	p-Hoppin		(∆ 9.24 dBm
Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm 0 dBm	7.60 dBm 40 dB	Offset 7.	60 dB 🐞 F	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	p-Hoppin		(∆ 9.24 dBm
Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm	7.60 dBm 40 dB	Offset 7.	60 dB 🐞 F	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	p-Hoppin		(∆ 9.24 dBm
Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm 0 dBm	7.60 dBm 40 dB	Offset 7.	60 dB 🐞 F	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	p-Hoppin		(∆ 9.24 dBm
Spectrum Ref Level 2: Att SGL Count 10 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm	7.60 dBm 40 dB	Offset 7.	60 dB 🐞 F	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	p-Hoppin		(∆ 9.24 dBm
Spectrum Ref Level 2: Att SGL Count 10 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	7.60 dBm 40 dB	Offset 7.	60 dB 🐞 F	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	p-Hoppin		(∆ 9.24 dBm
Spectrum Ref Level 2: Att SGL Count 10 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	7.60 dBm 40 dB	Offset 7.	60 dB 🐞 F	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT			(∆ 9.24 dBm
Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	7.60 dBm 40 dB	Offset 7.	60 dB 🐞 F	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT			(∆ 9.24 dBm
Spectrum Ref Level 2: Att SGL Count 10 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	7.60 dBm 40 dB	Offset 7.	60 dB 🐞 F	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT			(∆ 9.24 dBm
Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	7.60 dBm 40 dB	Offset 7.	60 dB 🐞 F	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT			(∆ 9.24 dBm
Spectrum Ref Level 2: Att SGL Count 10 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	7.60 dBm 40 dB 00/100	Offset 7.	60 dB 🐞 F	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT		2.48	(∆ 9.24 dBm
Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	7.60 dBm 40 dB 00/100	Offset 7.	60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT		2.48	9.24 dBm 004000 GH2
Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	7.60 dBm 40 dB 00/100	Offset 7.	60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT		2.48	9.24 dBm 004000 GH2
Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	7.60 dBm 40 dB 00/100	Offset 7.	60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT		2.48	9.24 dBm 004000 GH2

SGL Count 100/ 1Pk Max			7 1		_			
20 dBm		-		M1	[1]		2.479	9.06 dBm 195000 GHz
				M2	[1]			45.54 dBm 50000 GHz
0 dBm	_	-						
-10 dBm-01 -	10.765 dBm	-				-		
-20 cBm						-		
-30 dBm	_		-	-		-		
-40 08002	M4M3	- Allison	hiteranul marine	1.4	4		. Averally an	
-50 dBm	mannumber	Tankahahar as anan		water and make	-rul when a fam.	www.www.u.wl	aphrophics , have at	a hour and the
-60 dBm			-	-		-		
-70 dBm	_		1001					0.536.0010
Start 2.476 GH: Marker	2		1001	ots	1		742 6 6 6 6	2.576 GHz
Type Ref Tr M1		ue //	Y-value 9.06 dBn	Funct	ion	Fun	ction Result	
M2 M3	1 2.4	4835 GHz 2.5 GHz	-45.54 dBn -46.16 dBn					
M4	1 2.4	4918 GHz	-42.59 dBn	1				
TTTTT					_			3
Band Spectrum Ref Level 27.60	40 dB SWT	7.60 dB 🖷 I	VNT 1-DI	Mode Au	ito FFT	Ant1 Ho	pping R	
Band Spectrum Ref Level 27.60 Att SGL Count 8009 1Pk Max	0 dBm Offset 40 dB SWT	7.60 dB 🖷 I	RBW 100 kHz	Mode Au		Ant1 Ho		9,28 dBm
Band Spectrum Ref Level 27.60 Att SGL Count 8009	0 dBm Offset 40 dB SWT	7.60 dB 🖷 I	RBW 100 kHz YBW 300 kHz	Mode Au	ito FFT	Ant1 Ho		
Band Spectrum Ref Level 27.60 Att SGL Count 8009 1Pk Max	0 dBm Offset 40 dB SWT	7.60 dB 🖷 I	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho		9,28 dBm
Band Spectrum Ref Level 27.60 Att SGL Count 8009 1Pk Max 20 dBm-	0 dBm Offset 40 dB SWT	7.60 dB 🖷 I	RBW 100 kHz YBW 300 kHz	Mode Au	ito FFT	Ant1 Ho		9,28 dBm
Band Spectrum Ref Level 27.60 Att SGL Count 8009 IPK Max 20 dBm 10 dBm 0 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 I	RBW 100 kHz YBW 300 kHz	Mode Au	ito FFT	Ant1 Ho		9,28 dBm
Band Spectrum Ref Level 27.64 Att SGL Count 8009 1Pk Max 20 dBm 10 dBm 0 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 I	RBW 100 kHz YBW 300 kHz	Mode Au	ito FFT	Ant1 Ho		9,28 dBm
Band Spectrum Ref Level 27.60 Att SGL Count 8009 • 1Pk Max 20 dBm 10 dBm 0 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 I	RBW 100 kHz YBW 300 kHz	Mode Au	ito FFT	Ant1 Ho		9,28 dBm
Band Spectrum Ref Level 27.64 Att SGL Count 8009 1Pk Max 20 dBm 10 dBm -10 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 I	RBW 100 kHz YBW 300 kHz	Mode Au	ito FFT	Ant1 Ho		9,28 dBm
Band Spectrum Ref Level 27.60 Att SGL Count 8009 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 I	RBW 100 kHz YBW 300 kHz	Mode Au	ito FFT	Ant1 Ho		9,28 dBm
Band Spectrum Ref Level 27.60 Att SGL Count 8009 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 I	RBW 100 kHz YBW 300 kHz	Mode Au	ito FFT	Ant1 Ho		9,28 dBm
Band Spectrum Ref Level 27.60 Att SGL Count 8009 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 I	RBW 100 kHz YBW 300 kHz	Mode Au	ito FFT	Ant1 Ho		9,28 dBm
Band Spectrum Ref Level 27.60 Att SGL Count 8009 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 I	RBW 100 kHz YBW 300 kHz	Mode Au	ito FFT	Ant1 Ho		9,28 dBm
Band Spectrum Ref Level 27.60 Att SGL Count 8009 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 I	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho	2.480	9,28 dBm 00000 GHz
Band Spectrum Ref Level 27.60 Att SGL Count 8009 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 I	RBW 100 kHz YBW 300 kHz	Mode Au	ito FFT	Ant1 Ho	2.480	9,28 dBm 00000 GHz
Band Spectrum Ref Level 27.60 Att SGL Count 8009 • 1Pk Max 20 dBm • 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 I	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho	2.480	9,28 dBm 00000 GHz
Band Spectrum Ref Level 27.60 Att SGL Count 8009 IPK Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 I	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho	2.480	9,28 dBm 00000 GHz

SGL Count 70 1Pk Max	0/700								
20 dBm		-		2	M	1[1]	- 1	2.476	9,15 dBm
10.dBm				1	M	2[1]			-42.77 dBm 50000 GHz
9 d8m									
-10.dBm-01	-10.720 d	Bm							
-20 cBm								1	
-30 cBm								1	
	M4	Ma	Aluna	nour herenny	0.000	10 A		Anderson	wat wardown
-50 dBm	norman	alinguation	Apontral and	- montal and and the	was plassed why	- Aleronation the	understation and the second	www.	and Marchana general
-60 dBm		_			_				
-70 dBm	-								·
Start 2.476 G Marker	Hz	-		1001	pts	1		Stop	2.576 GHz
Type Ref	Trc 1	X-value 2,476	e	Y-value 9.15 dBn	Func	tion	Fund	tion Result	t
M2 M3	1	2.48	35 GHz 2.5 GHz	-42.77 dBn -43.69 dBn	n				
M4	1		49 GHz	-42.26 dBn					
									12
Spectrum RefLevel 27 Att SGL Count 100 1Pk Max	.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	-DH5 240 RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	o-Hoppin	ng Ref	5 54 dBm
Spectrum Ref Level 27 Att SGL Count 10	.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode A		p-Hoppin		5,54 dBm
Spectrum Ref Level 27 Att SGL Count 10 1Pk Max	.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	p-Hoppin		5,54 dBm
Spectrum Ref Level 27 Att SGL Count 100 1Pk Max 20 dBm- 10 dBm-	.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT			5,54 dBm
Spectrum Ref Level 27 Att SGL Count 100 1Pk Max 20 dBm-	.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT			5,54 dBm
Spectrum Ref Level 27 Att SGL Count 100 1Pk Max 20 dBm- 10 dBm-	.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT			5,54 dBm
Spectrum Ref Level 27 Att SGL Count 100 1Pk Max 20 dBm 10 dBm 0 dBm	.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT			5,54 dBm
Spectrum Ref Level 27 Att SGL Count 100 1Pk Max 20 dBm- 10 dBm- -10 dBm-	.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT			5,54 dBm
Spectrum Ref Level 27 Att SGL Count 100 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT			5,54 dBm
Spectrum Ref Level 27 Att SGL Count 100 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	.62 dBm 40 dB	Offset 7	.62 dB 🖷 F 8.9 µs 🖷 Ү	RBW 100 kHz	Mode A	uto FFT			5,54 dBm
Spectrum Ref Level 27 Att SGL Count 100 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	.62 dBm 40 dB	Offset 7	.62 dB 🖷 F 8.9 µs 🖷 Ү	RBW 100 kHz	Mode A	uto FFT			5,54 dBm
Spectrum Ref Level 27 Att SGL Count 100 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	.62 dBm 40 dB	Offset 7	.62 dB 🖷 F 8.9 µs 🖷 Ү	RBW 100 kHz	Mode A	uto FFT			5,54 dBm
Spectrum Ref Level 27 Att SGL Count 100 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	.62 dBm 40 dB	Offset 7	.62 dB 🖷 F 8.9 µs 🖷 Ү	RBW 100 kHz	Mode A	uto FFT			5,54 dBm
Spectrum Ref Level 27 Att SGL Count 100 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	.62 dBm 40 dB 0/100	Offset 7	.62 dB 🖷 F 8.9 µs 🖷 Ү	RBW 100 kHz	Mode A	uto FFT		2.401	5,54 dBm
Spectrum Ref Level 27 Att SGL Count 100 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	.62 dBm 40 dB 0/100	Offset 7	.62 dB 🖷 F 8.9 µs 🖷 Ү	RBW 100 kHz	Mode A	uto FFT		2.401	5,54 dBm
Spectrum Ref Level 27 Att SGL Count 100 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	.62 dBm 40 dB 0/100	Offset 7	.62 dB 🖷 F 8.9 µs 🖷 Ү	RBW 100 kHz	Mode A	uto FFT		2.401	5,54 dBm

SGL Count	100/100							_		
20 dBm			_		M	1[1]		2.402	6,40 d	
10 dBm			-		M	2[1]			-45.17 0	
0 dBm					_			1		<u>.</u>
-10 dBm	D1 -14.457	dla	-				-			1.0
-20 dBm	D1 -14.437	upor			-		1			
-30 dBm			14.4	-						
-40 dBm	N ALONIA - MA	on minds on male	M4	up wanter the	the actual chain by		damenter ann	Manuthan	in the	lite
-50 dBm	And smills on	Con Coloria			authorize Mana Millio	an second of	in 1996 Baumonia	er eupereite	40.6.0	
-60 dBm								1		
-70 dBm	i GHz			1001	pts			Stop	2.406 G	Hz
Marker Type Ref	Trc	X-value	1	Y-value	Funct	tion	Fun	tion Result	t	
M1 M2	1 1	2.4021		6.40 dBi -45.17 dBi	m					
MЗ	1		39 GHz	-46.76 dBr -40.73 dBr	m					
M4	- L		12 0112							
	27.62 dBm 40 dB	ge(Hopp	oing) N	VNT 2-D	H5 240. Mode Au	uto FFT	ant1 Ho	pping R		
Ba Spectrum Ref Level Att SGL Count	27.62 dBm 40 dB	ge(Hopp	oing) N	VNT 2-D	H5 240. Mode Au		Ant1 Ho			IBm
Ba Spectrum Ref Level Att SGL Count IPk Max	27.62 dBm 40 dB	ge(Hopp	oing) N	VNT 2-D	H5 240. Mode Au	uto FFT	Ant1 Ho		6,68 0	IBm
Ba Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm-	27.62 dBm 40 dB	ge(Hopp	oing) N	VNT 2-D	H5 240. Mode Au	uto FFT	Ant1 Ho		6,68 0	IBm GHz
Ba Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm	27.62 dBm 40 dB	ge(Hopp	oing) N	VNT 2-D	H5 240. Mode Au	uto FFT			6,68 0	IBm GHz
Ba Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm- 10 dBm-	27.62 dBm 40 dB	ge(Hopp	oing) N	VNT 2-D	H5 240. Mode Au	uto FFT	Ant1 Ho		6,68 0	IBm GHz
Ba Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm	27.62 dBm 40 dB	ge(Hopp	oing) N	VNT 2-D	H5 240. Mode Au	uto FFT	Ant1 Ho		6,68 0	IBm GHz
Ba Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	27.62 dBm 40 dB	ge(Hopp	bing) N 62 dB = F 1.9 µs = N	VNT 2-D	H5 240. Mode Au	uto FFT	Ant1 Ho		6,68 0	IBm GHz
Ba Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	27.62 dBm 40 dB	ge(Hopp	oing) N	VNT 2-D	H5 240. Mode Au	uto FFT	Ant1 Ho		6,68 0	IBm GHz
Ba Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	ge(Hopp	bing) N 62 dB = F 1.9 µs = N	VNT 2-D	H5 240. Mode Au	uto FFT	Ant1 Ho		6,68 0	IBm GHz
Ba Spectrum Ref Level Att SGL Count I D dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm	27.62 dBm 40 dB	ge(Hopp	bing) N 62 dB = F 1.9 µs = N	VNT 2-D	H5 240. Mode Au	uto FFT			6,68 0	IBm GHz
Ba Spectrum Ref Level Att SGL Count I D dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	27.62 dBm 40 dB	ge(Hopp	bing) N 62 dB = F 1.9 µs = N	VNT 2-D	H5 240. Mode Au	uto FFT			6,68 0	IBm GHz
Ba Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	and Edg 27.62 dBm 40 dB 8000/8000	ge(Hopp	bing) N 62 dB = F 1.9 µs = N		H5 240	uto FFT		2.404	6,68 0	BBm GHz
Ba Spectrum Ref Level Att SGL Count I D dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -60 dBm	and Edg 27.62 dBm 40 dB 8000/8000	ge(Hopp	bing) N 62 dB = F 1.9 µs = N	VNT 2-D	H5 240	uto FFT	Ant1 Ho	2.404	6,68 c	BBm GHz
Ba Spectrum Ref Level Att SGL Count ID dBm D dBm D dBm D dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	and Edg 27.62 dBm 40 dB 8000/8000	ge(Hopp	bing) N 62 dB = F 1.9 µs = N		H5 240	uto FFT		2.404	6,68 c	BBm GHz

Att 40 SGL Count 1000/1		curo ha	12.4	Mode Adto H			
1Pk Max	1			M1[1]			5,40 dBm
20 dBm				M2[1]			195000 GHz -44.60 dBm
10 dBm					1		DODODU GH2
0 dBm					-	-	hylut
-10 dBm-DI -13	.316 dBm		-				
-20 dBm					-		
-30 dBm	-				-		
-40 dBm-	ununder any monder	and maynes	M4	Rubiana mana mana ang katana mana pana	m tu da is hinsis	winder protonal	- mart
-50 dBm	number - Auron			to the second second for the second second	a Mana Ana a Mana	and the Version	and the second
-60 dBm					-		
-70 dBm-							
Start 2.306 GHz Marker	_		1001 p	ts	_	Stop	2.406 GHz
Type Ref Trc	X-value	95 GHz	Y-value 5.40 dBm	Function	Fu	nction Resul	t
M2 1	2	.4 GHz	-44.60 dBm				
M3 1 M4 1		39 GHz 91 GHz	-45.38 dBm -40.08 dBm				
				7	-		
Spectrum Ref Level 27.60	0 dB SWT 10	.60 dB 🐞 I	RBW 100 kHz	Mode Auto FF		bing Ref	
Spectrum Ref Level 27.60 Att 40 SGL Count 100/10	dBm Offset 7. DdB SWT 18	.60 dB 🐞 I	RBW 100 kHz	A.2			4,95 dBm 984020 GHz
Spectrum Ref Level 27.60 Att 44 SGL Count 100/10 PIPk Max 20 dBm-	dBm Offset 7. DdB SWT 18	.60 dB 🐞 I	RBW 100 kHz	Mode Auto FF			4,95 dBm
Spectrum Ref Level 27.60 Att 4(SGL Count 100/10 1Pk Max	dBm Offset 7. DdB SWT 18	.60 dB 🐞 I	RBW 100 kHz	Mode Auto FF			4,95 dBm
Spectrum Ref Level 27.60 Att 44 SGL Count 100/10 PIPk Max 20 dBm-	dBm Offset 7. DdB SWT 18	.60 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Auto FF			4,95 dBm
Spectrum Ref Level 27.60 Att 40 SGL Count 100/10 PIPK Max 20 dBm 10 dBm	dBm Offset 7. DdB SWT 18	.60 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Auto FF			4,95 dBm
Spectrum Ref Level 27.60 Att 4(SGL Count 100/10 IPk Max 20 dBm 10 dBm 0 dBm	dBm Offset 7. DdB SWT 18	.60 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Auto FF			4,95 dBm
Spectrum Ref Level 27.60 Att 4(SGL Count 100/10 PIPK Max 20 dBm 10 dBm 0 dBm	dBm Offset 7. DdB SWT 18	.60 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Auto FF			4,95 dBm
Spectrum Ref Level 27.60 Att 4(SGL Count 100/10 IPk Max 20 dBm- 10 dBm- 0 dBm-	dBm Offset 7. DdB SWT 18	.60 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Auto FF			4,95 dBm
Spectrum Ref Level 27.60 Att 4(SGL Count 100/10 IPk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	dBm Offset 7. DdB SWT 18	.60 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Auto FF			4,95 dBm
Spectrum Ref Level 27.60 Att 44 SGL Count 100/10 • IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dBm Offset 7. DdB SWT 18	.60 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Auto FF			4,95 dBm
Spectrum Ref Level 27.60 Att 40 SGL Count 100/10 • IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 7. DdB SWT 18	.60 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Auto FF			4,95 dBm
Spectrum Ref Level 27.60 Att 44 SGL Count 100/10 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dBm Offset 7. DdB SWT 18	.60 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Auto FF			4,95 dBm
Spectrum Ref Level 27.60 Att 44 SGL Count 100/10 • IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	dBm Offset 7. DdB SWT 18	.60 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Auto FF			4,95 dBm
Spectrum Ref Level 27.60 Att 44 SGL Count 100/10 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dBm Offset 7. DdB SWT 18	.60 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Auto FF		2.479	4.95 dBm 98-1020 GHz
Spectrum Ref Level 27.60 Att 44 SGL Count 100/10 • IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dBm Offset 7. DdB SWT 18	.60 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Auto FF		2.47	4.95 dBm 98-1020 GHz
Spectrum Ref Level 27.60 Att 44 SGL Count 100/10 ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dBm Offset 7. DdB SWT 18	.60 dB 🐞 I	RBW 100 kHz VBW 300 kHz	Mode Auto FF		2.479	4.95 dBm 98-1020 GHz
Spectrum Ref Level 27.60 Att 44 SGL Count 100/10 • IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dBm Offset 7. DdB SWT 18	.60 dB 🐞 I	RBW 100 kHz VBW 300 kHz	Mode Auto FF		2.479	4.95 dBm 98-1020 GHz

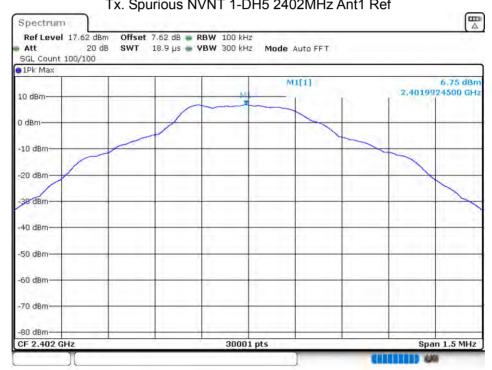
NIL[1] 2.480.500.00 KP 0.dBm	20 ddm	SGL Count 100 9 1Pk Max	/100		1.00			_			-		
10 dBm -45.57 dBm 10 dBm 2,49350000 GHz 10 dBm -40 dBm -20 dBm -40 dBm -30 dBm -40 dBm -40 dBm -40 dBm -50 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -50 dBm -40 dBm -40 dBm -40 dBm -50 dBm -40 dBm -50 dBm -40 dBm -50 dBm -40 dBm -60 dBm -40 dBm -70 dBm -41 2.4005 GHz -70 dBm -43.57 dBm -70 dBm -43.57 dBm -70 dBm -44.79 dBm -70 dBm -44.70 dBm -70 dBm	100dbm						M	1[1]		0.400			
0 dm -10 dsm -	0 dsm -10 dsm -20 dsm -20 dsm -40 dsm -50 dsm -50 dsm -50 dsm -10 -10 -10 -10 -10 -10 -10 -10 -10 -10						M	2[1]		-	45.57 dBm		
-10 dbm -20 dbm -20 dbm -20 dbm -30 dbm -40 dbm -50 dbm -70 dbm -7	-10 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -40 dBm -70	T							6	2.483	50000 GHz		
O1 - 15.053 dBm O1 - 15.053 dBm -20 dBm	O1 - 15.053 @Bm O1 O1 <tho1< th=""> O1 O1</tho1<>	0 d8m		-		-	-						
20 dbm -30 dbm -31 dbm	-20 dam -30 dam -31 dam -32 dam -31 dam -32 dam -31 dam -32 dam		JIS OSS de	0	-				-	j i	1		
-40 dbm dbm <thdm< th=""> <thdbm< th=""> <thdbm< th=""></thdbm<></thdbm<></thdm<>	-40 dbm		13,033 46	nu.				-	-				
Band Change of the second	Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Ref Spectrum Spectrum Ref Level 27.60 dbm Offset 7.60 db JD dbm 1 1 2.4903 GHz 40 dbm -40.00 mm Marker Function Type Ref Trc X-value Marker -41.9 dbm Marker -43.47 dbm Marker -44.79 dbm Spectrum -43.47 dbm Spectrum -43.47 dbm 10 dbm -43.47 dbm -10 dbm -43.47 dbm -20 dbm -43.47 dbm -30 dbm -43.47 dbm	-30 d <mark>B</mark> m	-		-		_	-					
450 dbm 40 dbm 400 dbm 70 dbm Stert 2.476 GHz 1001 pts Stert 2.476 GHz 1001 pts Stert 2.476 GHz 1001 pts Marker Function Marker Function Result M1 1 2.48005 GHz M3 1 2.4557 dbm M3 1 2.4504 -44.79 dbm M4 1 2.4913 GHz -43.47 dbm M4 1 2.4913 GHz -43.47 dbm M4 1 2.4913 GHz -43.47 dbm Spectrum Control (Control (Co	-50 dbm -60 dbm -70 dbm Stop 2.576 GHz Stort 2.476 GHz 1001 pts Stop 2.576 GHz Stop 2.576 GHz Maximum -60 dbm -60 dbm Function Function Result Maximum -60 dbm -60 dbm -60 dbm -60 dbm -43.47 dbm -43.47 dbm -60 dbm -60 dbm -60 dbm -60 dbm 0ffset 7.60 db RBW 100 kHz Mat 1 2.4913 GHz -43.47 dbm -60 dbm -60 dbm -60 dbm -60 dbm 0ffset 7.60 db RBW 100 kHz Mat 1 -60 dbm -60 dbm 0 dbm 0 dbm -60 dbm <td< td=""><td>-40 dBmrz</td><td></td><td>MO</td><td>A MARINE</td><td></td><td></td><td>Case of</td><td></td><td>Words</td><td>-</td></td<>	-40 dBmrz		MO	A MARINE			Case of		Words	-		
20 dBm Stop 2.576 GHz Marker Yue Ref Trc X-value Y-value Function Function Result M1 1 2.4005 GHz 4.19 dBm Function Result Functio	Bard Stop 2.576 GHz Start 2.476 GHz 1001 pts Start 2.476 GHz 4.19 dbm M2 1 2.4835 GHz M3 1 2.4835 GHz M4 1 2.4913 GHz -43.47 dbm -43.47 dbm M4 1 2.4913 GHz -43.47 dbm -44.79 dbm M4 1 2.4913 GHz -43.47 dbm -43.47 dbm M3 1 2.4913 GHz Spectrum	-50 dBm	andapproxim	nine whenes	Malleraren	White And Market	ellur millionsylle	roughturgethere	representational	and many and a specific	and the or the second sec		
Stort 2.476 GHz 1001 pts Stop 2.576 GHz Marker Yuel Function Function Result M1 1 2.48005 GHz 4.19 dbm M2 1 2.48005 GHz -44.79 dbm M4 1 2.4913 GHz -43.47 dbm Spectrum C C C Stort 800/8000 Offset 7.60 db RBW 100 kHz Att< 40 db	Stort 2.476 GHz 1001 pts Stop 2.576 GHz Marker Yupe Ref Trc X-value Y-value Function Function Result M1 1 2.48005 GHz 4.19 dbm Function Function Result	-60 dBm					_		1				
Stort 2.476 GHz 1001 pts Stop 2.576 GHz Marker Yuel Function Function Result M1 1 2.48005 GHz 4.19 dbm M2 1 2.48005 GHz -44.79 dbm M4 1 2.4913 GHz -43.47 dbm Spectrum C C C Stort 800/8000 Offset 7.60 db RBW 100 kHz Att< 40 db	Stort 2.476 GHz 1001 pts Stop 2.576 GHz Marker Yupe Ref Trc X-value Y-value Function Function Result M1 1 2.48005 GHz 4.19 dbm Function Function Result	-70 dBm						1	1				
Type Ref Trc X-value Function Function Result M1 1 2.48005 GHz 4.18 dBm 1 1 1 1 1 2.48005 GHz 4.57 dBm 1 1 1 1 2.48005 GHz 4.45.77 dBm 1 1 2.4913 GHz 445.57 dBm 1 1 1 2.4913 GHz 43.47 dBm 1 2.4913 GHz 43.47 dBm 1	Type Ref Trc X-value Y-value Function Function Result M1 1 2.48005 GHz 4.18 dBm 1 2.48005 GHz 4.45.77 dBm M3 1 2.5 GHz -44.79 dBm 1 2.4913 GHz -43.77 dBm M4 1 2.4913 GHz -43.47 dBm 1 2.4913 GHz -43.47 dBm Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Ref Spectrum SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 8000/8000 91Pk Max 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 8000/8000 GHz 91 dBm 1 4.00 dBm 2.47684320 GHz 10 dBm 2.47684320 GHz 10 dBm 10	Start 2.476 GH	lz			1001 p	ts			Stop	2.576 GHz		
M1 1 2.48005 GHz 4.18 dbm M2 1 2.4935 GHz -45.57 dbm -45.77 dbm M3 1 2.5 GHz -44.79 dbm -45.77 dbm M4 1 2.4913 GHz -43.47 dbm -45.77 dbm M4 1 2.4913 GHz -43.47 dbm -45.77 dbm Ref Level 27.60 dbm Offset 7.60 db RBW 100 kHz -45.77 dbm Ref Level 27.60 dbm Offset 7.60 db RBW 100 kHz Mode Auto FFT Sol Count 8000/8000 SWT 19.9 µs VBW 300 kHz Mode Auto FFT Sol Count 8000/8000 91Pk Max	M1 1 2.48005 GHz 4.18 dbm M2 1 2.4935 GHz -45.57 dbm 45.57 dbm M3 1 2.5 GHz -44.79 dbm 45.77 dbm M4 1 2.4913 GHz -43.47 dbm 45.77 dbm M4 1 2.4913 GHz -43.47 dbm 45.77 dbm Ref Level 27.60 dbm Offset 7.60 db RBW 100 kHz Mate	and the second s	rc	X-value	.	Y-value	Funct	tion	Fun	ction Result			
M3 1 2.5 GHz -44.79 dBm M4 1 2.4913 GHz -43.47 dBm Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Ref Spectrum C Ref Level 27.50 dBm Offset 7.60 dB RBW 100 kHz Made Auto FFT Subscription C Att 40 dB SWT 18.9 µS YBW 300 kHz Made Auto FFT Subscription C M1[1] 4.00 dBm 2.47684320 GHz 10 dBm M1 Att	M3 1 2.5 GHz -44.79 dBm M4 1 2.4913 GHz -43.47 dBm Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Ref Spectrum Image: Comparison of the state	M1	1										
Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Ref Spectrum Ref Level 27.50 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µS VBW 300 kHz Mode Auto FFT SGL Count 8000/8000 IPIk Max MI[1] 4.00 dBm 20 dBm 2.47684320 GHz 2.47684320 GHz 10 dBm 1 0 0 -10 dBm - - 0 -30 dBm - - - -0 dBm - - - -70 dBm - - -	Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Ref Spectrum Image: Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th <="" colspan="2" t<="" td=""><td>M3</td><td>1</td><td>2</td><td>2.5 GHz</td><td>-44.79 dBm</td><td></td><td></td><td></td><td></td><td></td></th>	<td>M3</td> <td>1</td> <td>2</td> <td>2.5 GHz</td> <td>-44.79 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td>		M3	1	2	2.5 GHz	-44.79 dBm					
Spectrum Image: Control of the control of	Spectrum The flevel 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µS VBW 300 kHz Mode Auto FFT SGL Count 8000/8000 Image: SWT 18.9 µS VBW 300 kHz Mode Auto FFT SQL Count 8000/8000 Image: SWT 18.9 µS VBW 300 kHz Mode Auto FFT SQL Count 8000/8000 Image: SWT 18.9 µS VBW 300 kHz Mode Auto FFT SQL Count 8000/8000 Image: SWT 18.9 µS VBW 300 kHz Mode Auto FFT SQL Count 8000/8000 Image: SWT 18.9 µS Image: SWT 4.00 dBm 10 dBm Image: SWT Image: SWT Image: SWT 1.00 dBm -10 dBm Image: SWT Image: SWT Image: SWT Image: SWT Image: SWT -20 dBm Image: SWT -30 dBm Image: SWT Image: SWT Image: SWT Image: SWT Image: SWT Image: SWT -50 dBm Image: SWT Image: SWT I	M4	Т	2,49	13 GH2	-43.47 UBM		7		-			
10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	10 dBm	Spectrum Ref Level 27. Att SGL Count 800	60 dBm (40 dB	Offset 7.	.60 dB 👜 I	RBW 100 kHz	Mode A	uto FF T	Ant1 Ho	pping R			
0 dBm -10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -20 dBm -70 dBm -20 dBm	0 dBm 10 dBm 10 dBm 10 dBm -10 dBm 10 dBm 10 dBm 10 dBm -20 dBm 10 dBm 10 dBm -30 dBm 10 dBm 10 dBm -40 dBm 10 dBm 10 dBm -50 dBm 10 dBm 10 dBm -70 dBm 10 dBm 10 dBm	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max	60 dBm (40 dB	Offset 7.	.60 dB 👜 I	RBW 100 kHz	Mode A	uto FF T	Ant1 Ho		4,00 dBm		
-10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	-10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max 20 dBm-	60 dBm (40 dB	Offset 7.	.60 dB 👜 I	RBW 100 kHz	Mode A	uto FF T	Ant1 Ho		4,00 dBm		
-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max 20 dBm 10 dBm	60 dBm (40 dB	Offset 7.	.60 dB 👜 I	RBW 100 kHz	Mode A	uto FF T	Ant1 Ho		4,00 dBm		
-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max 20 dBm 10 dBm M1	60 dBm (40 dB	Offset 7.	.60 dB 👜 I	RBW 100 kHz	Mode A	uto FF T	Ant1 Ho		4,00 dBm		
-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max 20 dBm 10 dBm M1	60 dBm (40 dB	Offset 7.	.60 dB 👜 I	RBW 100 kHz	Mode A	uto FF T	Ant1 Ho		4,00 dBm		
-40 dBm -50 dBm -60 dBm -70 dBm	-40 dBm -50 dBm -60 dBm -70 dBm	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max 20 dBm 10 dBm M1	60 dBm (40 dB	Offset 7.	.60 dB 👜 I	RBW 100 kHz	Mode A	uto FF T	Ant1 Ho		4,00 dBm		
-40 dBm -50 dBm -60 dBm -70 dBm	-40 dBm -50 dBm -60 dBm -70 dBm	Spectrum Ref Level 27. Att SGL Count 800 IPk Max 20 dBm 10 dBm -10 dBm -10 dBm	60 dBm (40 dB	Offset 7.	.60 dB 👜 I	RBW 100 kHz	Mode A	uto FF T	Ant1 Ho		4,00 dBm		
-50 dBm	-50 dBm -60 dBm	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm	60 dBm (40 dB	Offset 7.	.60 dB 👜 I	RBW 100 kHz	Mode A	uto FF T	Ant1 Ho		4,00 dBm		
-60 dBm	-60 dBm	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	60 dBm (40 dB	Offset 7.	.60 dB 👜 I	RBW 100 kHz	Mode A	uto FF T	Ant1 Ho		4,00 dBm		
-70 dBm-	-70 dBm	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	60 dBm (40 dB	Offset 7.	.60 dB 👜 I	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		4,00 dBm		
-70 dBm-	-70 dBm	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	60 dBm (40 dB	Offset 7.	.60 dB 👜 I	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		4,00 dBm		
		Spectrum Ref Level 27. Att SGL Count 800 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	60 dBm (40 dB	Offset 7.	.60 dB 👜 I	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		4,00 dBm		
		Spectrum Ref Level 27. Att SGL Count 800 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	60 dBm (40 dB	Offset 7.	.60 dB 👜 I	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		4,00 dBm		
		Spectrum Ref Level 27. Att SGL Count 800 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	60 dBm (40 dB	Offset 7.	.60 dB 👜 I	RBW 100 kHz YBW 300 kHz	Mode Al	uto FFT	Ant1 Ho	2.476	4,00 dBm 84320 GHz		
		Spectrum Ref Level 27. Att SGL Count 800 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	60 dBm (40 dB	Offset 7.	.60 dB 👜 I	RBW 100 kHz YBW 300 kHz	Mode Al	uto FFT	Ant1 Ho	2.476	4,00 dBm 84320 GHz		
		Spectrum Ref Level 27. Att SGL Count 800 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	60 dBm (40 dB	Offset 7.	.60 dB 👜 I	RBW 100 kHz YBW 300 kHz	Mode Al	uto FFT	Ant1 Ho	2.476	4,00 dBm 84320 GHz		

1Pk Max	000/1000			-					
20 dBm		_			M	1[1]		2,476	2.32 dBm 95000 GHz
10 dBm					M	2[1]		-	45.10 dBm 50000 GHz
11 T						1	[]		
0 dBm			1			1.1			1
and the second se	-16,003 d	lBm-							
-30 dBm							<u> </u>		
-40 dBm		MA			-	1 :	1	11-2-1	l = 1
-50 dBm	alliquetter	rankymen	wanted threads	methodoreanininher	normality	open the advantation of a	hourseman	sharen from stad	e-grad-idra-service
-60 dBm	-							1	
-70 dBm				· · · · · ·			·		·
Start 2.476 (GHz		4	1001	pts	1	1	Stop :	2.576 GHz
Marker Type Ref		X-value		Y-value	Func	tion	Fund	tion Result	
M1 M2	1		95 GHz 35 GHz	2.32 dBn -45.10 dBn					
M3 M4	1		2.5 GHz	-43.63 dBn -41.92 dBn		1			
Spectrum Ref Level 2: Att SGL Count 30 1Pk Max	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	-DH5 240	10.21		o-Hoppir	ng Ref	
Spectrum Ref Level 27 Att SGL Count 30	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A		D-Hoppin		5.80 dBm 15180 GHz
Spectrum Ref Level 27 Att SGL Count 30 1Pk Max	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	D-Hoppin		5,80 dBm
Spectrum Ref Level 27 Att SGL Count 30 1Pk Max 20 dBm 10 dBm	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	p-Hoppin		5,80 dBm
Spectrum Ref Level 27 Att SGL Count 30 1Pk Max 20 dBm	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT	D-Hoppin		5,80 dBm
Spectrum Ref Level 27 Att SGL Count 30 1Pk Max 20 dBm 10 dBm	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT			5,80 dBm
Spectrum Ref Level 27 Att SGL Count 30 1Pk Max 20 dBm 10 dBm 0 dBm	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT			5,80 dBm
Spectrum Ref Level 27 Att SGL Count 30 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT			5,80 dBm
Spectrum Ref Level 27 Att SGL Count 30 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT			5,80 dBm
Spectrum Ref Level 27 Att SGL Count 30 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT			5,80 dBm
Spectrum Ref Level 27 Att SGL Count 30 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT			5,80 dBm
Spectrum Ref Level 2: Att SGL Count 30 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT			5,80 dBm
Spectrum Ref Level 2: Att SGL Count 30 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz YBW 300 kHz	Mode A	uto FFT			5,80 dBm
Spectrum Ref Level 27 Att SGL Count 30 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	7.62 dBm 40 dB 00/300	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz YBW 300 kHz		uto FFT	p-Hoppin	2,402	5,80 dBm
Spectrum Ref Level 2: Att SGL Count 30 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	7.62 dBm 40 dB 00/300	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz		uto FFT	p-Hoppin	2,402	5,80 dBm 15180 GHz
Spectrum Ref Level 2: Att SGL Count 30 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	7.62 dBm 40 dB 00/300	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz		uto FFT		2,402	5,80 dBm 15180 GHz

Att SGL Count	40 dB 100/100	and en	,		Mode Auto				
20 dBm					M1[1]			2 40	6.39 dBm 205000 GHz
10 dBm					M2[1]				-45.21 dBm 000000 GHz
0 dBm-								2.40	
-10 dBm				-			1		
-20 dBm	D1 -14,199	dBm							
-30 dBm			_					1	
-40 dBm			and the	M4				,M3	ME
-50 dBm	Muchine Apple and	proverbalie	and all read	mallannarrananan	unhamphilipping	not a subsection of the second	unarthyanauth	myshy Millerberd	pprovent had
-60 dBm							-		
-70 dBm-	. Oll-			1001				Ohne	0.405.00
Start 2.306 Marker				1001		- /		1	2.406 GHz
Type Ref M1 M2 M3	f Trc 1 1 1		GHz GHz GHz	Y-value 6.39 dBn -45.21 dBn -46.31 dBn	1		Fund	tion Resul	t
M4	1	2.3497		-41.68 dBn			-		
Spectrum Ref Level Att SGL Count	27.62 dBm 40 dB		2 dB 👜 R	BW 100 kHz	Mode Auto				
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	27.62 dBm 40 dB	Offset 7.62	2 dB 👜 R	BW 100 kHz	10.2.55	FFT			Ē
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	27.62 dBm 40 dB	Offset 7.62	2 dB 👜 R	BW 100 kHz	Mode Auto	FFT			6,39 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	27.62 dBm 40 dB	Offset 7.62	2 dB 👜 R	BW 100 kHz	Mode Auto	FFT			6,39 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	27.62 dBm 40 dB	Offset 7.62	2 dB 👜 R	BW 100 kHz	Mode Auto	FFT			6,39 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	27.62 dBm 40 dB	Offset 7.62	2 dB 👜 R	BW 100 kHz	Mode Auto	FFT			6,39 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm-	27.62 dBm 40 dB	Offset 7.62	2 dB 👜 R	BW 100 kHz	Mode Auto	FFT			6,39 dBm
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	Offset 7.62	2 dB 👜 R	BW 100 kHz	Mode Auto	FFT			6,39 dBm
Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	Offset 7.62	2 dB 👜 R	BW 100 kHz	Mode Auto	FFT			6,39 dBm
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	Offset 7.62	2 dB 👜 R	BW 100 kHz	Mode Auto	FFT			6,39 dBm
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	Offset 7.62	2 dB 👜 R	BW 100 kHz	Mode Auto	FFT			6,39 dBm
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	27.62 dBm 40 dB	Offset 7.62	2 dB 👜 R	BW 100 kHz	Mode Auto	FFT			6,39 dBm
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 8000/8000	Offset 7.62	2 dB 👜 R	BW 100 kHz	Mode Auto	FFT	- Ao	2.40	6.39 dBm 414990 GHz

	1000/1000	1.1.1.1.1.1.1.1						_
• 1Pk Max					M1[1]		0.5	3.04 dBn
20 dBm					M2[1]			405000 GH2 -44.76 dBm
10 dBm				1		- 1	2.400	442 000000 CH
0 dBm			1					1410
-10 dBm	01 -13,613	dBm					-	
-20 dBm								
-30 dBm			M4					
-40 dBm-	Journapper	well they we sharped		monument	humber when we	ury plannesser glamas	MS MS	uninduat
-50 dBm					<u></u>			
-60 dBm								
-70 dBm							-	
Start 2.306 Marker	GHz		-	1001 pt	5		Stop	2.406 GHz
Type Ref	Trc 1	X-value	9 05 GHz	Y-value 3.04 dBm	Function	Fur	iction Result	t
M2	1	2	.4 GHz	-44.76 dBm				
M3 M4	1		39 GHz 09 GHz	-45.27 dBm -39.78 dBm				
								6
on draw					MI[1]		2.479	-0.30 dBm 996000 GH:
20 dBm							1	
3-2-0-2-1 L							-	
10 dBm			1	M		1111		
0 dBm				m	m	1111		
124				1 mm	m			
0 dBm					m			
0 dBm					m			
0 dBm					m			
0 dBm			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		m	Maria		
D dBm	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm		m	mm		
D dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	- M		m n	- Marine		
D dBm -10 dBm -20 dBm -30 dBm -40 dBm	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- Th		- M	Mun		
D dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		m			Mun		
D dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	z.	n	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1001 p	s		Spe	an 8.0 MHz
D dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- Th	1001 pi	s	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Spe	an B.0 MHz
D dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	z	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	1001 p	s		Spc Spc	an 8.0 MHz

20 dBm		1			
	1000001.1.1.00000		M1[1]		1.16 dBr 2.47995000 GH
			M2[1]		-47,94 dBr 2,48350000 GH
					2170dbbbbb di
100011				n [] [
-20 c8m D1 -20,296	d Dec				
-30 dBm					
10 dem Me					1.2.2
-49 dBm	and harmon his man	rubber Arritory freezewide about	moundhradduring	underscherheiten	number and the advances
-60 dBm					· · · · · · · · · · · · · · · · · · ·
-70 dBm	1	1001 pt	s		Stop 2.576 GHz
Marker Type Ref Trc	X-value	Y-value	Function	Func	tion Result
M1 1 M2 1	2.47995 GHz 2.4835 GHz	1.16 dBm -47.94 dBm	-		
M3 1 M4 1	2.5 GHz 2.4859 GHz	-45.37 dBm -42.93 dBm			
	En roos ane	12130 0011	7		
					4.07 dBr
20 dBm-		-	M1[1]		4,07 dBr 2,47615580 GH
10 dBm-		N n			
	mahin	Mana			
	mahand	Maria			
10 dBm И dBm	man	Manna	M1[1]		
10 dBm M1 -10 dBm -20 dBm	man	Maria			
10 dBm	man	Marina			
10 dBm M1 -10 dBm -20 dBm	man	Manna			
10 dBm -10 dBm -20 dBm -30 dBm	man	Manna			
10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	man	Mayman			
10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	mann	Mayman			
10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	mann	1001 pi			


					1.1.1			Spectrum
		Auto FFT.	Mode	RBW 100 kHz VBW 300 kHz	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		40 dB	Ref Level 2 Att SGL Count 1
							and some	1Pk Max
-0.24 dBm		11[1]	M					
2.47995000 GHz			_		1			20 dBm
-44.59 dBm		12[1]	M					10 dBm
2.48350000 GHz	6	1						M1
	-				-			0 dem
								-10 cBm
						din	1 -15,930	
						uBm.	1 -12/930	-20 cBm-
		1						
								-30 dBm
and the second sec						MB	MA	-40 dBm
whether the Menter province of the second	helennodulation	wind with	dependence	monaud spearced gas	report of the	-malning unan	ver hart when	Carling where
								-50 dBm
								10.00
	1							-60 dBm
								-70 dBm
	_	-					CH7	Start 2.476
Stop 2.576 GHz			ots	1001 p	-		0112	
Stop 2.576 GHz			ots	1001 p	-		di 12	1arker
Stop 2.576 GHz	Fun	tion	Func	Y-value		X-value	Trc	Type Ref
	Fun	tion	Func	Y-value -0.24 dBm	995 GHz	2.479	Trc	Type Ref M1
	Fun	tion	Func	Y-value		2.479 2.48	Trc	Type Ref

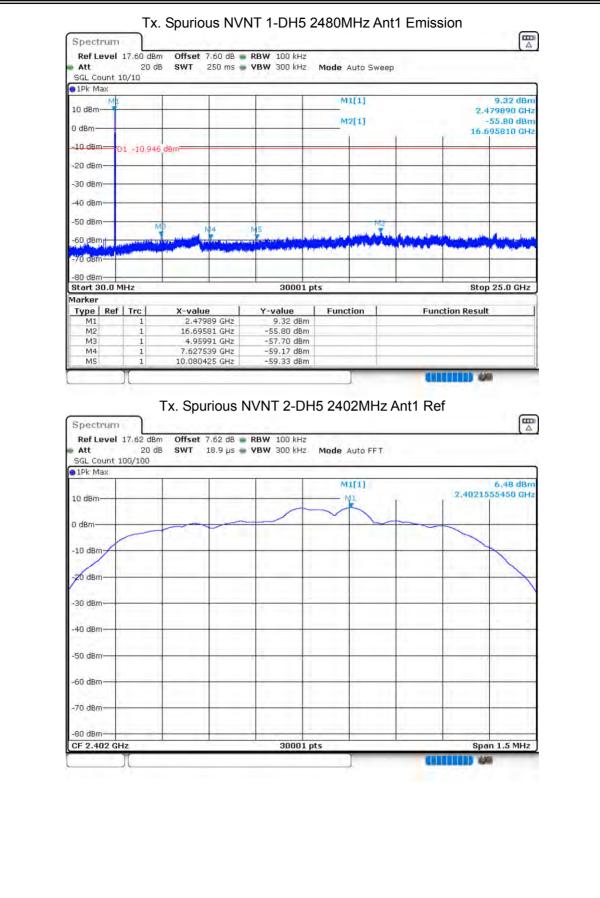
NTEK 北测[®]

8.7 CONDUCTED RF SPURIOUS EMISSION

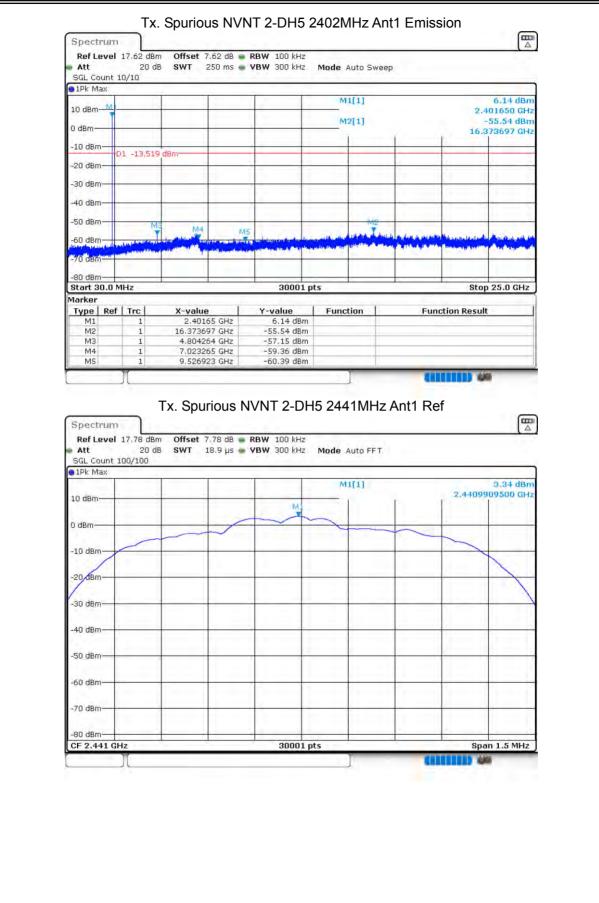
• ••						
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-58.96	-20	Pass
NVNT	1-DH5	2441	Ant 1	-62.75	-20	Pass
NVNT	1-DH5	2480	Ant 1	-64.84	-20	Pass
NVNT	2-DH5	2402	Ant 1	-62.02	-20	Pass
NVNT	2-DH5	2441	Ant 1	-52.56	-20	Pass
NVNT	2-DH5	2480	Ant 1	-55.86	-20	Pass
NVNT	3-DH5	2402	Ant 1	-59.54	-20	Pass
NVNT	3-DH5	2441	Ant 1	-54.75	-20	Pass
NVNT	3-DH5	2480	Ant 1	-57.89	-20	Pass

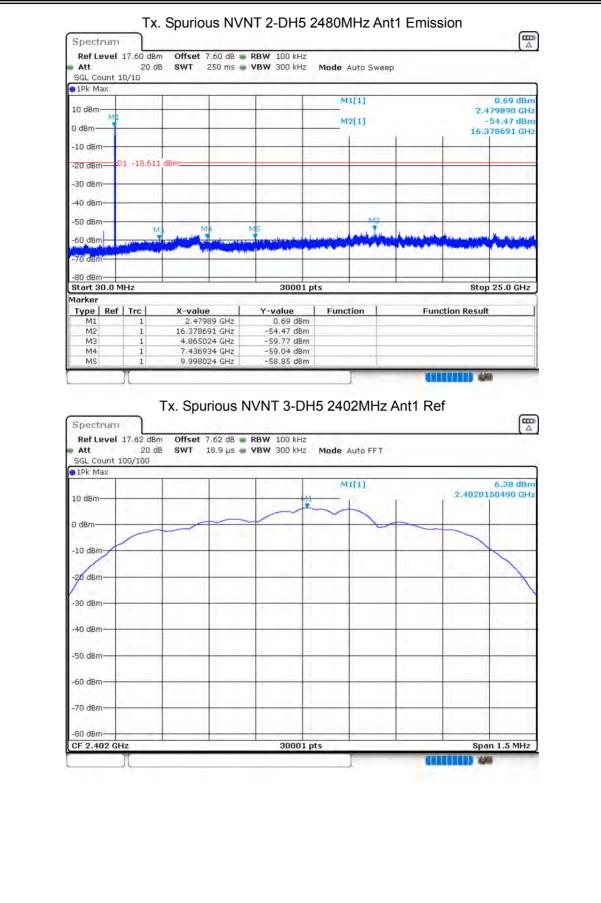
Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref

0 dBm 11 -13/246 dBm 14	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	<u>М</u> г М4				2.40 -5	1650 GHz 52.22 dBm
0 dBm	-10 dBm D1 -1: -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	<u>М</u> г М4		M2[1]			
O1 -13.246 dbm -20 dbm	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	<u>М</u> г М4					
20 dBm 30 dBm 40 dBm 50 dBm 50 dBm 60 dBm 70 dBm 80 dBm 11 1 2.40165 GHz 12 40165 GHz 12 40165 GHZ 12 40165 GHZ 12 4.003432 GHZ 5.75 dBm 11 1 2.40165 GHZ 5.75 dBm 12 1 4.803432 GHZ 5.22 dBm M3 1 4.803432 GHZ 52.22 dBm M3 1 4.803432 GHZ 52.22 dBm M4 1 7.130636 GHZ 52.22 dBm M5 1 9.595175 GHZ 19.595175 GHZ 19.595175 GHZ 19.595175 GHZ 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 30 dBm 30 dBm 30 dBm 30 dBm 10 d	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	<u>М</u> г М4					
40 dBm 50 dBm 60 dBm 70 dBm 80 dBm 11 2.40165 GH2 575 dBm 12 40165 GH2 575 dBm 13 1 4.803432 GH2 -52.22 dBm 14 4.803432 GH2 -52.22 dBm 15 1 9.595175 GH2 -59.91 dBm 15 1 9.595175 GH2 -59.91 dBm 15 1 9.595175 GH2 -59.91 dBm 15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-40 dBm -50 dBm -60 dBm	M4					
50 dBm M4 M5 60 dBm Approx M4 M5 60 dBm Approx Stop 25.0 GHz 30 dBm 30001 pts Stop 25.0 GHz Approx and dBm Approx Approx Stop 25.0 GHz Stop 25.0 GHz Approx Marker Type Ref Trc X-value Y-value Function Function Result Approx M2 1 4.803432 GHz -52.22 dBm Approx Ap	-50 dBm	M4					
Sol dBm M4 M5 -60 dBm -60 dBm -60 dBm -60 dBm -80 dBm -60 dBm -60 dBm -60 dBm -80 dBm -80 dBm -60 dBm -60 dBm -80 dBm -80 dBm -60 dBm -60 dBm -60 dBm -80 dBm -80 dBm -60 dBm -60 dBm -60 dBm -60 dBm -80 dBm -80 dBm -50 dBm -60 dBm -6	-60 dBm	M4		And an and a state of the	A second concernant		
60 dBm 30001 pts Stop 25.0 GHz 70 dBm 30001 pts Stop 25.0 GHz Aarker Trc X-value Y-value Function Function Result M1 1 2.40165 GHz 5.75 dBm Function Result Function Result M2 1 4.803432 GHz -52.22 dBm Function Result Function Result M3 1 4.803432 GHz -55.22 dBm Function Result Function Result M4 1 7.130636 GHz -59.91 dBm Function Result Function Result M4 1 7.130636 GHz -59.91 dBm Function Result Function Result M5 1 9.595175 GHz -59.91 dBm Function Result Function Result M4 1 7.130636 GHz -59.91 dBm Function Result Function Result M4 1 9.595175 GHz -59.91 dBm Function Result Function Result Function Result Ref Level 17.78 dB Offset 7.78 dB RBW 100 kHz Mode Auto FFT SGL Count 100/100 FUNCTION IPK Max M1 M1 GL Function Result <td>and the barrent of the second s</td> <td></td> <td></td> <td>the large state hill be</td> <td>And start in such as he all</td> <td>and the second se</td> <td></td>	and the barrent of the second s			the large state hill be	And start in such as he all	and the second se	
Bit dBm 30001 pts Stop 25.0 GHz Bit dBm 30001 pts Stop 25.0 GHz Marker Function Function Result M1 1 2.40165 GHz 5.75 dBm M2 1 4.803432 GHz -52.22 dBm M3 1 4.803432 GHz -52.22 dBm M3 1 4.803432 GHz -52.22 dBm M4 1 7.130636 GHz -58.84 dBm M5 1 9.595175 GHz -59.91 dBm Tx. Spurious NVNT 1-DH5 2441MHz Ant1 Ref Spectrum Ref Level 17.78 dBm Offset 7.78 dB RBW 100 kHz Att 20 dB SWT 18.9 µs YBW 300 kHz Max 20 dB SWT 18.9 µs YBW 300 kHz 10 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm -10 dBm -20 dBm -30'0Bm -4410386490 GHz -4410386490 GHz	-70 dBm	and the second		and the state of the state of the	A down that a state		An Astronology
Start 30.0 MHz 30001 pts Stop 25.0 GHz Marker You Function Function Result M1 1 2.40165 GHz 5.75 dBm Function Result M2 1 4.803432 GHz -52.22 dBm Function Result M3 1 4.803432 GHz -52.22 dBm Function Result Function Result M3 1 4.803432 GHz -52.22 dBm Function Result Function Result M3 1 4.803432 GHz -52.22 dBm Function Result Function Result M3 1 4.803432 GHz -52.92 dBm Function Result Function Result M4 1 7.13063 GHz -58.84 dBm Function Result Function Result M5 1 9.595175 GHz -59.91 dBm Function Result Function Result Ref Level 17.78 dB Offset 7.78 dB RBW 100 kHz Mode Auto FFT SGL Count 100/100 IPk Max Image: Function Function Fill Function Fill Punction Fill Punction Fill 10 dBm Image: Func	1.5 dibiti						12 10 10
Type Ref Trc X-value Y-value Function Function Result M1 1 2.40165 GHz 5.75 dBm Function Function Result M2 1 4.803432 GHz -52.22 dBm Function Function Result M3 1 4.803432 GHz -52.22 dBm Function Function Result M4 1 7.130636 GHz -58.84 dBm Function Function M4 1 7.130636 GHz -59.91 dBm Function Function M5 1 9.595175 GHz -59.91 dBm Function Function Tx. Spurious NVNT 1-DH5 2441MHz Ant1 Ref Spectrum Mit 1 Att 20 dB SWT 18.9 µs YBW 300 kHz Mode Auto FFT Sci Count 100/100 9.26 dBm IPH Max 9.26 dBm 40 dBm M1 9.26 dBm -0 dBm	-80 dBm					Oten (05.0.00
M1 1 2.40165 GHz 5.75 dBm M2 1 4.803432 GHz -52.22 dBm M3 1 4.803432 GHz -52.22 dBm M4 1 7.130636 GHz -58.84 dBm M5 1 9.595175 GHz -59.91 dBm Tx. Spurious NVNT 1-DH5 2441MHz Ant1 Ref Spectrum Ref Level 17.78 dBm Offset 7.78 dB RBW 100 kHz Att 20 dB SWT 18.9 μs YBW 300 kHz Mode Auto FFT SGL Count 100/100 10 dBm M1 9.26 dBm 2.4410396 490 GHz 10 dBm M1 -20 dBm	Start 30.0 MHZ Marker		30001 p	its	1	stop 2	25.0 GHZ
M2 1 4.803432 GHz -52.22 dBm M3 1 4.803432 GHz -52.22 dBm M4 1 7.130636 GHz -58.84 dBm M5 1 9.595175 GHz -59.91 dBm Tx. Spurious NVNT 1-DH5 2441MHz Ant1 Ref Spectrum Ref Level 17.78 dBm Offset 7.78 dB RBW 100 kHz Att 20 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SQL Count 100/100 IPk Max 0 dBm -0 dBm -20 dBm -20 dBm -20 dBm -20 dBm				Function	Fu	Inction Result	
M4 1 7.130636 GHz -58.84 dBm M5 1 9.595175 GHz -59.91 dBm Tx. Spurious NVNT 1-DH5 2441MHz Ant1 Ref Spectrum Ref Level 17.78 dBm Offset 7.78 dB RBW 100 kHz Att 20 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 0 0 M1 9.26 dBm 10 dBm 0 M1 9.26 dBm -20 dBm -30 dBm -30 dBm -410 dBm							
MS 1 9.595175 GHz -59.91 dBm Tx. Spurious NVNT 1-DH5 2441MHz Ant1 Ref Spectrum Ref Level 17.78 dBm Offset 7.78 dB RBW 100 kHz Att 20 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 DPk Max 9.26 dBm 10 dBm 0 dBm 0 dBm 0 dBm 9.26 dBm -10 dBm -0 dBm -0 dBm -0 dBm -0 dBm	M3 :	1 4.803432 GHz	-52.22 dBm				
Spectrum Mail Ref Level 17.78 dBm Offset 7.78 dB RBW 100 kHz Att 20 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 IPk Max 9.26 dBm 9.26 dBm 10 dBm 0 dBm 9.26 dBm 9.26 dBm -10 dBm -30 dBm -10 dBm -10 dBm -10 dBm							_
Spectrum Mail Ref Level 17.78 dBm Offset 7.78 dB RBW 100 kHz Att 20 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 IPk Max 9.26 dBm 9.26 dBm 10 dBm 0 dBm 9.26 dBm 9.26 dBm -10 dBm -30 dBm -10 dBm -10 dBm -10 dBm	T				1		
-10 dBm -20 dBm -30 dBm	SGL Count 100/1	20 dB SWT 18.9 µs				ef	
-20 dBm		20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			. [△ 9,26 dBm
-20 dBm	SGL Count 100/10 1Pk Max	20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			. [△ 9,26 dBm
-30'dBm-	SGL Count 100/11 1Pk Max 10 dBm	20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			. [△ 9,26 dBm
	SGL Count 100/10 1Pk Max 10 dBm	20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			. [△ 9,26 dBm
	SGL Count 100/11 1Pk Max 10 dBm	20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			. [△ 9,26 dBm
-40 dBm-	SGL Count 100/11 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm-	20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			. [△ 9,26 dBm
	SGL Count 100/11 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm-	20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			. [△ 9,26 dBm
-50 dBm	SGL Count 100/11 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm-	20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			. [△ 9,26 dBm
	SGL Count 100/11 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm-	20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			. [△ 9,26 dBm
-60 dBm	SGL Count 100/11 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			. [△ 9,26 dBm
	SGL Count 100/11 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm	20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			. [△ 9,26 dBm
	SGL Count 100/11 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			. [△ 9,26 dBm
-70 dBm	SGL Count 100/11	20 dB SWT 18.9 µs	s VBW 300 kHz	Mode Auto F		2.441038	9,26 dBm 96490 GHz
	SGL Count 100/10 1Pk Max	20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			9,26 dt
	SGL Count 100/11 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			. [△ 9,26 dBm
-60 dBm	SGL Count 100/11 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			. [△ 9,26 dBm
-60 dBm	SGL Count 100/11 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			. [△ 9,26 dBm
-60 dBm	SGL Count 100/11 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			. [△ 9,26 dBm
	SGL Count 100/11 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm	20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			. [△ 9,26 dBm
-70 dBm	SGL Count 100/11 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm -70 dBm	20 dB SWT 18.9 µs	s 🖝 YBW 300 kHz	Mode Auto F			
-70 dBm	SGL Count 100/11 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm -70 dBm	20 dB SWT 18.9 µs	s VBW 300 kHz	Mode Auto F		2.441038	9,26 dBm 96490 GHz



SGL Count 10/1 1Pk Max	1		T	a 1					
10 dBm-	_				M	[1]		2.	8.88 dBn 440770 GH
0 dBm-	_				M	2[1]			-53.50 dBn 881671 GH
-10 dBm-D1 -	10,741 c	l8m-						L	1.2.2.2.2.2
-20 dBm-		_			_		-		
-30 dBm	_	_							
-40 dBm	_			1					1
-50 dBm	Ma				_				
-60 dBm	- total and	M4	a provide a special de la companya d	M5.	- Indiana and	Andrew Street	A boom a part	Marken Argente	- Inchanger
-70 dBm	and the second		and the summittee states	and the strength of the second s				Contraction of the second	
Start 30.0 MHz Marker		-	-	30001	l pts		-	Sto	p 25.0 GHz
Type Ref T		X-value	77 GHz	Y-value 8.88 dBr	Funct	ion	Fun	ction Resul	t
M2	1	4,8816	71 GHz	-53,50 dBr	m				
M3 M4	1		71 GHz 63 GHz	-53.50 dBr -59.12 dBr					
M5	1	9.957	24 GHz	-60.04 dBr	m				
Spectrum Ref Level 17. Att SGL Count 100/	60 dBm 20 dB	Offset 3	7.60 dB 🍙	IVNT 1-D RBW 100 kHz VBW 300 kHz	2	27.7.1	Ant1 Re	f	(H)
Ref Level 17. Att SGL Count 100/ 1Pk Max	60 dBm 20 dB	Offset 3	7.60 dB 🍙	RBW 100 kHz VBW 300 kHz	2 z Mode A	27.7.1	Ant1 Re		9.05 dBn
Ref Level 17. Att SGL Count 100/	60 dBm 20 dB	Offset 3	7.60 dB 🍙	RBW 100 kHz VBW 300 kHz	2 Mode A	uto FFT	Ant1 Re		
Ref Level 17. Att SGL Count 100/ 1Pk Max	60 dBm 20 dB	Offset 3	7.60 dB 🍙	RBW 100 kHz VBW 300 kHz	2 Mode A	uto FFT	Ant1 Re		9.05 dBn
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm- 0 dBm-	60 dBm 20 dB	Offset 3	7.60 dB 🍙	RBW 100 kHz VBW 300 kHz	2 Mode A	uto FFT	Ant1 Re		9.05 dBn
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm	60 dBm 20 dB	Offset 3	7.60 dB 🍙	RBW 100 kHz VBW 300 kHz	2 Mode A	uto FFT	Ant1 Re		9.05 dBn
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm- 0 dBm-	60 dBm 20 dB	Offset 3	7.60 dB 🍙	RBW 100 kHz VBW 300 kHz	2 Mode A	uto FFT	Ant1 Re		9.05 dBn
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm	60 dBm 20 dB	Offset 3	7.60 dB 🍙	RBW 100 kHz VBW 300 kHz	2 Mode A	uto FFT	Ant1 Re		9.05 dBn
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	60 dBm 20 dB	Offset 3	7.60 dB 🍙	RBW 100 kHz VBW 300 kHz	2 Mode A	uto FFT	Ant1 Re		9.05 dBn
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	60 dBm 20 dB	Offset 3	7.60 dB 🍙	RBW 100 kHz VBW 300 kHz	2 Mode A	uto FFT	Ant1 Re		9.05 dBn
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	60 dBm 20 dB	Offset 3	7.60 dB 🍙	RBW 100 kHz VBW 300 kHz	2 Mode A	uto FFT	Ant1 Re		9.05 dBn
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	60 dBm 20 dB	Offset 3	7.60 dB 🍙	RBW 100 kHz VBW 300 kHz	2 Mode A	uto FFT	Ant1 Re		9.05 dBn
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	60 dBm 20 dB	Offset 3	7.60 dB 🍙	RBW 100 kHz VBW 300 kHz	2 Mode A	uto FFT	Ant1 Re		9.05 dBn
Ref Level 17. Att SGL Count 100/ IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	60 dBm 20 dB	Offset 3	7.60 dB 🍙	RBW 100 kHz VBW 300 kHz	2 Mode A	uto FFT	Ant1 Re		9.05 dBn
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	60 dBm 20 dB	Offset 3	7.60 dB 🍙	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT	Ant1 Re	2.4800	9.05 dBn
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -60 dBm -70 dBm	60 dBm 20 dB	Offset 3	7.60 dB 🍙	RBW 100 kHz	Mode A	uto FFT	Ant1 Re	2.4800	9.05 dBn 217990 GH:





1Pk Max	1	1	1		2.5		_	A 4 - 1-
10 dBm ML			-	M1[:	1]		2.	3.13 dBn 440770 GH
0 dBm				M2[1]			-49.23 dBn 896091 GH
-10 dBm					_			-
-20 dBmD1	-16.655 dBm				_			
-30 dBm								
-40 dBm			1					
-50 dBm	-							
-60 dBm	EM	M	M5	a state of the Part	and photostan	Second Carlo States	Helesburger	A Contraction
1-70 dBm		And the second sec	planet and the second second second	press and a set	and have been been a series of the series of		Magazalar	tree the start and a
-70 GBIN								
Start 30.0 MH	2	1	3000	1 pts			Sto	p 25.0 GHz
Marker Type Ref 1	rcl >	K-value	Y-value	Functio	n 1	Func	tion Resu	lt
M1	1	2.44077 GHz	3.13 de -49.23 de	Im				
M2 M3	1	1.896091 GHz 4.765144 GHz	-60.33 dB	im				
M4 M5	1	7.416958 GHz 9.61848 GHz	-59.86 dB -60.52 dB					
Spectrum Ref Level 17 Att SGL Count 100 1Pk Max	Tx.)ffset 7.60 dB	NVNT 2-E	DH5 2480	to FFT	Ant1 Re	f	
Ref Level 17 Att SGL Count 100 1Pk Max	Tx.)ffset 7.60 dB	RBW 100 kH)H5 2480	to FFT	Ant1 Re		1.39 dBn 608950 GH
Ref Level 17 Att SGL Count 100	Tx.)ffset 7.60 dB	RBW 100 kH	DH5 2480	ito FFT	Ant1 Re		1,39 dBn
Ref Level 17 Att SGL Count 100 1Pk Max	Tx.)ffset 7.60 dB	RBW 100 kH	DH5 2480	ito FFT	Ant1 Re		1,39 dBn
Ref Level 17 Att SGL Count 100 1Pk Max 10 dBm-	Tx.	offset 7.60 dB	RBW 100 kH	DH5 2480	ito FFT	Ant1 Re		1,39 dBn
Ref Level 17 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm	Tx.	offset 7.60 dB	RBW 100 kH	DH5 2480	ito FFT	Ant1 Re		1,39 dBn
Ref Level 17 Att SGL Count 100 1Pk Max 10 dBm- 0 dBm-	Tx.	offset 7.60 dB	RBW 100 kH	DH5 2480	ito FFT	Ant1 Re		1,39 dBn
Ref Level 17 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm	Tx.	offset 7.60 dB	RBW 100 kH	DH5 2480	ito FFT	Ant1 Re		1,39 dBn
Ref Level 17 Att SGL Count 100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Tx.	offset 7.60 dB	RBW 100 kH	DH5 2480	ito FFT	Ant1 Re		1,39 dBn
Ref Level 17 Att SGL Count 1000 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Tx.	offset 7.60 dB	RBW 100 kH	DH5 2480	ito FFT	Ant1 Re		1,39 dBn
Ref Level 17 Att SGL Count 100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Tx.	offset 7.60 dB	RBW 100 kH	DH5 2480	ito FFT	Ant1 Re		1,39 dBn
Ref Level 17 Att SGL Count 1000 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Tx.	offset 7.60 dB	RBW 100 kH	DH5 2480	ito FFT	Ant1 Re		1,39 dBn
Ref Level 17 Att SGL Count 100 ID dBm 0 dBm -10 dBm -10 dBm -30 dBm -40 dBm -50 dBm	Tx.	offset 7.60 dB	RBW 100 kH	DH5 2480	ito FFT	Ant1 Re		1,39 dBn
Ref Level 17 Att SGL Count 100 ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	Tx.	offset 7.60 dB	RBW 100 kH	DH5 2480	ito FFT	Ant1 Re		1,39 dBn
Ref Level 17 Att SGL Count 100 ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	Tx.	offset 7.60 dB	RBW 100 kH VBW 300 kH	DH5 2480	ito FFT	Ant1 Re	2.4801	1.39 dBn 608950 GH
Ref Level 17 Att SGL Count 100 ID dBm 0 dBm -10 dBm -10 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Tx.	offset 7.60 dB	RBW 100 kH	DH5 2480	ito FFT	Ant1 Re	2.4801	1.39 dBn 608950 GH
Ref Level 17 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	Tx.	offset 7.60 dB	RBW 100 kH VBW 300 kH	DH5 2480	ito FFT	Ant1 Re	2.4801	1.39 dBn 608950 GH
Ref Level 17 Att SGL Count 100 • IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	Tx.	offset 7.60 dB	RBW 100 kH VBW 300 kH	DH5 2480	ito FFT	Ant1 Re	2.4801	1.39 dBn 608950 GH

 1Pk Max 10 dBm M1 0 dBm M1 					M1[M2[-0.03 dBn 402490 GH -53.16 dBn 803432 GH
-10 dBm								·+•	803432 GH.
-20 dBm-	01 -13,616	dBm			_	_			
-30 dBm									
-40 dBm						_			
-50 dBm	Ma	M4	M5						
-60 dBm	CANAL AND DATA T		Contraction of the second	and the second second	and the second	had in 1984 diseases	No. Com	- Anger Ant	
-70 dBm	Cont of the local data								
-80 dBm	MHz	_	_	30001	pts		-	Sto	p 25.0 GHz
Marker	Trc	X-value	1	Y-value	Functio	on 1	Éur	ction Resu	
M1	1	2,4024	49 GHz	-0.03 dBr	m	on	Fun	Scion Resu	
M2 M3	1	4.80343 4.80343	32 GHz	-53.16 dBr -53.16 dBr	m				
M4 M5	1	7.20554		-57.49 dBr -60.12 dBr					
Spectrum Ref Level Att SGL Count 1Pk Max	17,78 dBm 20 dB	Offset 7	7.78 dB 🍙	VNT 3-D RBW 100 kHz VBW 300 kHz	2 Mode Au	uto FFT.	ant1 Re	f	
Ref Level Att SGL Count 1Pk Max	17,78 dBm 20 dB	Offset 7	7.78 dB 🍙	RBW 100 kHz	2	uto FFT.	Ant1 Re		3,58 dBn 1447550 GH:
Ref Level Att SGL Count	17,78 dBm 20 dB	Offset 7	7.78 dB 🍙	RBW 100 kHz YBW 300 kHz	2 Mode Au	uto FFT.	ant1 Re		3,58 dBn
Ref Level Att SGL Count 1Pk Max	17,78 dBm 20 dB	Offset 7	7.78 dB 🖷 18.9 µs 🖷	RBW 100 kHz YBW 300 kHz	2 Mode Au	uto FFT.	ant1 Re		3,58 dBn
Ref Level Att SGL Count 1Pk Max 10 dBm	17,78 dBm 20 dB	Offset 7	7.78 dB 🖷 18.9 µs 🖷	RBW 100 kHz YBW 300 kHz	2 Mode Au	uto FFT.	Ant1 Re		3,58 dBn
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm	17,78 dBm 20 dB	Offset 7	7.78 dB 🖷 18.9 µs 🖷	RBW 100 kHz YBW 300 kHz	2 Mode Au	uto FFT.	Ant1 Re		3,58 dBn
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm	17,78 dBm 20 dB	Offset 7	7.78 dB 🖷 18.9 µs 🖷	RBW 100 kHz YBW 300 kHz	2 Mode Au	uto FFT.	Ant1 Re		3,58 dBn
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	17,78 dBm 20 dB	Offset 7	7.78 dB 🖷 18.9 µs 🖷	RBW 100 kHz YBW 300 kHz	2 Mode Au	uto FFT.	Ant1 Re		3,58 dBn
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm	17,78 dBm 20 dB	Offset 7	7.78 dB 🖷 18.9 µs 🖷	RBW 100 kHz YBW 300 kHz	2 Mode Au	uto FFT.	Ant1 Re		3,58 dBn
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	17,78 dBm 20 dB	Offset 7	7.78 dB 🖷 18.9 µs 🖷	RBW 100 kHz YBW 300 kHz	2 Mode Au	uto FFT.	Ant1 Re		3,58 dBn
Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	17,78 dBm 20 dB	Offset 7	7.78 dB 🖷 18.9 µs 🖷	RBW 100 kHz YBW 300 kHz	2 Mode Au	uto FFT.	Ant1 Re		3,58 dBn
Ref Level Att SGL Count IO dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	17,78 dBm 20 dB	Offset 7	7.78 dB 🖷 18.9 µs 🖷	RBW 100 kHz YBW 300 kHz	2 Mode Au	uto FFT.	Ant1 Re		3,58 dBn
Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	17,78 dBm 20 dB	Offset 7	7.78 dB 🖷 18.9 µs 🖷	RBW 100 kHz YBW 300 kHz	2 Mode Au	uto FFT.	Ant1 Re		3,58 dBn
Ref Level Att SGL Count IO dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -80 dBm	17,78 dBm 20 dB 100/100	Offset 7	7.78 dB 🖷 18.9 µs 🖷		2 Mode Au	uto FFT.	Ant1 Re	2.4408	3,58 dBn
Ref Level Att SGL Count IO dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	17,78 dBm 20 dB 100/100	Offset 7	7.78 dB 🖷 18.9 µs 🖷	RBW 100 kHz YBW 300 kHz	2 Mode Au	uto FFT.	Ant1 Re	2.4408	3,58 dBn
Ref Level Att SGL Count IO dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -80 dBm	17,78 dBm 20 dB 100/100	Offset 7	7.78 dB 🖷 18.9 µs 🖷		2 Mode Au	uto FFT.	Ant1 Re	2.4408	3,58 dBn

1Pk Max	1			-		F41			
10 dBm ML						[1]		2	1.73 dBn .440770 GH:
0 dBm				-	M2	[1]			-51.18 dBn 896924 GH
-10 dBm						_		1	
	-16,419 dBm					_		2	
-30 dBm-			- (1 T
									1
-40 dBm			-		-		-	1	
-50 dBm	MB	M4	M5			land at an dealer	Landson		1 Carrie
-60 dBm	and and the second particular	Andrew Market			all a state of the	out the second second	The second second	A second second	The State State State
170 dBm									
Start 30.0 MH:	2		_	3000	l pts			Sto	op 25.0 GHz
Marker				1 - Art-			works		
Type Ref T M1	rc 2 1	X-value 2.44077	7 GHz	Y-value 1.73 dB	Funct	ion	Fund	tion Resu	lit
M2 M3	1	1.896924		-51.18 dB -59.98 dB					
M4	1	7.322905	5 GHz	-59.35 dB	m				
M5	1	9,600169	GHZ	-60.41 dB	m		-		
Spectrum Ref Level 17 Att SGL Count 100	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	BW 100 kH	2 2 2 Mode A		Ant1 Re	f	(m.
Ref Level 17 Att SGL Count 100	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	BW 100 kH	z Mode A		Ant1 Re		4.39 dBn 571450 GH:
Ref Level 17 Att SGL Count 100	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	BW 100 kH	z Mode A	uto FFT.	Ant1 Re		4.39 dBn
Ref Level 17 Att SGL Count 100	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	BW 100 kH	z Mode A	uto FFT.	Ant1 Re		4.39 dBn
Ref Level 17 Att SGL Count 100 1Pk Max 10 dBm- 0 dBm-	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	BW 100 kH	z Mode A	uto FFT.	Ant1 Re		4.39 dBn
Ref Level 17 Att SGL Count 100 1Pk Max 10 dBm-	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	BW 100 kH	z Mode A	uto FFT.	Ant1 Re		4.39 dBn
Ref Level 17 Att SGL Count 100 1Pk Max 10 dBm- 0 dBm-	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	BW 100 kH	z Mode A	uto FFT.	Ant1 Re		4.39 dBn
Ref Level 17 Att SGL Count 100 1Pk Max 10 dBm- 0 dBm- -10 dBm-	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	BW 100 kH	z Mode A	uto FFT.	Ant1 Re		4.39 dBn
Ref Level 17 Att SGL Count 100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	BW 100 kH	z Mode A	uto FFT.	Ant1 Re		4.39 dBn
Ref Level 17 Att SGL Count 100 1Pk Max 10 dBm -10 dBm -20 dBm	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	BW 100 kH	z Mode A	uto FFT.	Ant1 Re		4.39 dBn
Ref Level 17 Att SGL Count 100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	BW 100 kH	z Mode A	uto FFT.	Ant1 Re		4.39 dBn
Ref Level 17 Att SGL Count 100 ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	BW 100 kH	z Mode A	uto FFT.	Ant1 Re		4.39 dBn
Ref Level 17 Att SGL Count 100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	BW 100 kH	z Mode A	uto FFT.	Ant1 Re		4.39 dBn
Ref Level 17 Att SGL Count 100 ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	BW 100 kH	z Mode A	uto FFT.	Ant1 Re		4.39 dBn
Ref Level 17 Att SGL Count 100 ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	BW 100 kH	z Mode A	uto FFT.	Ant1 Re		4.39 dBn
Ref Level 17 Att SGL Count 100 ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	BW 100 kH	Z Mode A	uto FFT.	Ant1 Re	2.4801	4.39 dBn
Ref Level 17 Att SGL Count 100 ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	100 kH	Z Mode A	uto FFT.	Ant1 Re	2.4801	4.39 dBn
Ref Level 17 Att SGL Count 100 ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	100 kH	Z Mode A	uto FFT.	Ant1 Re	2.4801	4.39 dBn 1571450 GH;
Ref Level 17 Att SGL Count 100 O dBm 10 0 dBm 10 -10 dBm - -20 dBm - -30 dBm - -50 dBm - -60 dBm - -70 dBm -	.60 dBm 0 20 dB s	Offset 7.t	50 dB 🔳 R	100 kH	Z Mode A	uto FFT.	Ant1 Re	2.4801	4.39 dBn 1571450 GH;

Ref L	rum evel :	17.60 d	Bm Offset 7.60 dB	RBW 100 kHz						
Att		20		• VBW 300 kHz	Mode Auto	Sweep				
SGL Co		0/10								
DIPK M	ax	_	1	1 - 1 -	M1[1]	1			-1.29 dBm	
10 dBm	-			1.0	milij			2.479890 GHz		
ML					M2[1]			-53.51 dBm		
0 dBm-	1							1.9	03582 GHz	
-10 dBr	1	_								
10 001		1 -15.6	08 dBm							
-20 dBr				1			-			
an Jn-										
-30 dBr	Ú						· · · · · · · · · · · · · · · · · · ·			
-40 dBr	n			-						
	-									
-50 dBr									1	
-60 dBr	(Δ)		M3 M4	M5	المحمد الروار السار	is methode	Handler the strict	Shine the schoold	A Broulethe M	
-od ubi	Klundler	and a substate		and the line of the second second second	united and state	"Is the base	Provide April 19	Color and the second second	Aughur patents	
-70 dBr	n		And Department							
	1									
-80 dBr Start 3		Hz	1	30001 pt	re l		2	Stor	25.0 GHz	
Marker	0.01.1	112		00001 p			-	brop	20.0 0112	
Type	Ref	Tre	X-value	Y-value	Function		Function Result			
M1		1	2.47989 GHz	-1.29 dBm						
M2		1	1,903582 GHz	-53.51 dBm						
MЗ		1	4.840054 GHz	-60.31 dBm		- 11				
M4	-	1	7.50685 GHz 10.112886 GHz	-60.54 dBm -59.67 dBm						

END OF REPORT