

RADIO TEST REPORT FCC ID: 2AOWK-3102

Product: Mobile Phone Trade Mark: ulefone Model No.: GQ3102 Family Model: Note 14, Note 14P, Note 14T, Note 14 Pro, Note 14 Plus, Note 14 Lite Report No.: STR20220729003001E Issue Date: Sep 19. 2022

Prepared for

Shenzhen Gotron Electronic CO.,LTD

7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1 T	EST RESULT CERTIFICATION	3
2 S	UMMARY OF TEST RESULTS	4
3 F.	ACILITIES AND ACCREDITATIONS	5
3.1	FACILITIES	
3.2 3.3	LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	
	ENERAL DESCRIPTION OF EUT	
	DESCRIPTION OF TEST MODES	
	ETUP OF EQUIPMENT UNDER TEST	
6.1 6.2	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT	
6.2 6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS	
7 Т	EST REQUIREMENTS	
7.1	CONDUCTED EMISSIONS TEST	
7.1	RADIATED SPURIOUS EMISSION	
7.2	NUMBER OF HOPPING CHANNEL	
7.4	HOPPING CHANNEL SEPARATION MEASUREMENT	
7.5	AVERAGE TIME OF OCCUPANCY (DWELL TIME)	
7.6	20DB BANDWIDTH TEST	
7.7	PEAK OUTPUT POWER	
7.8	CONDUCTED BAND EDGE MEASUREMENT	
7.9	SPURIOUS RF CONDUCTED EMISSION	
7.10		
7.11	FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	
8 T	EST RESULTS	35
8.1	DWELL TIME	35
8.2	MAXIMUM CONDUCTED OUTPUT POWER	
8.3	OCCUPIED CHANNEL BANDWIDTH.	
8.4	CARRIER FREQUENCIES SEPARATION	
8.5	NUMBER OF HOPPING CHANNEL	
8.6	BAND EDGE	
8.7	CONDUCTED RF SPURIOUS EMISSION	74

1 TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Gotron Electronic CO.,LTD
Address:	7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China
Manufacturer's Name:	Shenzhen Gotron Electronic CO.,LTD
Address:	7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China
Product description	
Product name:	Mobile Phone
Model and/or type reference:	GQ3102
Family Model:	Note 14, Note 14P, Note 14T, Note 14 Pro, Note 14 Plus, Note 14 Lite
Sample number	T22072901R001

Measurement Procedure Used:

APPLICABLE STANDARDS		
STANDARD/ TEST PROCEDURE	TEST RESULT	
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	Aug 01, 2022 ~ Sep 16, 2022	
Testing Engineer	:	Allen Liu)	
Authorized Signatory	:	(Alex Li)	

	FCC Part15 (15.247), Subpart	С	
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Mobile Phone	
Trade Mark	ulefone	
FCC ID	2AOWK-3102	
Model No.	GQ3102	
Family Model	Note 14, Note 14P, Note 14T, Note 14 Pro, Note 14 Plus, Note 14 Lite	
Model Difference	All models are the same circuit and RF module, except the model name.	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	PIFA Antenna	
Antenna Gain	1.8 dBi	
Adapter	Model: NB-0501000US Input: AC 100-240V~50/60Hz 0.2A Output: 5.0V1000mA	
Battery	DC 3.87V, 4500mAh	
Power supply	DC 3.87V from battery or DC 5V from Adapter.	
HW Version	F5_01	
SW Version	Note 14_SH1_EEA_V01	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Certificate #4298.01				
Revision History				
Report No.	Version	Description	Issued Date	
STR20220729003001E	Rev.01	Initial issue of report	Sep 19. 2022	

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

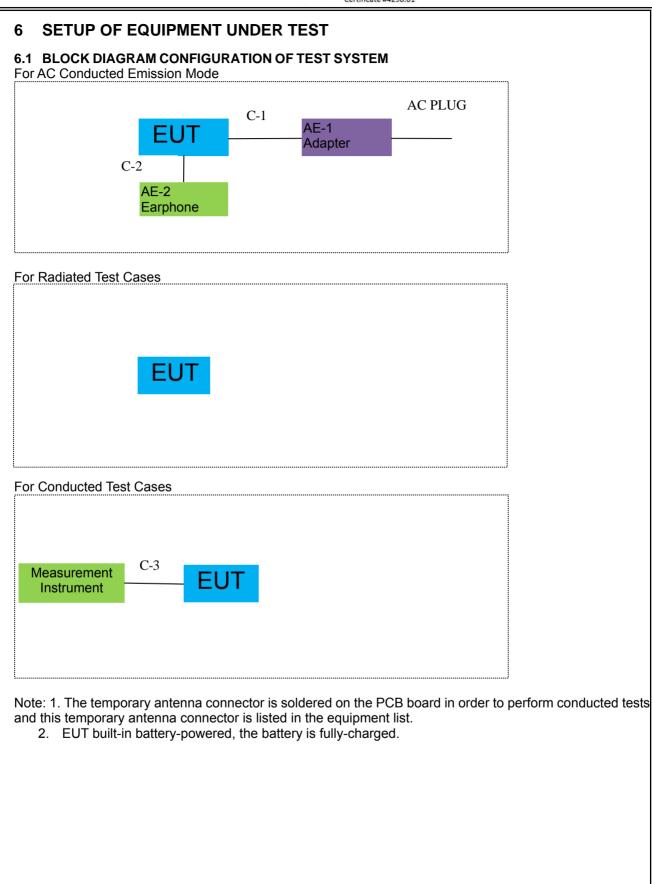
Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode	Description	
Mode 1 normal link mode		
Note: AO assess line. One douted Exclusion on the today of a second structure of the terms		

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	


Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5 Hopping mode		

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	NB-0501000US	N/A	Peripherals
AE-2 Earphone		N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		estequipment					
Item	Kind of Equipment	Manufacturer	Туре No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.06	2023.04.05	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.06	2023.04.05	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN O84	2021.11.07	2022.11.06	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2021.11.07	2022.11.06	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

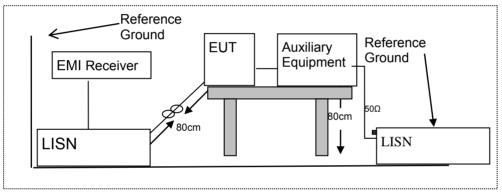
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

Fraguanov (MHz)	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

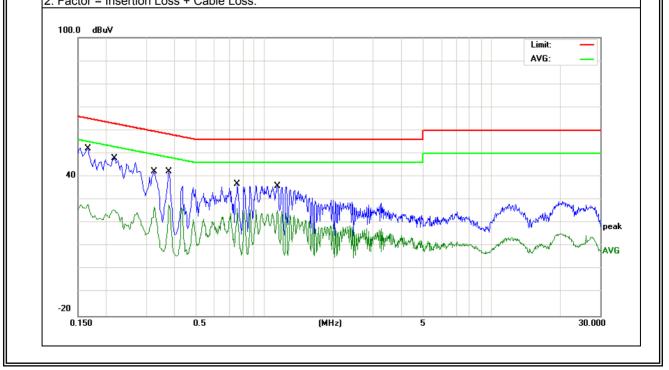
7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass


7.1.6 Test Results

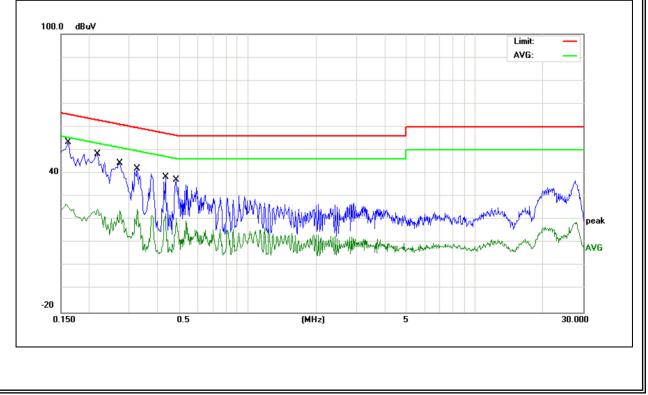
EUT:	Mobile Phone	Model Name :	GQ3102
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.1660	42.69	9.61	52.30	65.15	-12.85	QP
0.1660	32.39	9.61	42.00	55.15	-13.15	AVG
0.2179	38.44	9.62	48.06	62.89	-14.83	QP
0.2179	28.70	9.62	38.32	52.89	-14.57	AVG
0.3260	32.71	9.64	42.35	59.55	-17.20	QP
0.3260	22.72	9.64	32.36	49.55	-17.19	AVG
0.3780	32.47	9.65	42.12	58.32	-16.20	QP
0.3780	22.50	9.65	32.15	48.32	-16.17	AVG
0.7580	27.12	9.68	36.80	56.00	-19.20	QP
0.7580	16.68	9.68	26.36	46.00	-19.64	AVG
1.1379	26.27	9.68	35.95	56.00	-20.05	QP
1.1379	16.01	9.68	25.69	46.00	-20.31	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

NTEK 北测[®]


EUT:	Mobile Phone	Model Name :	GQ3102
Temperature:	25 ℃	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

	L	1	T			
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remain
0.1620	43.58	9.65	53.23	65.36	-12.13	QP
0.1620	33.60	9.65	43.25	55.36	-12.11	AVG
0.2180	38.59	9.63	48.22	62.89	-14.67	QP
0.2180	28.52	9.63	38.15	52.89	-14.74	AVG
0.2740	34.61	9.63	44.24	60.99	-16.75	QP
0.2740	24.63	9.63	34.26	50.99	-16.73	AVG
0.3260	32.44	9.65	42.09	59.55	-17.46	QP
0.3260	22.37	9.65	32.02	49.55	-17.53	AVG
0.4340	28.59	9.67	38.26	57.18	-18.92	QP
0.4340	18.58	9.67	28.25	47.18	-18.93	AVG
0.4820	27.61	9.66	37.27	56.30	-19.03	QP
0.4820	17.59	9.66	27.25	46.30	-19.05	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

	Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
Γ	0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
	0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
	1.705~30.0	30	29.5	30
	30-88	100	40	3
	88-216	150	43.5	3
	216-960	200	46	3
	Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Froguopov(MHz)	Class B (dBuV/m) (at 3M)				
Frequency(MHz)	PEAK	AVERAGE			
Above 1000	74	54			

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

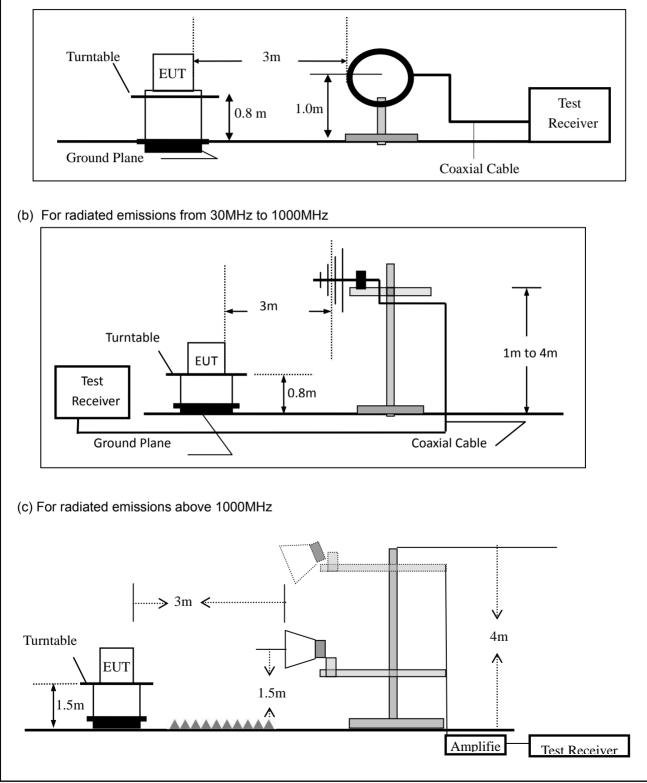
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

	Spectrum Parameter	Setting				
	Attenuation	Auto				
	Start Frequency	1000 MHz				
	Stop Frequency	10th carrier harmonic				
RE	3 / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average				

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission t	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:									
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth							
30 to 1000	QP	120 kHz	300 kHz							
About 1000	Peak	1 MHz	1 MHz							
Above 1000	Average	1 MHz	1 MHz							

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

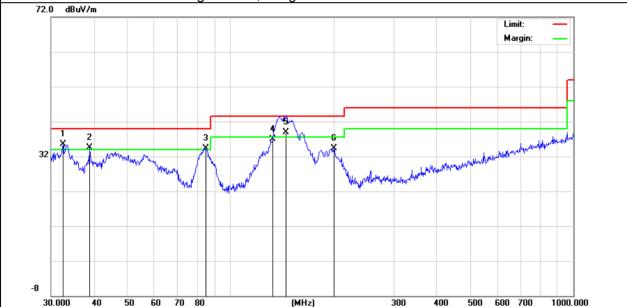
7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Mobile Phone	Model No.:	GQ3102
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.



Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below: EUT: Mobile Phone Model Name : GQ3102 **25°**℃ Relative Humidity: 55% Temperature: Test Mode: Pressure: 1010hPa Mode 3 GFSK DC 3.87V Test Voltage : Π

Polar	Frequency	Reading	Factor	Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	32.5198	11.02	24.55	35.57	40.00	-4.43	QP
V	38.8878	13.10	21.40	34.50	40.00	-5.50	QP
V	84.7019	18.02	16.36	34.38	40.00	-5.62	QP
V	133.1511	18.40	18.46	36.86	43.50	-6.64	QP
V	145.3506	20.47	18.53	39.00	43.50	-4.50	QP
V	200.6880	17.73	16.49	34.22	43.50	-9.28	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

NTEK 北测[®]

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	30.5304	5.55	25.81	31.36	40.00	-8.64	QP
Н	80.0806	14.07	15.52	29.59	40.00	-10.41	QP
Н	144.3348	16.94	18.69	35.63	43.50	-7.87	QP
Н	222.1698	17.93	17.20	35.13	46.00	-10.87	QP
Н	625.0779	6.75	26.72	33.47	46.00	-12.53	QP
Н	972.3374	7.36	31.32	38.68	54.00	-15.32	QP
-							
						Limit: Margin:	
_			3	4			6 X
32	uL.	2	Å	m mm	when before the approximation of the	5 Smaller	muin
	advanced and the second and a second	- Andrewsky	mandrah V	JA MALY	which the form the day of the second		
	- MANA AND AND AND AND AND AND AND AND AND	MMM.					
-							
-8							
	000 40 50 6	50 70 80	(Mł	1.5	300 400 50	0 600 700	1000.000

Spurious E	Emission A	bove 1Gł	Hz (1GHz i	to 25GHz)					
EUT:	Mobile	e Phone		Model	No.:	C	GQ3102			
Femperature:	20 ℃			Relativ	e Humidity	/: 4	48%			
Fest Mode:	Mode	2/Mode3/	Mode4	Test By	/:	ŀ	Allen	Liu		
All the modula	tion modes	have bee	en tested,	and the w	orst resul	t was i	repo	rt as belo	W:	
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Lim	its	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ∖	//m)	(dB)		
			Low Chanr	nel (2402 MI	Hz)(GFSK)/	Above 1	1G			
4804.214	62.86	5.21	35.59	44.30	59.36	74.(00	-14.64	Pk	Vertical
4804.214	41.35	5.21	35.59	44.30	37.85	54.0	00	-16.15	AV	Vertical
7206.265	60.00	6.48	36.27	44.60	58.15	74.(00	-15.85	Pk	Vertical
7206.265	43.59	6.48	36.27	44.60	41.74	54.0	00	-12.26	AV	Vertical
4804.109	60.56	5.21	35.55	44.30	57.02	74.(00	-16.98	Pk	Horizontal
4804.109	43.65	5.21	35.55	44.30	40.11	54.0	00	-13.89	AV	Horizontal
7206.224	64.22	6.48	36.27	44.52	62.45	74.(00	-11.55	Pk	Horizontal
7206.224	46.91	6.48	36.27	44.52	45.14	54.0	00	-8.86	AV	Horizontal
	•		Mid Chanr	nel (2441 MI	Hz)(GFSK)/	Above 1	G			•
4882.396	62.92	5.21	35.66	44.20	59.59	74.(00	-14.41	Pk	Vertical
4882.396	43.11	5.21	35.66	44.20	39.78	54.0	00	-14.22	AV	Vertical
7323.241	60.98	7.10	36.50	44.43	60.15	74.(00	-13.85	Pk	Vertical
7323.241	47.98	7.10	36.50	44.43	47.15	54.0	00	-6.85	AV	Vertical
4882.108	60.43	5.21	35.66	44.20	57.10	74.(00	-16.90	Pk	Horizontal
4882.108	49.48	5.21	35.66	44.20	46.15	54.0	00	-7.85	AV	Horizontal
7323.132	60.41	7.10	36.50	44.43	59.58	74.0	00	-14.42	Pk	Horizontal
7323.132	42.91	7.10	36.50	44.43	42.08	54.0	00	-11.92	AV	Horizontal
	1	1	High Chanr	nel (2480 MI	Hz)(GFSK)	Above	1G			1
4960.397	67.11	5.21	35.52	44.21	63.63	74.0	00	-10.37	Pk	Vertical
4960.397	42.70	5.21	35.52	44.21	39.22	54.0	00	-14.78	AV	Vertical
7440.201	61.78	7.10	36.53	44.60	60.81	74.0	00	-13.19	Pk	Vertical
7440.201	45.49	7.10	36.53	44.60	44.52	54.0	00	-9.48	AV	Vertical
4960.225	67.58	5.21	35.52	44.21	64.10	74.(00	-9.90	Pk	Horizontal
4960.225	47.81	5.21	35.52	44.21	44.33	54.0	00	-9.67	AV	Horizontal
7440.298	61.90	7.10	36.53	44.60	60.93	74.0	00	-13.07	Pk	Horizontal
7440.298	46.41	7.10	36.53	44.60	45.44	54.0	00	-8.56	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Spuric		Emission in Mobile Pho		d Band 23	Model			-250 GQ31				
						Relative Humidity:						
Temperati						,		48%				
Fest Mode		Mode2/ Mo			Test By			Allen				
All the mo	odula	ation modes			Í		ilt was	s repo	ort as bel	ow:		
Freque	ency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	its	Margin	Detector	Comment	
(MH	lz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ∖	V/m)	(dB)	Туре		
				1N	lbps(GFSK)	-Non-hoppin	g					
2310.	.00	57.34	2.97	27.80	43.80	44.31	74	4	-29.69	Pk	Horizontal	
2310.	.00	44.79	2.97	27.80	43.80	31.76	54	4	-22.24	AV	Horizontal	
2310.	.00	58.72	2.97	27.80	43.80	45.69	74	4	-28.31	Pk	Vertical	
2310.	.00	42.07	2.97	27.80	43.80	29.04	54	4	-24.96	AV	Vertical	
2390.	.00	59.46	3.14	27.21	43.80	46.01	74	4	-27.99	Pk	Vertical	
2390.	.00	42.60	3.14	27.21	43.80	29.15	54	4	-24.85	AV	Vertical	
2390.	.00	56.83	3.14	27.21	43.80	43.38	74	4	-30.62	Pk	Horizontal	
2390.	.00	42.03	3.14	27.21	43.80	28.58	54	4	-25.42	AV	Horizontal	
2483.	.50	58.70	3.58	27.70	44.00	45.98	74	4	-28.02	Pk	Vertical	
2483.	.50	43.38	3.58	27.70	44.00	30.66	54	4	-23.34	AV	Vertical	
2483.	.50	59.09	3.58	27.70	44.00	46.37	74	4	-27.63	Pk	Horizontal	
2483.	.50	43.10	3.58	27.70	44.00	30.38	54	4	-23.62	AV	Horizontal	
					1Mbps(GFS	K)-hopping						
2310.	.00	54.60	2.97	27.80	43.80	41.57	74.	00	-32.43	Pk	Vertical	
2310.	.00	44.88	2.97	27.80	43.80	31.85	54.0	00	-22.15	AV	Vertical	
2310.	.00	52.39	2.97	27.80	43.80	39.36	74.	00	-34.64	Pk	Horizontal	
2310.	.00	40.66	2.97	27.80	43.80	27.63	54.	00	-26.37	AV	Horizontal	
2390.	.00	52.76	3.14	27.21	43.80	39.31	74.	00	-34.69	Pk	Vertical	
2390.	.00	43.41	3.14	27.21	43.80	29.96	54.	00	-24.04	AV	Vertical	
2390.	.00	53.67	3.14	27.21	43.80	40.22	74.	00	-33.78	Pk	Horizontal	
2390.	.00	41.29	3.14	27.21	43.80	27.84	54.	00	-26.16	AV	Horizontal	
2483.	.50	50.68	3.58	27.70	44.00	37.96	74.	00	-36.04	Pk	Vertical	
2483.	.50	42.31	3.58	27.70	44.00	29.59	54.	00	-24.41	AV	Vertical	
2483.	.50	51.23	3.58	27.70	44.00	38.51	74.	00	-35.49	Pk	Horizontal	
2483.	50	43.56	3.58	27.70	44.00	30.84	54.0	00	-23.16	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

	Spurious Emission in Restricted Band 3260MHz-18000MHz										
EU	EUT: Mobile Phone			Model I	Model No.: GQ		GQ3 [,]	3102			
Те	mperature:	20 °C	2		Relative	e Humidity	:	48%			
Te	st Mode:	Mod	e2/ Mode4		Test By	/:		Allen	Liu		
Al	I the modul	ation mod	es have be	en tested	, and the	worst resu	lt wa	is repo	ort as belo	ow:	
	Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Li	mits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dB	µV/m)	(dB)	Туре	
	3260	60.94	4.04	29.57	44.70	49.85		74	-24.15	Pk	Vertical
	3260	55.88	4.04	29.57	44.70	44.79		54	-9.21	AV	Vertical
	3260	62.46	4.04	29.57	44.70	51.37		74	-22.63	Pk	Horizontal
	3260	57.38	4.04	29.57	44.70	46.29	;	54	-7.71	AV	Horizontal
	3332	64.66	4.26	29.87	44.40	54.39		74	-19.61	Pk	Vertical
	3332	54.30	4.26	29.87	44.40	44.03	:	54	-9.97	AV	Vertical
	3332	64.06	4.26	29.87	44.40	53.79		74	-20.21	Pk	Horizontal
	3332	53.36	4.26	29.87	44.40	43.09	:	54	-10.91	AV	Horizontal
	17797	43.79	10.99	43.95	43.50	55.23		74	-18.77	Pk	Vertical
	17797	32.23	10.99	43.95	43.50	43.67	:	54	-10.33	AV	Vertical
	17788	44.76	11.81	43.69	44.60	55.66		74	-18.34	Pk	Horizontal
	17788	31.36	11.81	43.69	44.60	42.26		54	-11.74	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ3102
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ3102
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 **Test Results**

EUT:	Mobile Phone	Model No.:	GQ3102
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ3102
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$ bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ3102
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ3102
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	GQ3102 48% Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: 1.8dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

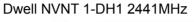
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

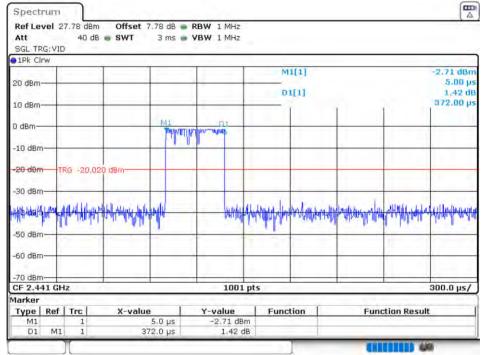
This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.





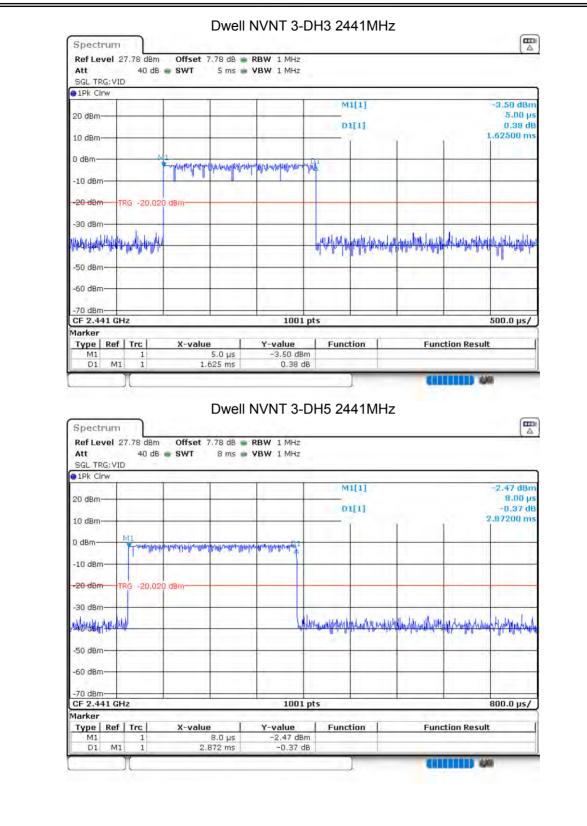
8 TEST RESULTS

8.1 DWELL TIME

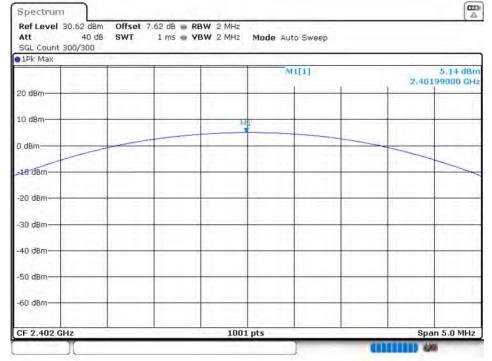
O.I DIVELL							
Condition	Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict
		(MHz)	(ms)	Time (ms)	(ms)	(ms)	
NVNT	1-DH1	2441	0.372	119.04	31600	400	Pass
NVNT	1-DH3	2441	1.63	260.8	31600	400	Pass
NVNT	1-DH5	2441	2.872	306.347	31600	400	Pass
NVNT	2-DH1	2441	0.375	120	31600	400	Pass
NVNT	2-DH3	2441	1.63	260.8	31600	400	Pass
NVNT	2-DH5	2441	2.872	306.347	31600	400	Pass
NVNT	3-DH1	2441	0.375	120	31600	400	Pass
NVNT	3-DH3	2441	1.625	260	31600	400	Pass
NVNT	3-DH5	2441	2.872	306.347	31600	400	Pass

Att		SWT	7.78 dB 🗰 R 5 ms 🗰 V	BW 1 MHz					
SGL TRG: V	AD.	-			-				-
	[]]	·	1 ===		M	1[1]			6.76 di
20 dBm						1111			5.00
10 dBm	N	1			0	1[1]			-0.82
10 0.00					1				
D dBm							-		
-10 dBm					_		-		_
-20 dBm	TRG -20,020	0 dBm			-			-	
-30 dBm					-				-
all Allah Luk	ry all the same				and the states	they while a here	ulling ale ball		al of which a
andra 1948 and 1a	Adle wax a ld		1.000		. Mill. o. die e	and the broal has	a a Mhada - Maa	le Alta . No keola tada.	and no Mu
-50 dBm				-					1
-60 dBm	1								
ge dem									
-70 dBm-		-		1001	nte				500.0 µs,
Marker	3112	-		1001	pes				000.0 µ3,
Type Re		X-value		Y-value	Func	tion	Fun	ction Result	6
M1 D1 M	1	1	5.0 µs 63 ms	6.76 dBr -0.82 di					
Spectrun Ref Level Att	n 27.78 dBm 40 dB	Offset 3		IVNT 1-[RBW 1 MHz] 41MHz	-		((
Spectrun Ref Level	n 27.78 dBm 40 dB	Offset 3	Dwell N	IVNT 1-[RBW 1 MHz] 41MHz			(C
Spectrun Ref Level Att SGL TRG:V	n 27.78 dBm 40 dB	Offset 3	Dwell N	IVNT 1-[RBW 1 MHz	DH5 24] 41MHz 1[1]			-2.36 dB
Spectrun Ref Level Att SGL TRG:V	n 27.78 dBm 40 dB	Offset 3	Dwell N	IVNT 1-[RBW 1 MHz	DH5 24	1[1]			-2.36 dB 8.00
Spectrun Ref Level Att SGL TRG:V 1Pk Clrw	n 27.78 dBm 40 dB	Offset 3	Dwell N	IVNT 1-[RBW 1 MHz	DH5 24	1[1]			-2.36 dB 8.00 -0.08 (2.87200 n
Spectrun Ref Level Att SGL TRG:V 1Pk Clrw 20 dBm	n 27.78 dBm 40 dB /ID	Offset 3	Dwell N	IVNT 1-[RBW 1 MHz	DH5 24	1[1]		1	-2.36 dB 8.00 -0.08
Spectrum Ref Level Att SGL TRG:V • 1Pk Clrw 20 dBm	27.78 dBm 40 dB /ID	Offset 5	Dwell N 7.78 dB • R	IVNT 1-[RBW 1 MHz /BW 1 MHz	DH5 24	1[1]			-2.36 dB 8.00 -0.08 d
Spectrun Ref Level Att SGL TRG:V 1Pk Clrw 20 dBm- 10 dBm-	27.78 dBm 40 dB //ID	Offset 5	Dwell N 7.78 dB R 8 ms V	IVNT 1-[RBW 1 MHz /BW 1 MHz	DH5 24	1[1]			-2.36 dB 8.00 -0.08 d
Spectrum Ref Level Att SGL TRG:V 1Pk Clrw 20 dBm	n 27.78 dBm 40 dB /ID	Offset ຈິ ອີ SWT	Dwell N 7.78 dB R 8 ms V	IVNT 1-[RBW 1 MHz /BW 1 MHz	DH5 24	1[1]			-2.36 dB 8.00 -0.08 d
Spectrum Ref Level Att SGL TRG:V • 1Pk Clrw 20 dBm	27.78 dBm 40 dB //ID	Offset ຈິ ອີ SWT	Dwell N 7.78 dB R 8 ms V	IVNT 1-[RBW 1 MHz /BW 1 MHz	DH5 24	1[1]			-2.36 dB 8.00 -0.08 d
Spectrum Ref Level Att SGL TRG:V 1Pk Clrw 20 dBm- 10 dBm- -10 dBm-	n 27.78 dBm 40 dB /ID	Offset ຈິ ອີ SWT	Dwell N 7.78 dB R 8 ms V	JVNT 1-[RBW 1 MH2 PBW 1 MH2	DH5 24	1[1]			-2.36 dB 8.00 -0.08 d 2.87200 n
Spectrum Ref Level Att SGL TRG:V 1Pk Clrw 20 dBm- 10 dBm- -10 dBm- -20 dBm	n 27.78 dBm 40 dB /ID	Offset ຈິ ອີ SWT	Dwell N 7.78 dB R 8 ms V	JVNT 1-[RBW 1 MH2 PBW 1 MH2	DH5 24	1[1]			-2.36 dB 8.00 -0.08 d 2.87200 n
Spectrum Ref Level Att SGL TRG:V 20 dBm- 10 dBm- 10 dBm- -10 dBm- -20 d	n 27.78 dBm 40 dB //ID	Offset ຈິ ອີ SWT	Dwell N 7.78 dB R 8 ms V	JVNT 1-[RBW 1 MH2 PBW 1 MH2	DH5 24	1[1]			-2.36 dB 8.00 -0.08 d 2.87200 n
Spectrum Ref Level Att SGL TRG:V 1Pk Clrw 20 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm-	n 27.78 dBm 40 dB //ID	Offset ຈິ ອີ SWT	Dwell N 7.78 dB R 8 ms V	JVNT 1-[RBW 1 MH2 PBW 1 MH2	DH5 24	1[1]			-2.36 dB 8.00 -0.08 d 2.87200 n
Spectrum Ref Level Att SGL TRG:V 1Pk Clrw 20 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -20 dBm-	n 27.78 dBm 40 dB //ID	Offset ຈິ ອີ SWT	Dwell N 7.78 dB R 8 ms V	JVNT 1-[RBW 1 MH2 PBW 1 MH2	DH5 24	1[1]			-2.36 dB 8.00 -0.08 d 2.87200 n
Spectrum Ref Level Att SGL TRG: V 9 1Pk Clrw 20 dBm 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -30 dBm -50 dBm -60 dBm	n 27.78 dBm 40 dB //ID	Offset ຈິ ອີ SWT	Dwell N 7.78 dB R 8 ms V	JVNT 1-[RBW 1 MH2 PBW 1 MH2	DH5 24	1[1]			-2.36 dB 8.00 -0.08 (2.87200 r
Spectrum Ref Level Att SGL TRG: V • 1Pk Clrw 20 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm - 50 dBm	n 27.78 dBm 40 dB /ID M1 TRG -20.020	Offset ຈິ ອີ SWT	Dwell N 7.78 dB R 8 ms V	JVNT 1-[RBW 1 MH2 PBW 1 MH2	DH5 24	1[1]		un che anno anno anno anno anno anno anno ann	-2.36 dB 8.00 -0.08 (2.87200 r
Spectrum Ref Level Att SGL TRG: V • 1Pk Clrw 20 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm - 50 dBm - 50 dBm - 60 dBm - 70 dBm - 70 dBm	M1 TTRG -20,020 M1 SHz	Offset :	Dwell N 7.78 dB R 8 ms V	JVNT 1-[RBW 1 MH2 /BW 1 MH2 	DH5 24	1[1] 1[1]	l Alternation Alternation	Madacandonyyo	-2.36 dP 8.00 -0.08 2.87200 r
Spectrum Ref Level Att SGL TRG: V 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70	M1 TRG -20,020 GHz f] Trc	Offset ຈິ ອີ SWT	Dwell N 7.78 dB R 8 ms V	IVNT 1-[RBW 1 MH2 /BW 1 MH2 	DH5 24	1[1] 1[1]	l Alternation Alternation	un che anno 1990	-2.36 dP 8.00 -0.08 2.87200 r
Spectrum Ref Level Att SGL TRG:V 9 1Pk Clrw 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm CF 2.441 C Marker Type Re M1	M1 TTRG -20,020 M1 SHz	Offset 7	Dwell N 7.78 dB R 8 ms V	JVNT 1-[RBW 1 MH2 /BW 1 MH2 	DH5 24	1[1] 1[1]	l Alternation Alternation	Madacandonyyo	-2.36 dP 8.00 -0.08 2.87200 r
Spectrum Ref Level Att SGL TRG:V 9 1Pk Clrw 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm CF 2.441 (Marker Type Re M1	127.78 dBm 40 dB 40 dB 10 M1 TRG -20,020 y1 SHz 1	Offset 7	Dwell N 7.78 dB R 8 ms V	JVNT 1-[RBW 1 MHz rBW 1 MHz 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	DH5 24	1[1] 1[1]	l Alternation Alternation	Madacandonyyo	-2.36 dP 8.00 -0.08 2.87200 r

Ref Level 27.78 dBn		B B RBW 1 MHz	÷				
Att 40 df SGL TRG: VID	8 ⊜SWT 3 m	ns 🍺 VBW 1 MHz	-				
• 1Pk Clrw	1 1	1		111			.0 .0.
20 dBm			M	1[1]			-2.53 0
			t0	[1]			-1.68
10 dBm-	,					<u> </u>	373.00
D dBm	MI	mal mal hor with					
-10 dBm	+ + +		-				
-20 dbm TRG -20.0	20 dBm						
-30 dBm	in a contract	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.500		a al	1.00	2.14
And a show of the second second	HAMPH AND	4MM	rhaller aller aller	ht hat a share with	Mithel Hillamble	the market	W Wall
-50 dBm-				1.1.1		1 .10	
-60 dBm							
-70 dBm- CF 2.441 GHz		1001	nts				300.0 µs
Marker		1001	- pro				200.0 h
M1 1	5.0 µ	ıs -2.53 dB	Im				
D1 M1 1	375.0 µ		dB				
			1 miles				
Spectrum	Dw	vell NVNT 2-		41MHz	a		1
Ref Level 27.78 dBn Att 40 df SGL TRG: VID	Dw 1 Offset 7.78 d	Vell NVNT 2-		41MHz			
RefLevel 27.78 dBn Att 40 dB	Dw 1 Offset 7.78 d	IB 🖷 RBW 1 MHz	DH3 24		-		1
Ref Level 27.78 dBn Att 40 df SGL TRG: VID	Dw 1 Offset 7.78 d	IB 🖷 RBW 1 MHz	DH3 24	u[1]	74		-3.59 d 5.00
Ref Level 27.78 dBn Att 40 df SGL TRG:VID 1Pk Clrw 20 dBm-	Dw 1 Offset 7.78 d	IB 🖷 RBW 1 MHz	DH3 24				-3.59 di 5.00 -2.58
Ref Level 27.78 dBn Att 40 df SGL TRG: VID ● 1Pk Clrw 20 dBm 10 dBm 10 dBm	Dw 1 Offset 7.78 d	IB 🖷 RBW 1 MHz	DH3 24	u[1]			-3.59 di 5.00 -2.58
Ref Level 27.78 dBn Att 40 df SGL TRG: VID 1Pk Cirw 20 dBm-	Dw offset 7.78 d s swr 5 m	B RBW 1 MHz s VBW 1 MHz	DH3 24	u[1]			-3.59 di 5.00 -2.58 63000
Ref Level 27.78 dBn Att 40 df SGL TRG: VID 10 10 10 dBm 10 10	Dw offset 7.78 d s swr 5 m	IB 🖷 RBW 1 MHz	DH3 24	u[1]			-3.59 di 5.00 -2.58
Ref Level 27.78 dBm Att 40 di SGL TRG: VID 10 dBm 10 dBm 10 dBm	Dw offset 7.78 d s SwT 5 m	B RBW 1 MHz s VBW 1 MHz	DH3 24	u[1]			-3.59 di 5.00 -2.58
Ref Level 27.78 dBm Att 40 di SGL TRG: VID 0 1Pk Cirw 0 20 dBm 0 10 dBm 0 -10 dBm 0 -20 dBm TRG	Dw offset 7.78 d s SwT 5 m	B RBW 1 MHz s VBW 1 MHz	DH3 24	u[1]			-3.59 di 5.00 -2.58
Ref Level 27.78 dBm Att 40 dis SGL TRG: VID 10 IPk Cirw 20 dBm 10 10 dBm 0 dBm -10 dBm	Dw offset 7.78 d s SwT 5 m	B RBW 1 MHz s VBW 1 MHz	DH3 24	l[1] .[1]			-3.59 di 5.00 -2.58 (.63000
Ref Level 27.78 dBn Att 40 df SGL TRG: VID 10 1Pk Cirw 20 dBm 10 dBm 10 dBm -10 dBm -10 dBm	Dw offset 7.78 d s SwT 5 m	B RBW 1 MHz s VBW 1 MHz	DH3 24	u[1]			-3.59 di 5.00 -2.58 (.63000
Ref Level 27.78 dBm Att 40 df SGL TRG: VID IPk Cirw 20 dBm 10 dBm 0 0 dBm - -10 dBm - -20 dBm TRG -20 dBm - -30 dBm -	Dw offset 7.78 d s SwT 5 m	B RBW 1 MHz s VBW 1 MHz	DH3 24	l[1] .[1]	nipalliound lipited		-3.59 di 5.00 -2.58 (.63000
Ref Level 27.78 dBn Att 40 df SGL TRG: VID IPR Cirw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	Dw offset 7.78 d s SwT 5 m	B RBW 1 MHz s VBW 1 MHz	DH3 24	l[1] .[1]	wind the state of		-3.59 di 5.00 -2.58 (.63000
Ref Level 27.78 dBn Att 40 df SGL TRG:VID IPk Cirw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Dw offset 7.78 d s SwT 5 m	B RBW 1 MHz s VBW 1 MHz	DH3 24	l[1] .[1]			-3.59 di 5.00 -2.58 (.63000
Ref Level 27.78 dBm Att 40 df SGL TRG:VID IPk Cirw 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm	Dw offset 7.78 d s SwT 5 m		DH3 24	l[1] .[1]			-3.59 d 5.00 -2.58 L-63000
Ref Level 27.78 dBn Att 40 df SGL TRG: VID IPR Cirw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.441 GHz	Dw offset 7.78 d s SwT 5 m	B RBW 1 MHz s VBW 1 MHz	DH3 24	l[1] .[1]	windthandthered		-3.59 d 5.00 -2.58 63000
Ref Level 27.78 dBn Att 40 df SGL TRG:VID 10 df IRk Cirw 20 dBm 10 dBm 10 dBm -10 dBm -0 df -20 dBm TRG -20.0 -30 dBm -0 dBm -50 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm	Dw a Offset 7.78 d a SwT 5 m a	RBW 1 MHz VBW 1 MHz	DH3 24				-3.59 d 5.00 -2.58 63000
Ref Level 27.78 dBn Att 40 df SGL TRG: VID 1Pk Cirw 1 Pk Cirw 20 dBm 10 dBm 10 dBm 10 dBm - -10 dBm - -30 dBm - -50 dBm - -60 dBm - -70 dBm -	Dw 0 Offset 7.78 d 3 SWT 5 m 20 dBm 20 dBm 1 20 dBm 5.0 µ	RBW 1 MHz VBW 1 MHz VBW 1 MHz	DH3 24			and an age of the second s	-3.59 d 5.00 -2.58 63000
Ref Level 27.78 dBn Att 40 df SGL TRG: VID • 1Pk Cirw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.441 GHz Marker Type Ref Trc	Dw a Offset 7.78 d a SwT 5 m a	RBW 1 MHz VBW 1 MHz VBW 1 MHz	DH3 24		Func	and an age of the second s	-3.59 d 5.00 -2.58 (.63000



W 1 MHz	M1[1]		-2.40 dB 8.00 j -0.02 d 2.87200 m
	01[1]		8.00 j -0.02 d
	01[1]		8.00 j -0.02 d
alpelaca			
Aprilia			
Mulara	i		
Ample	a control I		
	urry with the fill	upter from any provide a solar	Lunchpuller Alexandradiade
	1.001	die fe i	
1001 pts	-		800.0 µs/
₩ 1 MHz ₩ 1 MHz			
	M1[1]	÷	-3.57 dB) 2.00 j
	01[1]		-0,68 d
		1	375.00 μ
Mp Rg1			
	S		
whyperster	- halaly the poly of the poly	entry all all and a second second	and the state of t
1	1		
1001 pts			300.0 µs/
-value -3.57 dBm	Function	Fun	ction Result
-0.68 dB			
	V 1 MHz V 1 MHz	-value Function -2.40 dBm -0.02 dB /NT 3-DH1 2441 // 1 MH2 // 1 MH2	-value Function Function -2.40 dBm -0.02 dB -0.02 dB /NT 3-DH1 2441MHz ////////////////////////////////////



8.2 MAXIMUM CONDUCTED OUTPUT POWER

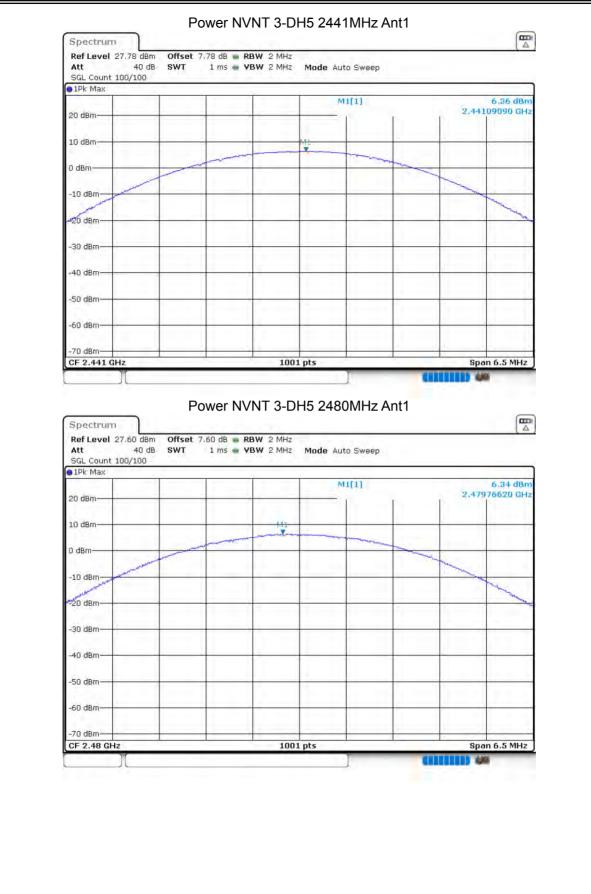
			OTHER			
Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	5.135	30	Pass
NVNT	1-DH5	2441	Ant 1	6.861	30	Pass
NVNT	1-DH5	2480	Ant 1	6.52	30	Pass
NVNT	2-DH5	2402	Ant 1	5.014	21	Pass
NVNT	2-DH5	2441	Ant 1	6.184	21	Pass
NVNT	2-DH5	2480	Ant 1	6.74	21	Pass
NVNT	3-DH5	2402	Ant 1	4.844	21	Pass
NVNT	3-DH5	2441	Ant 1	6.363	21	Pass
NVNT	3-DH5	2480	Ant 1	6.345	21	Pass

Power NVNT 1-DH5 2402MHz Ant1

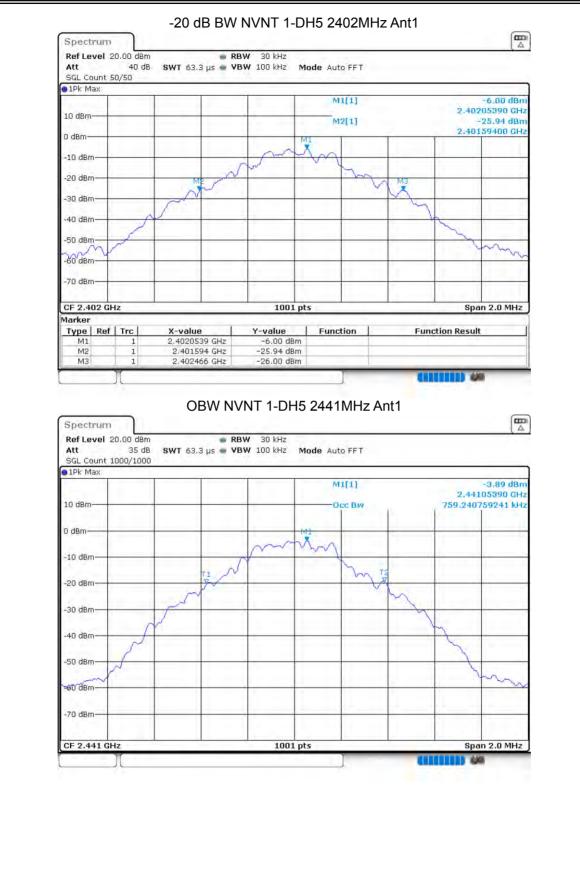


20 dbm All 11 6.36 dbm 10 dbm 2.44098500 GH 10 dbm All 1 10 dbm All 1 20 dbm All 1 10 dbm All 1 20 dbm All 1 40 dbm All 1 20 dbm All 2 20 dbm All 2 20 dbm All 1 20 dbm All 1 20 dbm All 1 20 dbm All 1 <t< th=""><th>SGL Count 1Pk Max</th><th>100/100</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	SGL Count 1Pk Max	100/100								
20 dBm 10 dBm<	20.00			· · · · ·		/	MI[1]		7.441	
0 dBin 10 dBin 20 dBin 30 dBin -0 d	20 dBm			1		_		D	2.71	
10 dBm	10 dBm				M	1		1		
10 dBm	a. 40.5								_	
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -70	U dBm									
-30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70 dBm -10	-10 dBm	-			-	-	-		c	
-30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70 dBm -10	-20 dBm					1.1				1
.40 dBm	-20 0011							1		
-50 dBm -60 dBm -70	-30 dBm				-					
-50 dBm -60 dBm -70	-40 dBm				-					
-60 dBm -70 dBm CF 2.441 GHz Span 5.0 MHz CF 2.48 GHz Span 5.0 MHz Span 5.0 MHz										
-70 dBm Span 5.0 MHz CF 2.441 GHz 1001 pts Span 5.0 MHz Power NVNT 1-DH5 2480MHz Ant1 Power NVNT 1-DH5 2480MHz Ant1 Power NVNT 1-DH5 2480MHz Ant1 Spectrum Power NVNT 1-DH5 2480MHz Ant1 Power NVNT 1-DH5 2480MHz Ant1 Power NVNT 1-DH5 2480MHz Ant1 Spectrum Power NVNT 1-DH5 2480MHz Ant1 Power NVNT 1-DH5 2480MHz Ant1 Power NVNT 1-DH5 2480MHz Ant1 Spectrum Power NVNT 1 ms VBW 2 MHz Mode Auto Sweep Scit Count 150/150 Other Name Power NVNT 1 ms VBW 2 MHz Mode Auto Sweep Scit Count 150/150 O dBm Power NUT Power NUT Power NUT Power NUT Power NUT 10 dBm Power NUT Power NUT Power NUT Power NUT Power NUT -20 dBm Power NUT Power NUT Power NUT Power NUT Power NUT -30 dBm Power NUT Power NUT Power NUT Power NUT Power NUT -40 dBm Power NUT Power NUT Power NUT Power NUT Power NUT -50 dBm Power NUT Power NUT	-50 dBm			-	-	1				
CF 2.441 GHz 1001 pts Span 5.0 MHz Power NVNT 1-DH5 2480MHz Ant1 Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 2 MHz Mode Auto Sweep SGL Count 150/150 0 fbk SWT 1 ms VBW 2 MHz Mode Auto Sweep Offset 7.60 dB RBW 2 MHz Mode Auto Sweep SGL Count 150/150 0 dBm 0 dBm 2.48005000 GHz 10 dBm 0 dBm 0 dBm 0 dBm -20 dBm -20 dBm -30 dBm -60 dBm -70 dBm	-60 dBm								<u>ii i</u>	-
CF 2.441 GHz 1001 pts Span 5.0 MHz Power NVNT 1-DH5 2480MHz Ant1 Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 2 MHz Mode Auto Sweep SGL Count 150/150 0 fbk SWT 1 ms VBW 2 MHz Mode Auto Sweep Offset 7.60 dB RBW 2 MHz Mode Auto Sweep SGL Count 150/150 0 dBm 0 dBm 2.48005000 GHz 10 dBm 0 dBm 0 dBm 0 dBm -20 dBm -20 dBm -30 dBm -60 dBm -70 dBm										
Power NVNT 1-DH5 2480MHz Ant1 Spectrum Mode Auto Sweep Att 40 db SWT 1 ms YBW 2 MHz Att 40 db SWT 1 ms YBW 2 MHz Att 40 db SWT 1 ms YBW 2 MHz Att 40 db SWT 1 ms YBW 2 MHz Att 40 db SWT 1 ms YBW 2 MHz O dBm 0 MI[1] 2,48005000 GHz 10 dBm 0 0 0 0 10 dBm 0 0 0 0 0 -20 dBm 0 0 0 0 0 0 -30 dBm 0 0 0 0 0 0 0 -30 dBm 0		Hz	_		1001	pts	1	-	Spa	in 5.0 MHz
Spectrum Max Att 40 dB SWT 1 ms VBW 2 MHz Mode Auto Sweep SGL Count 150/150 61 Pk Max 0 dBm 0 dB		Y					1			8
10 dBm 41 10 dBm 7 0 dBm 7 -10 dBm 7 -20 dBm 7 -20 dBm 7 -30 dBm 7 -40 dBm 7 -50 dBm 7 -60 dBm 7 -70 dBm 7	Ref Level Att SGL Count	27.60 dBm 40 dB	Offset 7	.60 dB 🍙 RI	3W 2 MHz	5				μ Δ
0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm	Ref Level Att SGL Count 1Pk Max	27.60 dBm 40 dB	Offset 7	.60 dB 🍙 RI	3W 2 MHz	Mode Au	uto Sweep		2,480	(∆ 6,52 dBn
D dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 d	Ref Level Att SGL Count 1Pk Max	27.60 dBm 40 dB	Offset 7	.60 dB 🍙 RI	3W 2 MHz	Mode Au	uto Sweep		2,480	(∆ 6,52 dBn
-10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	Ref Level Att SGL Count 1Pk Max 20 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🍙 RI	3W 2 MHz	Mode Au	uto Sweep		2,480	(∆ 6,52 dBn
-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -60 dBm -70	Ref Level Att SGL Count 1Pk Max 20 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🍙 RI	3W 2 MHz	Mode Au	uto Sweep		2,480	(∆ 6,52 dBn
-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm CF 2.48 GHz 1001 pts Span 5.0 MHz	Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	27.60 dBm 40 dB	Offset 7	.60 dB 🍙 RI	3W 2 MHz	Mode Au	uto Sweep		2,480	(∆ 6,52 dBn
-40 dBm -50 dBm -60 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 5.0 MHz	Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	27.60 dBm 40 dB	Offset 7	.60 dB 🍙 RI	3W 2 MHz	Mode Au	uto Sweep		2,480	(∆ 6,52 dBn
-40 dBm -50 dBm -60 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 5.0 MHz	Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🍙 RI	3W 2 MHz	Mode Au	uto Sweep		2,480	(∆ 6,52 dBn
-50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 5.0 MHz	Ref Level Att SGL Count IPk Max 20 dBm- 0 dBm- -10 dBm- -20 dBm-	27.60 dBm 40 dB	Offset 7	.60 dB 🍙 RI	3W 2 MHz	Mode Au	uto Sweep		2,480	(∆ 6,52 dBn
-60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 5.0 MHz	Ref Level Att SGL Count IPk Max 20 dBm- 0 dBm- -10 dBm- -20 dBm-	27.60 dBm 40 dB	Offset 7	.60 dB 🍙 RI	3W 2 MHz	Mode Au	uto Sweep		2,480	(∆ 6,52 dBn
-60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 5.0 MHz	Ref Level Att SGL Count 9 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🍙 RI	3W 2 MHz	Mode Au	uto Sweep		2.480	(∆ 6,52 dBn
-70 dBm	Ref Level Att SGL Count 9 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🍙 RI	3W 2 MHz	Mode Au	uto Sweep		2,480	(∆ 6,52 dBn
CF 2.48 GHz 1001 pts Span 5.0 MHz	Ref Level Att SGL Count 9 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🍙 RI	3W 2 MHz	Mode Au	uto Sweep		2,480	(∆ 6,52 dBn
	Ref Level Att SGL Count 9 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🍙 RI	3W 2 MHz	Mode Au	uto Sweep		2.480	(∆ 6,52 dBn
	Ref Level Att SGL Count 9 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.60 dBm 40 dB 150/150	Offset 7	.60 dB 🍙 RI	3W 2 MHz	Mode Au	uto Sweep		2,480	(∆ 6,52 dBn
	Ref Level Att SGL Count 9 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.60 dBm 40 dB 150/150	Offset 7	.60 dB 🍙 RI	3W 2 MHz BW 2 MHz	Mode At	uto Sweep		Spa	6.52 dBn 105000 GH:
	Ref Level Att SGL Count SGL Count 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	27.60 dBm 40 dB 150/150	Offset 7	.60 dB 🍙 RI	3W 2 MHz BW 2 MHz	Mode At	uto Sweep		Spa	6.52 dBn 105000 GH:

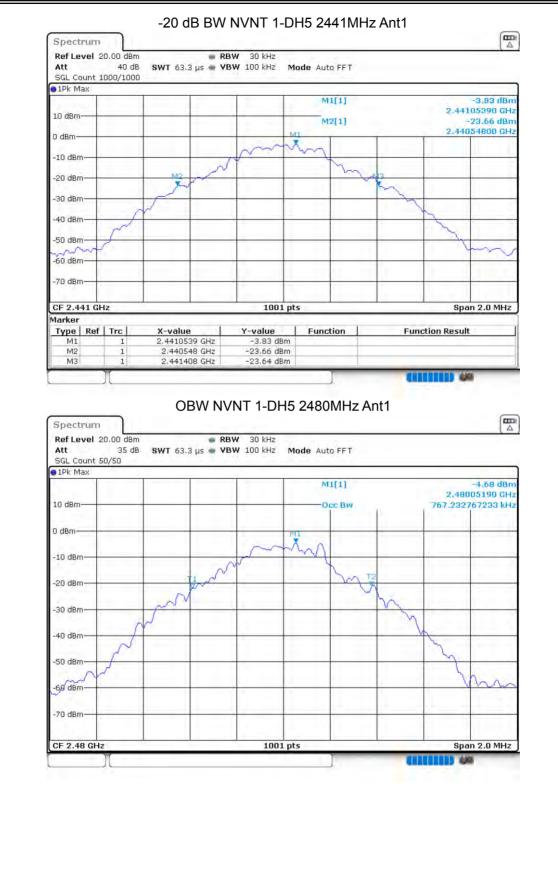




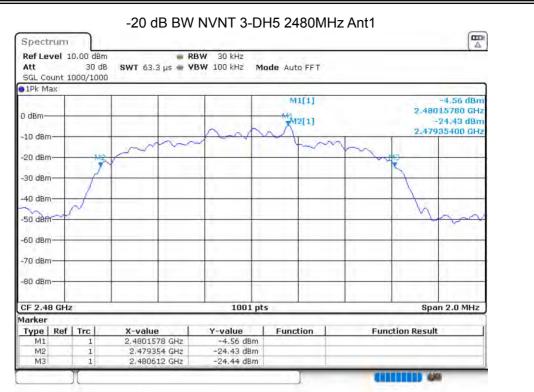
8.3 OCCUPIED CHANNEL BANDWIDTH

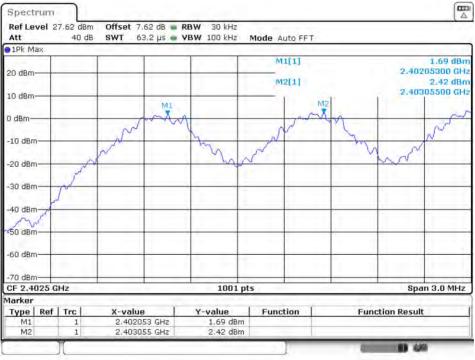

0.3 00001			1			
Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	1-DH5	2402	Ant 1	0.7732	0.872	Pass
NVNT	1-DH5	2441	Ant 1	0.7592	0.86	Pass
NVNT	1-DH5	2480	Ant 1	0.7672	0.852	Pass
NVNT	2-DH5	2402	Ant 1	1.1528	1.272	Pass
NVNT	2-DH5	2441	Ant 1	1.1449	1.266	Pass
NVNT	2-DH5	2480	Ant 1	1.1489	1.256	Pass
NVNT	3-DH5	2402	Ant 1	1.1588	1.268	Pass
NVNT	3-DH5	2441	Ant 1	1.1528	1.262	Pass
NVNT	3-DH5	2480	Ant 1	1.1528	1.258	Pass

OBW NVNT 1-DH5 2402MHz Ant1

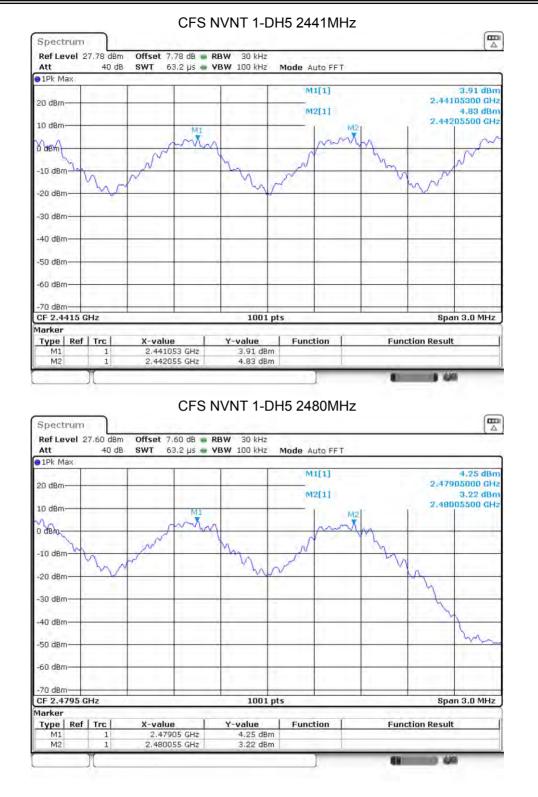


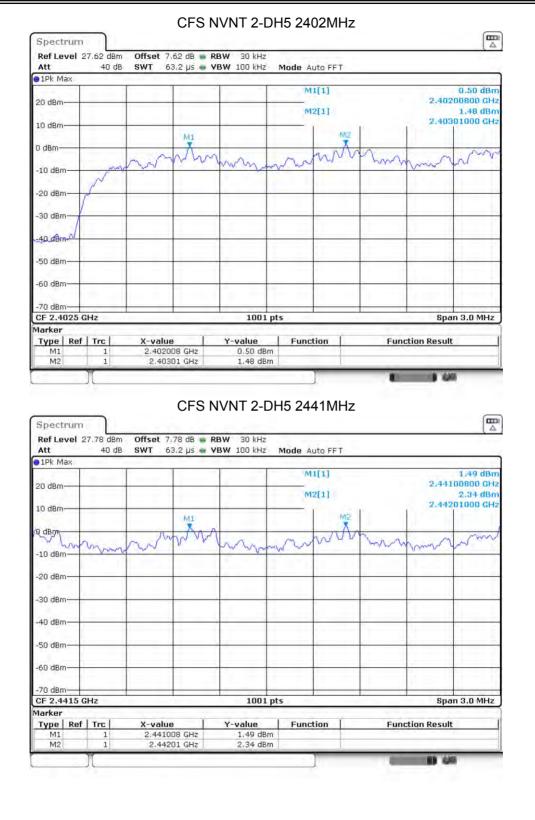


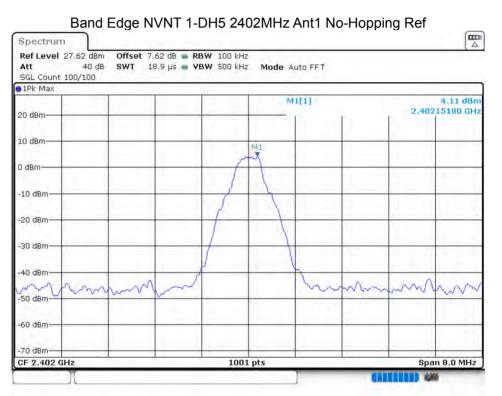




8.4 CARRIER FREQUENCIES SEPARATION


0.4 0/ 11 11			1			
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2402.053	2403.055	1.002	0.872	Pass
NVNT	1-DH5	2441.053	2442.055	1.002	0.86	Pass
NVNT	1-DH5	2479.05	2480.055	1.005	0.852	Pass
NVNT	2-DH5	2402.008	2403.01	1.002	0.848	Pass
NVNT	2-DH5	2441.008	2442.01	1.002	0.844	Pass
NVNT	2-DH5	2479.008	2480.01	1.002	0.837	Pass
NVNT	3-DH5	2402.158	2403.16	1.002	0.845	Pass
NVNT	3-DH5	2441.158	2442.157	0.999	0.841	Pass
NVNT	3-DH5	2479.158	2480.157	0.999	0.839	Pass




Summer of hopping number init vertical inition indod indod inition inition indod inition inition inition inition inition inition inition inition inition inition inition inition inition inition inition inition inition inition initio	Indition Mode Hopping Number Limit Verdict IVNT 1-DH5 79 15 Pass Hopping No. NVNT 1-DH5 2402MHz Spectrum Ref Level 27.62 dbm offset 7.62 db RBW 100 kHz Att 40 db SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 IP/R Max MI[1] 2.4020040 GHz 20 dBm MI[1] 2.4020040 GHz 0 dBm MI[1] 2.4020040 GHz 0 dBm MI[1] 2.4020400 GHz 0 dBm MI[1] 2.402040 GHz 0 dBm 2.402043 GHz MI[1] 2.402044 GHz 0 dBm 2.40204 GHz 0 dBm 2.40204 GHz 3.00 dBm 2.40204 GHz -10 dBm -10 dBm -20 dBm -2.40204 GHz	Indition Mode Hopping Number Limit Verdict VNT 1-DH5 79 15 Pass Hopping No. NVNT 1-DH5 2402MHz Spectrum Ref Level 27.62 dbm Offset 7.62 db RBW 100 kHz Att 40 db SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 @1Pk Max 0 dbm M1[1] 2.4020040 GHz 20 dbm M1[1] 2.402040 GHz 6.12 dBm 10 dbm M2[1] 2.402435 GHz 6.12 dBm 10 dbm 10 dbm 10 dbm 10 dbm 10 dbm 20 dBm 10 dbm 10 dbm 10 dbm 10 dbm 50 dBm 10 dbm 10 dbm 10 dbm 10 dbm 50 dBm 10 dbm 10 dbm 10 dbm 10 dbm										
Image: NVNT 1-DH5 79 15 Pass Hopping No. NVNT 1-DH5 2402MHz Ref Level 27.62 dB @ RBW 100 kHz Att +0 dB SWT 1 ms @ VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 IPk Max 20 dBm MI[1] 3.98 dBm 20 dBm MI[1] 2.402040 CHz 0 dBm Add B Add B MI[1] 2.402040 CHz Count 7000/7000 MI[1] 2.402040 CHz Add B MI[1] 2.402040 CHz Add B Add B <td c<="" td=""><td>Image: Note of the second state of the seco</td><td>VNT 1-DH5 79 15 Pass Hopping No. NVNT 1-DH5 2402MHz Ref Level 27.62 dB @ RBW 100 kHz Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 IPk Max 20 dBm M1[1] 3.98 dBm 20 dBm M2[1] 2.4020040 GHz 6.612 dBm 10/dBm M2[1] 2.402040 GHz 6.612 dBm 10/dBm M2[1] 2.402040 GHz 6.612 dBm SGL Count 7000/7000 M2[1] 2.402040 GHz 20 dBm M2[1] 2.402040 GHz 6.612 dBm 10/dBm M2[1] 2.402040 GHz 6.612 dBm -10 dBm M1[1] 3.98 dBm M2[1] 4.002435 GHz -20 dBm M30 dBm M30 dBm M30 dBm M30 dBm -50 dBm M30 dBm M30 dBm M30 dBm M30 dBm -50 dBm Marker 1001 pts Stop 2.4835 GHz Marker 1 2.402004 GHz</td><td>NUMBER OF</td><td>HOPPING</td><td>CHANNEL</td><td></td><td></td><td>_</td><td></td><td></td><td></td></td>	<td>Image: Note of the second state of the seco</td> <td>VNT 1-DH5 79 15 Pass Hopping No. NVNT 1-DH5 2402MHz Ref Level 27.62 dB @ RBW 100 kHz Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 IPk Max 20 dBm M1[1] 3.98 dBm 20 dBm M2[1] 2.4020040 GHz 6.612 dBm 10/dBm M2[1] 2.402040 GHz 6.612 dBm 10/dBm M2[1] 2.402040 GHz 6.612 dBm SGL Count 7000/7000 M2[1] 2.402040 GHz 20 dBm M2[1] 2.402040 GHz 6.612 dBm 10/dBm M2[1] 2.402040 GHz 6.612 dBm -10 dBm M1[1] 3.98 dBm M2[1] 4.002435 GHz -20 dBm M30 dBm M30 dBm M30 dBm M30 dBm -50 dBm M30 dBm M30 dBm M30 dBm M30 dBm -50 dBm Marker 1001 pts Stop 2.4835 GHz Marker 1 2.402004 GHz</td> <td>NUMBER OF</td> <td>HOPPING</td> <td>CHANNEL</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>	Image: Note of the second state of the seco	VNT 1-DH5 79 15 Pass Hopping No. NVNT 1-DH5 2402MHz Ref Level 27.62 dB @ RBW 100 kHz Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 IPk Max 20 dBm M1[1] 3.98 dBm 20 dBm M2[1] 2.4020040 GHz 6.612 dBm 10/dBm M2[1] 2.402040 GHz 6.612 dBm 10/dBm M2[1] 2.402040 GHz 6.612 dBm SGL Count 7000/7000 M2[1] 2.402040 GHz 20 dBm M2[1] 2.402040 GHz 6.612 dBm 10/dBm M2[1] 2.402040 GHz 6.612 dBm -10 dBm M1[1] 3.98 dBm M2[1] 4.002435 GHz -20 dBm M30 dBm M30 dBm M30 dBm M30 dBm -50 dBm M30 dBm M30 dBm M30 dBm M30 dBm -50 dBm Marker 1001 pts Stop 2.4835 GHz Marker 1 2.402004 GHz	NUMBER OF	HOPPING	CHANNEL			_			
Hopping No. NVNT 1-DH5 2402MHz Ref Level 27.62 dBm Offset 7.62 dB RBW 100 kH2 Att 40 dB SWT 1 ms VBW 300 kH2 Mode Auto Sweep SGL Count 7000/7000 IPK Max 3.98 dBm 20 dBm M1[1] 3.98 dBm 10/dBm M2[1] 2.4020040 GH2 6.12 dBm 9.4802435 GH2 6.12 dBm 10/dBm 9.4802435 GH2 6.12 dBm -10 dBm -10 dBm -10 dBm -10 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -10 dBm -10 dBm -10 dBm -10 dBm -50 dBm -50 dBm -50 dBm -50 dBm	Hopping No. NVNT 1-DH5 2402MHz Ref Level 27.62 dBm Offset 7.62 dB RBW 100 kH2 Att 40 dB SWT 1 ms VBW 300 kH2 Mode Auto Sweep SGL Count 7000/7000 IPK Max 0 dBm 0 0 </td <td>Hopping No. NVNT 1-DH5 2402MHz The sector of the sector of</td> <td></td> <td>e Hoppin</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>	Hopping No. NVNT 1-DH5 2402MHz The sector of		e Hoppin				-				
Spectrum Image: Construct To C	Spectrum Image: Construction of the sector in	Spectrum CD Ref Level 27.52 dBm Offset 7.62 dB RBW 100 kHz Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 Ims VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 IPk Max	VNT 1-DH	5	79	15	Pass					
Spectrum Image: Construction of the sector of	Spectrum Image: Construction of the sector in	Spectrum CD Ref Level 27.52 dBm Offset 7.62 dB RBW 100 kHz Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 Ims VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 IPk Max			Honni	na No	NV/NT 1_	DH2 240'	2MH7			
Ref Level 27.62 dBm Offset 7.62 dB RBW 100 kHz Mode Auto Sweep SGL Count 7000/7000 SWT 1 ms VBW 300 kHz Mode Auto Sweep 9 JPk Max 2.4020040 GHz 6.12 dBm 6.12 dBm 10 dBm 9.4020040 GHz 6.12 dBm 6.12 dBm 10 dBm 9.4020440 GHz 6.12 dBm 9.4020440 GHz 10 dBm 9.402435 GHz M2[1] 2.4022435 GHz 10 dBm 9.4002440 GHz 9.4002440 GHz 9.4002440 GHz 20 dBm 9.4002440 GHz 9.4002440 GHz 9.4002440 GHz 10 dBm 9.4002440 GHz 9.4002440 GHz 9.4002440 GHz 10 dBm 9.4002440 GHz 9.4002440 GHz 9.4002440 GHz 10 dBm 9.40020440 GHz 9.400204 GHz 9.400204 GHz 10 dBm 1 2.4020440 GHz 9.400204 GHz	Ref Level 27.62 dBm Offset 7.62 B RBW 100 kHz Mode Auto Sweep SGL Count 7000/7000 SWT 1 ms VBW 300 kHz Mode Auto Sweep 20 dBm	Ref Level 27.62 dBm Offset 7.62 dB RBW 100 kHz Mode Auto Sweep SGL Count 7000/7000 SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 Stop .4020040 GHz 6.12 dBm 2.4020040 GHz 6.12 dBm 20 dBm M2[1] 2.4020040 GHz 6.12 dBm 2.4020040 GHz 6.12 dBm 10/dBm 2.402040 GHz M2[1] 2.402040 GHz 6.12 dBm 2.4020440 GHz 6.12 dBm 20 dBm M2[1] 2.402040 GHz M2[1] 2.402040 GHz 20 dBm -10 6Bm -10 6DB -10 6DB -10 6DB -10 6DB -10 6DB<	Spe	ctrum	торрі	ng No.		0113 240			m	
SGL Count 7000/7000 IPk Max MI[1] 3.98 dBm 20 dBm M2[1] 2.402004 GHz 10 dBm M2[1] 2.4802435 GHz -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -40 dBm -70 dBm -70 dBm -400 tBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -	SGL Count 7000/7000 IPk Max 20 dBm M1[1] 3.98 dBm 20 dBm M2[1] 2.402004 GHz 0 dBm M2[1] 2.4802435 GHz -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -30 dBm -20 dBm -20 dBm -30 dBm -20 dBm -20 dBm -50 dBm -20 dBm -20 dBm -10 dBm -20 dBm -20 dBm -100 lpts Stop 2.4835 GH	SGL Count 7000/7000 IPK Max 20 dBm MI[1] 3.98 dBm 20 dBm M2[1] 6.12 dBm 10,dBm 2.400240 GHz 4.400240 GHz 0 dBm 9.4802435/9Hz 4.4002435/9Hz -10 dBm 2.400240 GHz 4.4002435/9Hz -20 dBm -2.400240 GHz -400240 GHz -20 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -70 dBm -10 dBm -10 dBm	Ref	Level 27.62 dBm							(Δ)	
20 dBm M1[1] 3.98 dBm 10 dBm M2[1] 6.12 dBm 0 dBm 2.4802435,GH2 0 dBm -10 eBm -10 eBm -10 eBm -10 eBm -10 eBm -20 dBm -10 eBm -10 eBm -30 dBm -10 eBm -10 eBm -50 dBm -10 eBm -10 eBm -50 dBm -10 eBm -10 eBm -70 eBm -10 eBm -10 eBm	20 dBm M1[1] 3.98 dBm 20 dBm M2[1] 6.12 dBm 10 dBm 2.4802435,GH2 0 dBm 2.4802435,GH2 -10 dBm -10 dBm -20 dBm -10 dBm -30 dBm -10 dBm -50 dBm -10 dBm -50 dBm -10 dBm -70 dBm -10 dBm -70 dBm -10 dBm -11 1 2.402004 GH2 3.98 dBm -10 dBm	20 dBm M1[1] 3.98 dBm 20 dBm M2[1] 6.12 dBm 10 dBm 2.40243 xgHz 6.12 dBm -10 dBm 2.40243 xgHz 6.12 dBm -20 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -70 dBm -10 dBm -10 dBm -10 dBm -10 dBm				is 🖷 VBW	300 kHz M	ode Auto Swe	ер			
20 dBm 2.4020040 GHz 19 dBm 6.12 dBm 0 dBm 2.40020435 gHz -10 dBm 2.4002435 gHz -20 dBm - -20 dBm - -30 dBm - -50 dBm - -60 dBm - -70 dBm - <td>20 dBm 2.4020040 GHz 10 dBm 6.12 dBm 0 dSm 2.402043 SrgHz 0 dSm 2.40243 SrgHz -10 dEm 2.40243 SrgHz -20 dBm -10 dEm -30 dBm -10 dEm -50 dBm -10 dEm -60 dBm -10 dEm -70 dBm -10 dEm -70 dEm -10 dEm -70 dEm -10 dEm -70 dBm -10 dEm -70 dEm -10 dEm -70 dEm -10 dEm -70 dEm -10 dEm -70 dEm -10 dEm -7</td> <td>20 dBm 2.4020040 GHz 10 dBm 6.12 dBm 0 dBm 2.400243 SrdHz -10 dBm 2.400243 SrdHz -20 dBm -10 dBm -20 dBm -10 dBm</td> <td>• 1Pk</td> <td>Max</td> <td>1-1-</td> <td>- Ť-</td> <td>1</td> <td>MIEII</td> <td></td> <td></td> <td>3.98 dBm</td>	20 dBm 2.4020040 GHz 10 dBm 6.12 dBm 0 dSm 2.402043 SrgHz 0 dSm 2.40243 SrgHz -10 dEm 2.40243 SrgHz -20 dBm -10 dEm -30 dBm -10 dEm -50 dBm -10 dEm -60 dBm -10 dEm -70 dBm -10 dEm -70 dEm -10 dEm -70 dEm -10 dEm -70 dBm -10 dEm -70 dEm -10 dEm -70 dEm -10 dEm -70 dEm -10 dEm -70 dEm -10 dEm -7	20 dBm 2.4020040 GHz 10 dBm 6.12 dBm 0 dBm 2.400243 SrdHz -10 dBm 2.400243 SrdHz -20 dBm -10 dBm	• 1Pk	Max	1-1-	- Ť-	1	MIEII			3.98 dBm	
10, dBm 2,4802435 GH2 0 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -30 dBm -10 dBm -50 dBm -10 dBm -10 dBm -10 dBm	10,dBm 2,4802435,GH2 0,dBm -10,eSm -10,eSm -10,eSm -20,dBm -10,eSm -30,dBm -10,eSm -30,dBm -10,eSm -30,dBm -10,eSm -30,dBm -10,eSm -50,dBm -10,eSm -60,dBm -10,eSm -70,dBm -10,eSm -70,eSm -10,eSm <	10/dBm 2.4802435/gHz 0 dBm -10 -10 dBm -20 dBm -10 -30 dBm -10 -40 dBm -10 -30 dBm -10 -30 dBm -10 -30 dBm -10 -40 dBm -10 -50 dBm -10 -60 dBm -10 -70 dBm -1001 pts Stop 2.4835 GHz Marker -1001 pts Type Ref Trc X-value Y-value Function M1 1 2.402004 GHz 3.98 dBm -10 </td <td>20 de</td> <td>3m-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.40</td> <td>20040 GHz</td>	20 de	3m-						2.40	20040 GHz	
-10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -10	-10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70	-10 65m -10 65m -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	101dE	Sm-				TALANA	ПЛЛАхальн	2,48		
-20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Result M1 1 2.402004 GHz 3.98 dBm	-20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -50 dBm -60 dBm -60 dBm -70	-20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -70	odar	1 <mark>0,000,000,000,000,000,000,000,000,000,</mark>	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	MARAANNN	<u>MUQUANON</u>	<u>ANA IADADA</u>	MAAAAAAA		
-20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -1001 pts Stor 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Result M1 1 2.402004 GHz 3.98 dBm	-20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -50 dBm -60 dBm -60 dBm -70	-20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -70	-10 e	6m++++++++++++++++++++++++++++++++++++	<u>Philipping and a start and a start a s</u>	1444000	WWWWW	.AAAAAAAAAAA		(IVUVIVIY)	YVIY()	
-80 dBm -80 dBm -80 dBm -50 dBm -50 dBm -60 dBm -70	-30 dBm -40 dBm	30 dBm 40 dBm 40 dBm 40 dBm -50 dBm 40 dBm -60 dBm 40 dBm -70 dBm 50 dBm <td></td> <td></td> <td>JAID RULIN RULIN</td> <td>bline bear</td> <td></td> <td></td> <td></td> <td>0.01810</td> <td></td>			JAID RULIN RULIN	bline bear				0.01810		
40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 dBm -60 dBm Start 2.4 GHz 1001 pts Start 2.4 GHz 1001 pts Start 2.4 GHz 1001 pts Marker	40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker -70 dBm -70 dBm Type Ref Trc X-value Y-value Function Result M1 1 2.402004 GHz 3.98 dBm -70 dBm						1.1.1				
Stort 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Y-value Function Function Result M1 1 2.402004 GHz 3.98 dBm	Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 3.98 dBm 500 dBm 500 dBm	Marker Trc X-value Y-value Function Function Result Mil 1 2.402004 GHz 3.98 dBm 50 dBm 50 dBm	-30 d	Bm								
-60 dBm -70 dBm Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 3.98 dBm	-60 dBm -70 dBm Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 3.98 dBm	-60 dBm -70 dBm Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Result M1 1 2.402004 GHz 3.98 dBm	40 d	Bm-		- 11					here	
-70 dBm. 1001 pts Stop 2.4835 GHz Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 3.98 dBm 5.00 ft 5.00 ft	Image: start 2.4 GHz Image: start 2.4 GHz Stop 2.4835 GHz Start 2.4 GHz Image: start 2.4 GHz Stop 2.4835 GHz Marker Image: start 2.4 GHz Stop 2.4835 GHz Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 3.98 dBm Image: start 2.4 GHz Image	-70 dBm 1001 pts Stop 2.4835 GHz Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker	-50 d	Bm	-					-		
Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 3.98 dBm 5.98 dBm 5.98 dBm	Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 3.98 dBm 5000 mm 5000 mm	Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 3.98 dBm 5.000 fm and the second seco	-60 d	Bm-		-			-			
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 3.98 dBm	Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 3.98 dBm	Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 3.98 dBm	-70 d									
Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 3.98 dBm	Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 3.98 dBm	Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 3.98 dBm			A Description of the local distance of the l		1001 pts			Stop 2.	.4835 GHz	
			Start									
			Start Marke Type	er e Ref Trc				Function	Fun	ction Result		
			Start Marke Type M	er e Ref Trc 11 1	2.402004 G	Hz	3.98 dBm	Function	Fun	ction Result		
			Start Marke Type M	er e Ref Trc 11 1	2.402004 G	Hz	3.98 dBm	Function	Fun	ction Result	8	
			Start Marke Type M	er e Ref Trc 11 1	2.402004 G	Hz	3.98 dBm	Function	Fun	ction Result	0	
			Start Marke Type M	er e Ref Trc 11 1	2.402004 G	Hz	3.98 dBm	Function	Fun	ction Result	9	
			Start Marke Type M	er e Ref Trc 11 1	2.402004 G	Hz	3.98 dBm	Function	Fun	ction Result		
			Start Marke Type M	er e Ref Trc 11 1	2.402004 G	Hz	3.98 dBm	Function	Fun	ction Result	8	
			Start Marke Type M	er e Ref Trc 11 1	2.402004 G	Hz	3.98 dBm	Function	Fun			
			Start Marke Type M	er e Ref Trc 11 1	2.402004 G	Hz	3.98 dBm	Function	Fun			
			Start Marke Type M	er e Ref Trc 11 1	2.402004 G	Hz	3.98 dBm	Function	Fun			
			Start Marke Type M	er e Ref Trc 11 1	2.402004 G	Hz	3.98 dBm	Function	Fun			
			Start Marke Type M	er e Ref Trc 11 1	2.402004 G	Hz	3.98 dBm	Function	Fun			
			Start Marke Type M	er e Ref Trc 11 1	2.402004 G	Hz	3.98 dBm	Function	Fun			
			Start Marke Type M	er e Ref Trc 11 1	2.402004 G	Hz	3.98 dBm	Function	Fun			
			Start Marke Type M	er e Ref Trc 11 1	2.402004 G	Hz	3.98 dBm	Function	Fun			

NTEK 北测[®]

8.6 BAND EDGE

8.6 BANDE	DGE						
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-45.41	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-46.5	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-48.49	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-50.33	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-43.59	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-46.12	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-47.42	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-50.57	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-45.76	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-47.12	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-46.69	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-50.95	-20	Pass

1Pk Max	t 100/100	-		-					
20 dBm				-	M	1[1]		2.40	4.03 dBr 195000 GH
10 dBm			-		M	2[1]			-46.57 dBr 000000(GH
0 dBm							1		I
-10 dBm	-		1		1	11	11		
-20 dBm-	D1 -15.890	dBm			-				
-30 dBm-							<u></u>		
40 d0m		1.1.1	M4	100	1	1		1000	
-50 dBm-	approximation and the	the during the second	Unservice the way	making maddate their	nethinadoreana	multiminuted	constancements	Manufa Manual	when the his
-60 dBm-			-	*	1			1	
							· · · · · · ·	1	
-70 dBm- Start 2.30	l6 GHz	T.	1	100	1 pts		1	Stop	2.406 GHz
Marker Type Re	ef Trc	X-valu	e	Y-value	Func	tion	Fur	ction Resul	t
M1	1		195 GHz 2.4 GHz	4.03 di -46.57 di					
	1								
M2 M3 M4 Spectrur Ref Level Att SGL Coun		2.33 2.33 ge(Hop Offset 7	.39 GH2 399 GH2 ping) N	-46.58 di -41.31 di VNT 1-E RBW 100 kH: 7BW 300 kH:)H5 240	10.52	Ant1 Ho	opping R	ef
M2 M3 M4 Spectrur Ref Level Att	1 1 5 and Edg 1 27.62 dBm 40 dB	2.33 2.33 ge(Hop Offset 7	.39 GH2 399 GH2 ping) N	-46.58 di -41.31 di VNT 1-E)H5 240 2 2 2 Mode A	10.52	Ant1 Ho		7.22 dBr
M2 M3 M4 Spectrur Ref Level Att SGL Coun	1 1 5 and Edg 1 27.62 dBm 40 dB	2.33 2.33 ge(Hop Offset 7	.39 GH2 399 GH2 ping) N	-46.58 di -41.31 di VNT 1-E)H5 240 2 2 2 Mode A	uto FFT	Ant1 Hc		
M2 M3 M4 Spectrui Ref Level Att SGL Coun	1 1 5 and Edg 1 27.62 dBm 40 dB	2.33 2.33 ge(Hop Offset 7	.39 GH2 399 GH2 ping) N	-46.58 di -41.31 di VNT 1-E)H5 240 2 2 2 Mode A	uto FFT	Ant1 Ho	2,40- M1	7.22 dBr
M2 M3 M4 Spectrur Ref Level Att SGL Coun 1Pk Max 20 dBm- 10 dBm-	1 1 5 and Edg 1 27.62 dBm 40 dB	2.33 2.33 ge(Hop Offset 7	.39 GH2 399 GH2 ping) N	-46.58 di -41.31 di VNT 1-E)H5 240 2 2 2 Mode A	uto FFT	Ant1 Ho	2,40	7.22 dBr
M2 M3 M4 Spectrui Ref Level Att SGL Coun 1Pk Max 20 dBm-	1 1 5 and Edg 1 27.62 dBm 40 dB	2.33 2.33 ge(Hop Offset 7	.39 GH2 399 GH2 ping) N	-46.58 di -41.31 di VNT 1-E)H5 240 2 2 2 Mode A	uto FFT		2,40- M1	7.22 dBr
M2 M3 M4 Spectrur Ref Level Att SGL Coun 1Pk Max 20 dBm- 10 dBm-	1 1 5 and Edg 1 27.62 dBm 40 dB	2.33 2.33 ge(Hop Offset 7	.39 GH2 399 GH2 ping) N	-46.58 di -41.31 di VNT 1-E)H5 240 2 2 2 Mode A	uto FFT	Ant1 Hc	2,40- M1	7.22 dBr
M2 M3 M4 Spectrui Ref Level Att SGL Coun • 1Pk Max 20 dBm	1 1 5 and Edg 1 27.62 dBm 40 dB	2.33 2.33 ge(Hop Offset 7	.39 GH2 399 GH2 ping) N	-46.58 di -41.31 di VNT 1-E)H5 240 2 2 2 Mode A	uto FFT		2,40- M1	7.22 dBr
M2 M3 M4 Spectrui Ref Level Att SGL Coun 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	1 1 5 and Edg 1 27.62 dBm 40 dB	2.33 2.33 ge(Hop Offset 7	.39 GH2 399 GH2 ping) N	-46.58 di -41.31 di VNT 1-E)H5 240 2 2 2 Mode A	uto FFT	Ant1 Hc	2,40- M1	7.22 dBr
M2 M3 M4 Spectrui Ref Level Att SGL Coun 1Pk Max 20 dBm 10 dBm -10 dBm	1 1 5 and Edg 1 27.62 dBm 40 dB	2.33 2.33 ge(Hop Offset 7	.39 GH2 399 GH2 ping) N	-46.58 di -41.31 di VNT 1-E)H5 240 2 2 2 Mode A	uto FFT	Ant1 Hc	2,40- M1	7.22 dBr
M2 M3 M4 Spectrui Ref Level Att SGL Coun 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	1 1 5 and Edg 1 27.62 dBm 40 dB	2.33 2.33 ge(Hop Offset 7	.39 GH2 399 GH2 ping) N	-46.58 di -41.31 di VNT 1-E)H5 240 2 2 2 Mode A	uto FFT	Ant1 Hc	2,40- M1	7.22 dBr
M2 M3 M4 Spectrui Ref Level Att SGL Coun 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	1 1 5 and Edg 1 27.62 dBm 40 dB	2.33 2.33 ge(Hop Offset 7	.39 GH2 399 GH2 ping) N	-46.58 di -41.31 di VNT 1-E)H5 240 2 2 2 Mode A	uto FFT	Ant1 Hc	2,40- M1	7.22 dBr
M2 M3 M4 Spectrur Ref Level Att SGL Coun • 1Pk Max 20 dBm • 10 dBm • 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	1 1 5 and Edg 1 27.62 dBm 40 dB	2.33 2.33 ge(Hop Offset 7	.39 GH2 399 GH2 ping) N	-46.58 di -41.31 di VNT 1-E)H5 240 2 2 2 Mode A	uto FFT	Ant1 Hc	2,40- M1	7.22 dBr
M2 M3 M4 Spectrui Ref Level Att SGL Coun • 1Pk Max 20 dBm • 10 dBm • 10 dBm - 10 dBm - 20 dBm 20 dBm 30 dBm 50 dBm 50 dBm	1 1 5 and Edg 1 27.62 dBm 40 dB	2.33 2.33 ge(Hop Offset 7	.39 GH2 399 GH2 ping) N	-46.58 di -41.31 di VNT 1-E)H5 240 2 2 2 Mode A	uto FFT		2,40- M1	7.22 dBr
M2 M3 M4 Spectrui Ref Level Att SGL Coun • 10 dBm • 10 dBm • 10 dBm • 10 dBm • -20 dBm • -30 dBm • -30 dBm • -50 dBm • -50 dBm	1 1 27.62 dBm 40 dB ± 8000/8000	2.33 2.33 ge(Hop Offset 7	.39 GH2 399 GH2 ping) N	-46.58 di -41.31 di VNT 1-E)H5 240 2 2 2 Mode A	uto FFT	Ant1 Hc	2,40	7.22 dBr
M2 M3 M4 Spectrui Ref Level Att SGL Coun • 1Pk Max 20 dBm • 10 dBm • 10 dBm - 10 dBm - 20 dBm 20 dBm 30 dBm 50 dBm 50 dBm	1 1 27.62 dBm 40 dB ± 8000/8000	2.33 2.33 ge(Hop Offset 7	.39 GH2 399 GH2 ping) N	-46.58 di -41.31 di VNT 1-E	DH5 240	uto FFT		2,40	7.22 dBr #99700 GH

20 dBm					M	1[1]		2,405	7.10 dB 05000 GF
10 dBm			100		M	2[1]		-	44.71 dB
								2.400	
0 dBm						1			
-10 dBm	D1 -12,777	dBm		-					
-20 dBm—		-		-					
-30 dBm				M4	-		-	· · · · · · ·	
-40 dBm	Which the second of the second	aning the forward	allund Prover on	-	all and the	an united when		ant by sources	ME
-50 dBm-	and have a free of the	nin in teas Paulentille ra			has many and the	a contraction and former	a no no alfratimente	and advances	al right
-60 dBm							_		
-70 dBm						1		1	1.000
Start 2.30	6 GHz			1001	pts			Stop :	2.406 GH
Marker Type Re	f	X-value		Y-value	Func	tion	Fun	ction Result	
M1	1	2.405	05 GHz	7.10 dB	m		Tull		
M2 M3	1		.4 GHz	-44.71 dB					
	1		87 GHz	-44.83 dB					
M4 Spectrur Ref Level Att	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7.	91 GHz VNT 1-	-44.83 dB -39.28 dB DH5 248 BW 100 kHz /BW 100 kHz	80MHz /		o-Hoppin	ng Ref	
M4 Spectrur Ref Level	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7.	91 GHz VNT 1-	-39.28 dB	80MHz /		-Hoppin	ng Ref	(4
M4 Spectrur Ref Level Att SGL Count 1Pk Max	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7.	91 GHz VNT 1-	-39.28 dB	80MHz / Mode A		D-Hoppin		5,43 dB
M4 Spectrur Ref Level Att SGL Count	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7.	91 GHz VNT 1-	-39.28 dB	80MHz / Mode A	uto FFT	p-Hoppin		(4
M4 Spectrur Ref Level Att SGL Count 1Pk Max	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7.	91 GHz VNT 1-	-39.28 dB	80MHz / Mode A	uto FFT	o-Hoppin		5,43 dB
M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7.	91 GHz VNT 1-	-39.28 dB	80MHz / Mode A	uto FFT	D-Hoppin		5,43 dB
M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7.	91 GHz VNT 1-	-39.28 dB	80MHz / Mode A	uto FFT	p-Hoppin		5,43 dB
M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7.	91 GHz VNT 1-	-39.28 dB	80MHz / Mode A	uto FFT	p-Hoppin		5,43 dB
M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7.	91 GHz VNT 1-	-39.28 dB	80MHz / Mode A	uto FFT	p-Hoppin		5,43 dB
M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7.	91 GHz VNT 1-	-39.28 dB	80MHz / Mode A	uto FFT	p-Hoppin		5,43 dB
M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7.	91 GHz VNT 1-	-39.28 dB	80MHz / Mode A	uto FFT	p-Hoppin		5,43 dB
M4 Spectrur Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7.	91 GHz VNT 1-	-39.28 dB	80MHz / Mode A	uto FFT	p-Hoppin		5,43 dB
M4 Spectrur Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7.	91 GHz	-39.28 dB	80MHz / Mode A	uto FF T			5,43 dB
M4 Spectrur Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7.	91 GHz VNT 1-	-39.28 dB	80MHz / Mode A	uto FF T	p-Hoppin		5,43 dB
M4 Spectrur Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -40 dBm- -40 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7.	91 GHz	-39.28 dB	80MHz / Mode A	uto FF T			5,43 dB
M4 Spectrur Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -40 dBm- -40 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7.	91 GHz	-39.28 dB	80MHz / Mode A	uto FF T			5,43 dB
M4 Spectrur Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7.	91 GHz	-39.28 dB	80MHz / Mode A	uto FF T			5,43 dB
M4 Spectrur Ref Level Att SGL Count SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm-	1 Band 27.60 dBm 40 dB 100/100	2.34 Edge N Offset 7.	91 GHz	-39.28 dB	BOMHZ /	uto FF T		2,480	5,43 dB

SGL Count	100/100					1999 B. C.			-
			1		M	1[1]			5.58 dBm
20 dBm			1		M	2[1]			005000 GHz -46.56 dBm
10 dBm			1				(2.483	350000 GHz
0 d8m								1	
-10 dBm-	D1 -14.574	dBm		-					
-20 cBm			-	1			-		-
-30 cBm				-				-	
-40 dBm M4	al an and a	M3	Jucha da					Lais Inde Back	
-50 dBm	hashing many series	M3 M3 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	ament and almost	Month and the state	estimation of the	was the build	how the man had all	palvanter a a com	andrenter
-60 dBm									
-70 dBm							1	1	+
Start 2.47	5 GHz			1001	pts			Stop	2.576 GHz
Marker Type Rei	f Trc	X-value	•	Y-value	Funct	tion	Fund	tion Result	t
M1 M2	1		05 GHz 35 GHz	5.58 dB -46.56 dB					
M3	1	2	2.5 GHz	-47.26 dB -43.07 dB	m				
M4	1	2.48	46 GHZ						
Ba Spectrum Ref Level Att SGL Count • 1Pk Max	27.60 dBm 40 dB	ge(Hopp offset 7.	60 dB 🐞 RI	/NT 1-D BW 100 kHz BW 300 kHz	1H5 248 Mode A	uto FFT	Ant1 Ho	pping R	
Ba Spectrum Ref Level Att SGL Count PIPK Max	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 1-D BW 100 kHz	1H5 248 Mode A		Ant1 Ho		
Ba Spectrum Ref Level Att SGL Count IPk Max 20 dBm-	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 1-D BW 100 kHz	1H5 248 Mode A	uto FFT	Ant1 Hop		8,69 dBm
Ba Spectrum Ref Level Att SGL Count PIPK Max	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 1-D BW 100 kHz	1H5 248 Mode A	uto FFT	Ant1 Ho		8,69 dBm
Ba Spectrum Ref Level Att SGL Count IPk Max 20 dBm-	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 1-D BW 100 kHz	1H5 248 Mode A	uto FFT	Ant1 Ho		8,69 dBm
Bi Spectrum Ref Level Att SGL Count IPK Max 20 dBm 0 dBm 0 dBm	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 1-D BW 100 kHz	1H5 248 Mode A	uto FFT	Ant1 Ho		8,69 dBm
Ba Spectrum Ref Level Att SGL Count IPK Max 20 dBm 10 dBm	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 1-D BW 100 kHz	1H5 248 Mode A	uto FFT	Ant1 Ho		8,69 dBm
Bi Spectrum Ref Level Att SGL Count IPK Max 20 dBm 0 dBm 0 dBm	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 1-D BW 100 kHz	1H5 248 Mode A	uto FFT	Ant1 Ho		8,69 dBm
Bi Spectrum Ref Level Att SGL Count I PIPK Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 1-D BW 100 kHz	1H5 248 Mode A	uto FFT	Ant1 Ho		8,69 dBm
Bi Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 1-D BW 100 kHz	1H5 248 Mode A	uto FFT	Ant1 Ho		8,69 dBm
Bi Spectrum Ref Level Att SGL Count I PIPK Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 1-D BW 100 kHz	1H5 248 Mode A	uto FFT	Ant1 Ho		8,69 dBm
Bi Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 1-D BW 100 kHz	1H5 248 Mode A	uto FFT	Ant1 Ho		8,69 dBm
Bi Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 1-D BW 100 kHz	1H5 248 Mode A	uto FFT	Ant1 Ho		8,69 dBm
Bi Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 1-D BW 100 kHz	1H5 248 Mode A	uto FFT	Ant1 Ho		8,69 dBm
Ba Spectrum Ref Level Att SGL Count ISGL COU	and Edg 27.60 dBm 40 dB 8009/8009	ge(Hopp offset 7.	Ding) N\		Mode Ar	uto FFT	Ant1 Ho	2.470	8.69 dBm 500400 GHz
Bi Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	and Edg 27.60 dBm 40 dB 8009/8009	ge(Hopp offset 7.	Ding) N\	/NT 1-D BW 100 kHz	Mode Ar	uto FFT	Ant1 Ho	2.470	8,69 dBm
Ba Spectrum Ref Level Att SGL Count ISGL COU	and Edg 27.60 dBm 40 dB 8009/8009	ge(Hopp offset 7.	Ding) N\		Mode Ar	uto FFT		2.470	8.69 dBm 500400 GHz
Ba Spectrum Ref Level Att SGL Count ISGL COU	and Edg 27.60 dBm 40 dB 8009/8009	ge(Hopp offset 7.	Ding) N\		Mode Ar	uto FFT	Ant1 Ho	2.470	8.69 dBm 500400 GHz

• 1Pk Max	11	1	r	M	1[1]			8.51 dBr
20 dBm		-	-					605000 GH
1 10 dBm	-	-		IVI	2[1]			-43.36 dBr 850000 GH
3 dBm	_		-			-		
-10 dBm-D1 -11	1,314 dBm		-				-	
-20 cBm			-			-		
-30 cBm			-			-		
-40 dBm-	Ma Ma	alumenta putermatidas	Mart with allowing as	male malling and	A Route atta	Cores we we	er a Alexan	
-50 dBm	"Con the track and	AUGUREN	Partine Lott + 2244	Louise and Par	Arran terra Dr. 1991	and we have a second	V	Polentleanacen
-60 dBm							_	
-70 dBm					1	1		1
Start 2.476 GHz Marker	-	-	1001	pts			Stop	2.576 GHz
Type Ref Trc M1 1		605 GHz	Y-value 8.51 dB	Func	tion	Fund	tion Result	
		835 GHz	-43.36 dB		_			
M2 1		O. F. CUIR	AD EF HE	-				
M3 1 M4 3 Ba Spectrum Ref Level 27.62	nd Edge N	7.62 dB 🖷 R	BW 100 kHz	02MHz /		-Hoppir	ng Ref	1
M3 1 M4 3 Ba Spectrum Ref Level 27.62 Att 4 SGL Count 100/10	nd Edge N dBm Offset 0 odb swt	923 GHZ IVNT 2- 7.62 dB R	-41.65 dB	02MHz /		-Hoppir	ng Ref	۵ ۲
M3 1 M4 3 Ba Spectrum Ref Level 27.62 Att 4 SGL Count 100/10 • 1Pk Max	nd Edge N dBm Offset 0 odb swt	923 GHZ IVNT 2- 7.62 dB R	-41.65 dB	D2MHz /		-Hoppir	1.00	2,59 dBr
M3 1 M4 3 Ba Spectrum Ref Level 27.62 Att 4 SGL Count 100/10	nd Edge N dBm Offset 0 odb swt	923 GHZ IVNT 2- 7.62 dB R	-41.65 dB	D2MHz /	uto FFT	D-Hoppin	1.00	[2
M3 1 M4 3 Ba Spectrum Ref Level 27.62 Att 4 SGL Count 100/10 • 1Pk Max	nd Edge N dBm Offset 0 odb swt	923 GHZ IVNT 2- 7.62 dB R	-41:65 dE	D2MHz /	uto FFT	-Hoppir	1.00	2,59 dBr
M3 1 M4 3 Ba Spectrum Ref Level 27.62 Att 4 SGL Count 100/11 • 1Pk Max 20 dBm-	nd Edge N dBm Offset 0 odb swt	923 GHZ IVNT 2- 7.62 dB R	-41.65 dB	D2MHz /	uto FFT	p-Hoppin	1.00	2,59 dBr
M3 1 M4 3 M4 3 Ba 3 Spectrum Ref Level 27.62 Att 4 SGL Count 100/11 •1Pk Max 20 dBm- 10 dBm- 0 dBm-	nd Edge N dBm Offset 0 odb swt	923 GHZ IVNT 2- 7.62 dB R	-41:65 dE	D2MHz /	uto FFT	p-Hoppin	1.00	2,59 dBr
M3 1 M4 3 M4 3 Ba 3 Spectrum Ref Level 27.62 Att 4 SGL Count 100/11 1Pk Max 20 dBm- 10 dBm-	nd Edge N dBm Offset 0 odb swt	923 GHZ IVNT 2- 7.62 dB R	-41:65 dE	D2MHz /	uto FFT	p-Hoppin	1.00	2,59 dBr
M3 1 M4 3 M4 3 Ba 3 Spectrum Ref Level 27.62 Att 4 SGL Count 100/11 •1Pk Max 20 dBm- 10 dBm- 0 dBm-	nd Edge N dBm Offset 0 odb swt	923 GHZ IVNT 2- 7.62 dB R	-41:65 dE	D2MHz /	uto FFT	p-Hoppin	1.00	2,59 dBr
M3 1 M4 3 M4 3 Ba 3 Spectrum Ref Level 27.62 Att 4 SGL Count 100/10 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm	nd Edge N dBm Offset 0 odb swt	923 GHZ IVNT 2- 7.62 dB R	-41:65 dE	D2MHz /	uto FFT	p-Hoppin	1.00	2,59 dBr
M3 1 M4 J M4 J Ba J Spectrum Ref Level 27.62 Att 4 SGL Count 100/10 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	nd Edge N dBm Offset 0 odb swt	923 GHZ IVNT 2- 7.62 dB R	-41:65 dE	D2MHz /	uto FFT	p-Hoppin	1.00	2,59 dBr
M3 1 M4 J M4 J Ba J Spectrum Ref Level 27.62 Att 4 SGL Count 100/10 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	nd Edge N dBm Offset odd Swr	923 GHZ IVNT 2- 7.62 dB R	-41:65 dE	D2MHz /	uto FFT	p-Hoppin	1.00	2,59 dBr
M3 1 M4 J M4 J Ba J Spectrum Ref Level 27.62 Att 4 SGL Count 100/10 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	nd Edge N dBm Offset odd Swr	923 GHZ IVNT 2- 7.62 dB R	-41:65 dE	D2MHz /	uto FFT	p-Hoppin	1.00	2,59 dBr
M3 1 M4 J M4 J Ba J Spectrum Ref Level 27.62 Att 4 SGL Count 100/10 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	nd Edge N dBm Offset odd Swr	923 GHZ IVNT 2- 7.62 dB R	-41:65 dE	D2MHz /	uto FFT	p-Hoppin	1.00	2,59 dBr
M3 1 M4 3 M4 3 Ba 3 Spectrum Ref Level 27.62 Att 4 Spectrum 4 SGL Count 100/10 100/10 ID dBm 20 dBm 10 dBm -0 -10 dBm	nd Edge N dBm Offset odd Swr	923 GHZ IVNT 2- 7.62 dB R	-41:65 dE	D2MHz /	uto FFT	p-Hoppin	1.00	2,59 dBr
M3 1 M4 J M4 J Ba J Spectrum Ref Level 27.62 Att 4 SGL Count 100/10 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	nd Edge N dBm Offset odd Swr	923 GHZ IVNT 2- 7.62 dB R	-41:65 dE		uto FFT	p-Hoppin	2.401	2,59 dBr

20 dBm								
			2	M	1[1]	-	2.402	3.55 dBn 05000 GHz
10 dBm		1 1		M	2[1]			43.89 dBm
0 dBm							2.400	T T
		1					ji ij	
-10 dBm-01 -17.412	dBm							
-20 dBm-							1	
-30 dBm		M4	1000		1.000		1.5	
-40 dBm	Multim Mound		an orrestriction of	Williamendulation	white the stand out to a	march Anon	Manualu	vinner wa
-50 dBm	- And C							
-60 dBm							1	
-70 dBm Start 2.306 GHz		-	1001	nte		-		2.406 GHz
larker			1001	prs	3.4.2		Stop .	2.400 0112
Type Ref Trc M1 1	X-value 2.402	05 GHz	Y-value 3.55 dBr	Func n	tion	Fund	ction Result	
M2 1 M3 1		2.4 GHz 39 GHz	-43.89 dBr -45.85 dBr	1 m				
M4 1		43 GHz	-41.00 dBr					
Band Edg Spectrum Ref Level 27.62 dBm Att 40 dB SGL Count 8000/8000 PPk Max	Offset 7.	.62 dB 👜 RI	/NT 2-D BW 100 kHz BW 300 kHz	10.2		ant1 Ho	pping R	ef
Spectrum Ref Level 27.62 dBm Att 40 dB SGL Count 8000/8000	Offset 7.	.62 dB 👜 RI	BW 100 kHz	Mode A		ant1 Ho		5,59 dBm
Spectrum Ref Level 27.62 dBm Att 40 dB SGL Count 8000/8000	Offset 7.	.62 dB 👜 RI	BW 100 kHz	Mode A	uto FFT	ant1 Ho		Δ.
Spectrum Ref Level 27.62 dBm Att 40 dB SGL Count 8000/8000 1Pk Max	Offset 7.	.62 dB 👜 RI	BW 100 kHz	Mode A	uto FFT	ant1 Ho		5,59 dBm
Spectrum Ref Level 27.62 dBm Att 40 dB SGL Count SGL Count IPk Max 20 dBm 10 dBm	Offset 7.	.62 dB 👜 RI	BW 100 kHz	Mode A	uto FFT	ant1 Ho		5,59 dBm
Spectrum Ref Level 27.62 dBm Att 40 dB SGL Count 8000/8000 IPk Max 20 dBm	Offset 7.	.62 dB 👜 RI	BW 100 kHz	Mode A	uto FFT	ant1 Ho		5,59 dBm
Spectrum Ref Level 27.62 dBm Att 40 dB SGL Count SGL Count IPk Max 20 dBm 10 dBm	Offset 7.	.62 dB 👜 RI	BW 100 kHz	Mode A	uto FFT	ant1 Ho		5,59 dBm
Spectrum Ref Level 27.62 dBm Att 40 dB SGL Count 8000/8000 1Pk Max 20 dBm 10 dBm 0 dBm 10 dBm	Offset 7.	.62 dB 👜 RI	BW 100 kHz	Mode A	uto FFT	ant1 Ho		5,59 dBm
Spectrum Ref Level 27.62 dBm SGL 40 dB SGL 500/8000 IPk Max 20 dBm 10 dBm	Offset 7.	.62 dB 👜 RI	BW 100 kHz	Mode A	uto FFT	ant1 Ho		5,59 dBm
Spectrum Ref Level 27.62 dBm Att 40 dB SGL Count SGL Count IPk Max 20 dBm 10 dBm -10 dBm	Offset 7.	.62 dB R 8.9 μs V	BW 100 kHz	Mode A	uto FFT	ant1 Ho		5,59 dBm
Spectrum Ref Level 27.62 dBm SGL 40 dB SGL 500/8000 IPk Max 20 dBm 10 dBm	Offset 7.	.62 dB 👜 RI	BW 100 kHz	Mode A	uto FFT	ant1 Ho		5,59 dBm
Spectrum Ref Level 27.62 dBm SGL Count 8000/8000 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm	Offset 7.	.62 dB R 8.9 μs V	BW 100 kHz	Mode A	uto FFT	Ant1 Ho		5,59 dBm
Spectrum Ref Level 27.62 dBm Att 40 dB SGL Count 8000/8000 1Pk Max 10 dBm 20 dBm 10 dBm	Offset 7.	.62 dB R 8.9 μs V	BW 100 kHz	Mode A	uto FFT	ant1 Ho		5,59 dBm
Spectrum Ref Level 27.62 dBm Att 40 dB SGL Count 8000/8000 10 dBm 10 dBm 0 -10 dBm	Offset 7.	.62 dB R 8.9 μs V	BW 100 kHz	Mode A	uto FFT	ant1 Ho		5,59 dBm
Spectrum Ref Level 27.62 dBm Att 40 dB SGL Count SQL Count PIPk Max 20 dBm 20 dBm 10 dBm 20 dBm -10 dBm	Offset 7.	.62 dB R 8.9 μs V	BW 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Ho	2.403	5,59 dBm 99000 GHz
Spectrum Ref Level 27.62 dBm Att 40 dB SGL Count 8000/8000 10 dBm 10 dBm 20 dBm -10 dBm	Offset 7.	.62 dB R 8.9 μs V	BW 100 kHz	Mode A	uto FFT	ant1 Ho	2.403	5,59 dBm 99000 GHz

SGL Count 1 1Pk Max		1	1	1 1	MI	1[1]			2.40 dE
20 dBm		-		-	_	2[1]			495000 G -43.04 dE
10 dBm	_		-	1			()		000000 G
0 dBm	-			1					por
-10 dBm-	1 -14.40	6 dBm		-					
-20 dBm				1				1	
-30 dBm		-	M4				1	Ma	M2
-40 dBm	multilya	1000 marine	winder	approximation perhapsing	per-monorana year	monunalismal	becomplyingers	and and fundamental	
-50 dBm				1.				11 <u> </u>	
-60 dBm				-					
Start 2.306	GHz	1		1001	pts			Stop	2.406 GH
Marker Type Ref		X-valu	495 GHz	Y-value	Funct	ion	Fun	ction Resul	t
M1 M2	1		2.4 GHz	2.40 dB -43.04 dB	m				
			2.39 GHz	-43.60 dB					
M3 M4 Spectrum Ref Level 2 Att SGL Count 1 @1Pk Max	7.60 dBr 40 dl	Edge N	403 GHz	-40.53 dB 2-DH5 248 RBW 100 kHz YBW 300 kHz	30MHz A Mode Au	ito FF T	D-Hoppi	ng Ref	ه
M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max	1 Band 7.60 dBn 40 dl	Edge N	403 GHz	2-DH5 248 RBW 100 kHz	30MHz A Mode Au		D-Hoppi	1.60	4,64 dE
M4 Spectrum Ref Level 2 Att SGL Count 1 9 1Pk Max 20 dBm	1 Band 7.60 dBn 40 dl	Edge N	403 GHz	2-DH5 248 RBW 100 kHz	30MHz A Mode Au	ito FF T	D-Hoppi	1.60	4,64 dE
M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max	1 Band 7.60 dBn 40 dl	Edge N	403 GHz	2-DH5 248 RBW 100 kHz	30MHz A Mode Au	ito FF T	p-Hoppin	1.60	4,64 dE
M4 Spectrum Ref Level 2 Att SGL Count 1 9 1Pk Max 20 dBm	1 Band 7.60 dBn 40 dl	Edge N	403 GHz	2-DH5 248 RBW 100 kHz yBW 300 kHz	30MHz A Mode Au	ito FF T	p-Hoppi	1.60	4,64 dE
M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm	1 Band 7.60 dBn 40 dl	Edge N	403 GHz	2-DH5 248 RBW 100 kHz yBW 300 kHz	30MHz A Mode Au	ito FF T	p-Hoppin	1.60	4,64 dE
M4 Spectrum Ref Level 2 Att SGL Count 1 O IPk Max 20 dBm 10 dBm 0 dBm	1 Band 7.60 dBn 40 dl	Edge N	403 GHz	2-DH5 248 RBW 100 kHz yBW 300 kHz	30MHz A Mode Au	ito FF T	p-Hoppin	1.60	4,64 dE
M4 Spectrum Ref Level 2 Att SGL Count 1 9 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	1 Band 7.60 dBn 40 dl	Edge N	403 GHz	2-DH5 248 RBW 100 kHz yBW 300 kHz	30MHz A Mode Au	ito FF T	p-Hoppin	1.60	4,64 dE
M4 Spectrum Ref Level 2 Att SGL Count 1 9 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	1 Band 7.60 dBn 40 dl	Edge N	403 GHz	2-DH5 248 RBW 100 kHz yBW 300 kHz	30MHz A Mode Au	ito FF T	p-Hoppin	1.60	4,64 dE
M4 Spectrum Ref Level 2 Att SGL Count 1 9 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	1 Band 7.60 dBn 40 dl	Edge N	403 GHz	2-DH5 248 RBW 100 kHz yBW 300 kHz	30MHz A Mode Au	ito FF T	p-Hoppin	1.60	4,64 dE
M4 Spectrum Ref Level 2 Att SGL Count 1 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	1 Band 7.60 dBn 40 dl	Edge N	403 GHz	2-DH5 248 RBW 100 kHz yBW 300 kHz	30MHz A Mode Au	ito FF T	p-Hoppin	1.60	4,64 dE
M4 Spectrum Ref Level 2 Att SGL Count 1 ID dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 Band 7.60 dBn 40 dl	Edge N	403 GHz	2-DH5 248 RBW 100 kHz yBW 300 kHz	30MHz A Mode Au	ito FF T	p-Hoppin	1.60	4,64 dE
M4 Spectrum Ref Level 2 Att SGL Count 1 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm	1 Band 7.60 dBn 40 dl	Edge N	403 GHz	2-DH5 248 RBW 100 kHz yBW 300 kHz	30MHz A Mode Au	ito FF T	p-Hoppin	1.60	4,64 dE
M4 Spectrum Ref Level 2 Att SGL Count 1 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -	1 Band 7.60 dBn 40 di 00/100	Edge N	403 GHz	2-DH5 248 RBW 100 kHz yBW 300 kHz	BOMHZ A	ito FF T	p-Hoppin	2.479	4,64 dt 984020 G
M4 Spectrum Ref Level 2 Att SGL Count 1 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm -70 dBm -70 dBm	1 Band 7.60 dBn 40 di 00/100	Edge N	403 GHz	2-DH5 248	BOMHZ A	ito FF T	p-Hoppin	2.479	4,64 db 984020 G

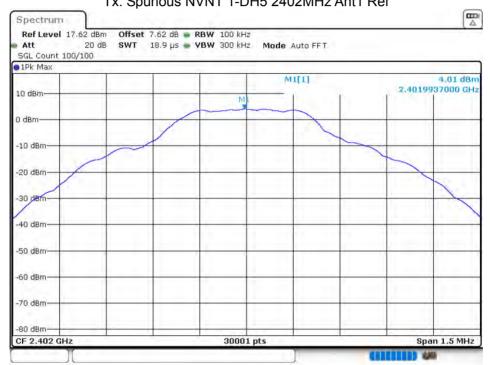
😑 1Pk Max	1	î -	1	r i					1.0.1.10
20 dBm						1[1]			4.04 dBn 005000 GH
10,d&m		-			M	2[1]			-43.22 dBn 350000 GH
0 dem									
-10 cBm			-			1			1
-20 GBm-	D1 -15,350	3 dBm		-					
-30 dBm						1	<u> </u>	1	
-40 dBM2	M4	1		_		11-11-1	1		
-50 dBm-	phonordonami	Man Ma Ranny 44	budortwaliper	antichenergiese	mbilemoneythe	howhately and	undownerships	Manaluberhames	handreasent
							-		
-60 dBm		· · · · · · · · · · · · · · · · · · ·		·			· · · · · · · · · · · · · · · · · · ·		1
-70 dBm— Start 2.47	6 GHz	1		1001	pts			Stop	2.576 GHz
Marker Type Re	f Trc	X-value		Y-value	Func	tion	Fund	tion Resul	t
M1 M2	1	2.480	05 GHz 35 GHz	4.04 dBr -43.22 dBr	m		,		
M3	1	2	2.5 GHz	-43.22 dBr -46.33 dBr -42.79 dBr	m				
M4	1	2,49	03 GHz	-42.79 dBr	m		-		-
Spectrur Ref Level Att		Offset 7. SWT 10	60 dB 🖷 RI	/NT 2-D BW 100 kHz BW 300 kHz	13.7		Ant1 Hop	oping R	Ref
Spectrur Ref Level Att	n 27.60 dBm 40 dB	Offset 7. SWT 10	60 dB 🖷 RI	BW 100 kHz	Mode A		Ant1 Hop		8,45 dBn
Spectrur Ref Level Att SGL Count	n 27.60 dBm 40 dB	Offset 7. SWT 10	60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		
Spectrur Ref Level Att SGL Count PlPk Max	n 27.60 dBm 40 dB	Offset 7. SWT 10	60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		8,45 dBn
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	n 27.60 dBm 40 dB 8000/8000	Offset 7. SWT 10	60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		8,45 dBn
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm	n 27.60 dBm 40 dB 8000/8000	Offset 7. SWT 10	60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		8,45 dBn
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	n 27.60 dBm 40 dB 8000/8000	Offset 7. SWT 10	60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		8,45 dBn
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm	n 27.60 dBm 40 dB 8000/8000	Offset 7. SWT 10	60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		8,45 dBn
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	n 27.60 dBm 40 dB 8000/8000	Offset 7. SWT 10	60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		8,45 dBn
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	n 27.60 dBm 40 dB 8000/8000	Offset 7. SWT 10	60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		8,45 dBn
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	n 27.60 dBm 40 dB 8000/8000	Offset 7. SWT 10	60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		8,45 dBn
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	n 27.60 dBm 40 dB 8000/8000	Offset 7. SWT 10	60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		8,45 dBn
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	n 27.60 dBm 40 dB 8000/8000	Offset 7. SWT 10	60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		8,45 dBn
Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm - 50 dBm - 60 dBm	n 27.60 dBm 40 dB 8000/8000	Offset 7. SWT 10	60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		8,45 dBn
Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	n 27.60 dBm 40 dB 8000/8000	Offset 7. SWT 10	60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.47	8,45 dBn
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	n 27.60 dBm 40 dB 8000/8000	Offset 7. SWT 10	60 dB 🖷 RI	BW 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Hop	2.47	8.45 dBn 715480 GH
Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	n 27.60 dBm 40 dB 8000/8000	Offset 7. SWT 10	60 dB 🖷 RI	BW 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Hop	2.47	8.45 dBn 715480 GH

20 dBm	C.								
					M	1[1]		0.00	5.56 dB
1040					M	2[1]			15000 GH 44,49 dB
10 ¹ dBm						1	() I	2.483	50000 GH
budem				-					
-10 cBm-	D1 -11,548	dBm	-	-					
-20 aBm—				-					
-30 dBm				-	-				_
-40 dBm2-	M4	MO	. phillippe	and marker and		al du a		an hereston	Aur - A
-50 dBm-	and a second allows		userin -	Particoursector	weekting	Man Augus	an and a second	Mort	- Mariana
-60 dBm									
-70 dBm						1	1	1	
Start 2.47	6 GHz		1	1001	pts			Stop :	2.576 GHz
Marker Type Re	f Trc	X-value		Y-value	Fund	tion	Func	tion Result	
M1 M2	1		15 GHz 35 GHz	5.56 dB -44.49 dB					
M3	1		.5 GHz	-44.86 dB	and and a second se				
M4	1		96 GHz	-42.12 dB		1			_
M4 Spectrur	Band n 27.62 dBm 40 dB	2.489 Edge N' Offset 7.	96 GHz VNT 3- 62 db • R	-42.12 dB DH5 24(BW 100 kHz BW 300 kHz	m D2MHz		p-Hoppir	ng Ref	([4
M4 Spectrur Ref Level Att	Band n 27.62 dBm 40 dB	2.489 Edge N' Offset 7.	96 GHz VNT 3- 62 db • R	DH5 24(m)2MHz . Mode A	uto FFT	D-Hoppir	ng Ref	(2
M4 Spectrur Ref Level Att SGL Count	Band n 27.62 dBm 40 dB	2.489 Edge N' Offset 7.	96 GHz VNT 3- 62 db • R	DH5 24(m)2MHz . Mode A		o-Hoppir		4,18 dB 83220 G
M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm-	Band n 27.62 dBm 40 dB	2.489 Edge N' Offset 7.	96 GHz VNT 3- 62 db • R	DH5 24(m)2MHz . Mode A	uto FFT	p-Hoppir		4,18 dB)
M4 Spectrur Ref Level Att SGL Count 1Pk Max	Band n 27.62 dBm 40 dB	2.489 Edge N' Offset 7.	96 GHz VNT 3- 62 db • R	DH5 24(m)2MHz . Mode A	uto FFT	o-Hoppir		4,18 dB)
M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm-	Band n 27.62 dBm 40 dB	2.489 Edge N' Offset 7.	96 GHz VNT 3- 62 db • R	DH5 24(BW 100 kHz BW 300 kHz	m)2MHz . Mode A	uto FFT	p-Hoppir		4,18 dB)
M4 Spectrur Ref Level Att SGL Count SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	Band n 27.62 dBm 40 dB	2.489 Edge N' Offset 7.	96 GHz VNT 3- 62 db • R	DH5 24(BW 100 kHz BW 300 kHz	m)2MHz . Mode A	uto FFT	o-Hoppir		4,18 dB)
M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	Band n 27.62 dBm 40 dB	2.489 Edge N' Offset 7.	96 GHz VNT 3- 62 db • R	DH5 24(BW 100 kHz BW 300 kHz	m)2MHz . Mode A	uto FFT	p-Hoppir		4,18 dB)
M4 Spectrur Ref Level Att SGL Count SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	Band n 27.62 dBm 40 dB	2.489 Edge N' Offset 7.	96 GHz VNT 3- 62 db • R	DH5 24(BW 100 kHz BW 300 kHz	m)2MHz . Mode A	uto FFT	p-Hoppir		4,18 dB)
M4 Spectrur Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm-	Band n 27.62 dBm 40 dB	2.489 Edge N' Offset 7.	96 GHz VNT 3- 62 db • R	DH5 24(BW 100 kHz BW 300 kHz	m)2MHz . Mode A	uto FFT	p-Hoppir		4,18 dB)
M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm-	Band n 27.62 dBm 40 dB	2.489 Edge N' Offset 7.	96 GHz VNT 3- 62 dв • R 8,9 µs • V	DH5 24(BW 100 kHz BW 300 kHz	m)2MHz . Mode A	uto FFT	p-Hoppir		4,18 dB)
M4 Spectrur Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm-	Band n 27.62 dBm 40 dB	2.489 Edge N' Offset 7.	96 GHz VNT 3- 62 db • R	DH5 24(BW 100 kHz BW 300 kHz	m)2MHz . Mode A	uto FFT	p-Hoppir		4,18 dB)
M4 Spectrur Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -40 dBm-	Band n 27.62 dBm 40 dB	2.489 Edge N' Offset 7.	96 GHz VNT 3- 62 dв • R 8,9 µs • V	DH5 24(BW 100 kHz BW 300 kHz	m)2MHz . Mode A	uto FFT	p-Hoppir		4,18 dB)
M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	Band n 27.62 dBm 40 dB	2.489 Edge N' Offset 7.	96 GHz VNT 3- 62 dв • R 8.9 µs • V	DH5 24(BW 100 kHz BW 300 kHz	m)2MHz . Mode A	uto FFT	p-Hoppir		4,18 dB)
M4 Spectrur Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -40 dBm-	Band n 27.62 dBm 40 dB	2.489 Edge N' Offset 7.	96 GHz VNT 3- 62 dв • R 8.9 µs • V	DH5 24(BW 100 kHz BW 300 kHz	m)2MHz . Mode A	uto FFT	p-Hoppir		4,18 dB)
M4 Spectrur Ref Level Att SGL Count 10 dBm 20 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm	Band n 27.62 dBm 40 dB	2.489 Edge N' Offset 7.	96 GHz VNT 3- 62 dв • R 8.9 µs • V	DH5 24(BW 100 kHz BW 300 kHz	m)2MHz . Mode A	uto FFT	p-Hoppir		4,18 dB)
M4 Spectrur Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm-	Band 127.62 dBm 40 dB 300/300	2.489 Edge N' Offset 7.	96 GHz VNT 3- 62 dв • R 8.9 µs • V	DH5 24(BW 100 kHz BW 300 kHz	Mode A	uto FFT	p-Hoppir	2,401	4,18 dB

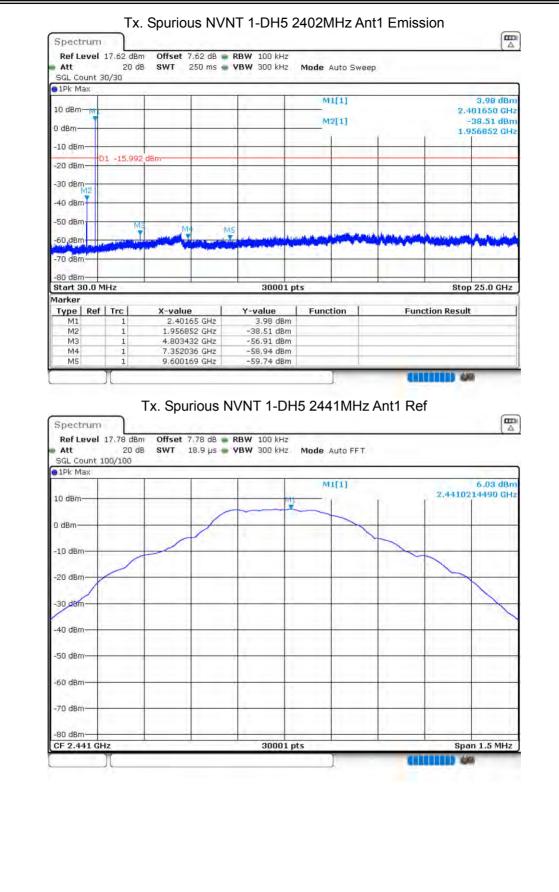
1Pk Max	40 dB 00/100	5W1 22	21.9 hz 🖷	VBW 300 kH	< Mode	AUTO FF T			_
		1		1	M	1[1]		G MA	4.50 dBn
20 dBm					M	2[1]		-	215000 GH: -45.71 dBn
10 dBm		2		-		1	()	2.400	100000//GH:
0 dBm					-				
-10 dBm		-						1	
-20 dBm-	1 -15,010	dBm							
-30 dBm								-	
-40 dBm	-	0.1	M4	Lost white the se				M3 .	M
-40 UBIN Muhan -50 dBm	impair and a product	-solution and population	Andry summer	which we would will	an and a grand of	Monthalline	Heldlingsstation	word the second	montany m
-60 dBm									_
-70 dBm						1	1	1	
Start 2.306 (GHz			1001	pts	-		Stop	2.406 GHz
Marker Type Ref		X-value		Y-value	Fund	tion	Func	tion Result	t
M1 M2	1		15 GHz	4.50 dB -45.71 dB					
M3 M4	1		39 GHz 06 GHz	-46.68 dB -41.59 dB					_
	11	2,011		11.00 00	<u></u>	7	-		<i>1</i> 1
SGL Count 80	000/0000			D11 300 K12	Mode A	uto FFT			
SGL Count BL									6.63 dBn
				500 KH2		uto FFT	6	2,405	6,63 dBn 514890 GH:
9 1Pk Max								2.405 M	
●1Pk Max								2.405	
9 1Pk Max							- March	2.405	
19k Max 20 dBm 10 dBm							- Mark	2,405	
1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm							- m	2.405	
• 1Pk Max 20 dBm							m	2,405	
1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm								2.405	
1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm								2.405	
1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm								2,405	
1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	~~~~~	~~~~~						2,405	
1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm			~~~~					2.405	
1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm								2,405	
1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				M				
1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1001	M				
1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				M				

20 dBm-				2	M	1[1]		0 404	3.25 dB
					M	2[1]			95000 GH 44.77 dB
10 dBm						1	()	2.400	00000 G
0 dBm		-	-	-					N
-10 dBm	DI -13.367	dBm		-				-	
-20 dBm		Grann	-						
-30 dBm	· · · · ·				-		_		
-40 dBm	-		M4			1.000	1	Me	nett
-50 dBm	waterstration	helistry returns	monthly hunch they	manplement	Albumania	Unanderson and income	apartment	multo Trenchurren	water
			1	·				1	
-60 dBm				1				1	
-70 dBm	GH7		1	1001	nts	1		Stop	2.406 GH
Marker	GIL			1001	pes			otop .	2.100 011
Type Ref M1	Trc 1	X-valu 2.404	e	Y-value 3.25 dBr	Func m	tion	Fund	tion Result	
M2	1		2.4 GHz	-44.77 dBr	m				
			00.011						
M3 M4 Spectrum Ref Level 3 Att SGL Count	1 1 Band 27.60 dBm 40 dB	2.33 Edge N Offset 7	.60 dB 🐞 F	-45.29 dBr -40,49 dBr -DH5 248 RBW 100 kHz	m BOMHz		-Hoppir	ng Ref	۵
M3 M4 Spectrum Ref Level 3 Att	1 1 Band 27.60 dBm 40 dB	2.33 Edge N Offset 7	IVNT 3-	-40,49 dBi -DH5 248 RBW 100 kHz	Mode A	uto FFT	o-Hoppir	ng Ref	
M3 M4 Spectrum Ref Level 3 Att SGL Count	1 1 Band 27.60 dBm 40 dB	2.33 Edge N Offset 7	IVNT 3-	-40,49 dBi -DH5 248 RBW 100 kHz	Mode A		p-Hoppir		4,07 dB
M3 M4 Spectrum Ref Level 3 Att SGL Count 1Pk Max 20 dBm	1 1 Band 27.60 dBm 40 dB	2.33 Edge N Offset 7	IVNT 3-	-40,49 dBi -DH5 248 RBW 100 kHz	Mode A	uto FFT	o-Hoppir		4,07 dB
M3 M4 Spectrum Ref Level 3 Att SGL Count 1Pk Max	1 1 Band 27.60 dBm 40 dB	2.33 Edge N Offset 7	IVNT 3-	-40.49 dBi	Mode A	uto FFT	D-Hoppir		4,07 dB
M3 M4 Spectrum Ref Level 3 Att SGL Count 1Pk Max 20 dBm	1 1 Band 27.60 dBm 40 dB	2.33 Edge N Offset 7	IVNT 3-	-40.49 dBi	Mode A	uto FFT	p-Hoppir		4,07 dB
M3 M4 Spectrum Ref Level : SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm	1 1 Band 27.60 dBm 40 dB	2.33 Edge N Offset 7	IVNT 3-	-40.49 dBi	Mode A	uto FFT	o-Hoppir		4,07 dB
M3 M4 Spectrum Ref Level : Att SGL Count IPk Max 20 dBm 10 dBm	1 1 Band 27.60 dBm 40 dB	2.33 Edge N Offset 7	IVNT 3-	-40.49 dBi	Mode A	uto FFT	p-Hoppir		4,07 dB
M3 M4 Spectrum Ref Level : SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm	1 1 Band 27.60 dBm 40 dB	2.33 Edge N Offset 7	IVNT 3-	-40.49 dBi	Mode A	uto FFT	p-Hoppir		4,07 dB
M3 M4 Spectrum Ref Level 3 Att SGL Count 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm	1 1 Band 27.60 dBm 40 dB	2.33 Edge N Offset 7	IVNT 3-	-40.49 dBi	Mode A	uto FFT	p-Hoppir		4,07 dB
M3 M4 Spectrum Ref Level : SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm	1 1 Band 27.60 dBm 40 dB	2.33 Edge N Offset 7	IVNT 3-	-40.49 dBi	Mode A	uto FFT	p-Hoppir		4,07 dB
M3 M4 Spectrum Ref Level 3 Att SGL Count 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm	1 1 Band 27.60 dBm 40 dB	2.33 Edge N Offset 7	IVNT 3-	-40.49 dBi	Mode A	uto FFT	p-Hoppir		4,07 dB
M3 M4 Spectrum Ref Level 3 Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	1 1 Band 27.60 dBm 40 dB	2.33 Edge N Offset 7	IVNT 3-	-40.49 dBi	Mode A	uto FFT	p-Hoppir		4,07 dB
M3 M4 Spectrum Ref Level 3 Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	1 1 Band 27.60 dBm 40 dB	2.33 Edge N Offset 7	IVNT 3-	-40.49 dBi	Mode A	uto FFT	p-Hoppir		4,07 dB
M3 M4 Spectrum Ref Level 3 Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	1 1 Band 27.60 dBm 40 dB	2.33 Edge N Offset 7	IVNT 3-	-40.49 dBi	Mode A	uto FFT	p-Hoppir		4,07 dB
M3 M4 Spectrum Ref Level 3 Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm	1 1 27.60 dBm 40 dB 100/100	2.33 Edge N Offset 7	IVNT 3-	-40.49 dBi	Mode A	uto FFT	p-Hoppir	2,480	4,07 dB

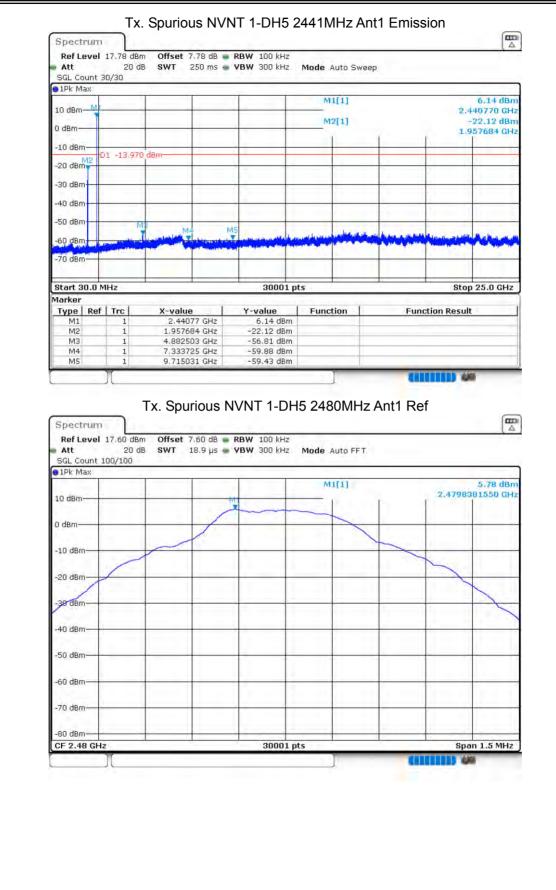
Att 40 SGL Count 100/10			VBW 300 kHz					
20 dBm-				M	1[1]		2.40	3.81 dBm 005000 GHz
Contraction of the second				M	2[1]			-46.50 dBm
10 dBm							2.48	350000 GHz
0 d8m		1			1	11		1
-10 cBm- D1 -15	.928 dBm							
-20 aBm								1
-30 dBm	- 1			-				
-40 dBm2 M4	Manual Million motions	wannerengets	mandulation	w. w. W. Antonia .	mittle which when	1. Auch 1 A M	allan the film	Monitorian
-50 dBm					an a chara	Color Photos	-	
-60 dBm								
-70 dBm	_		1001	nte	_		Stop	2.576 GHz
Marker			1001				10.0	
Type Ref Trc M1 1		9 D5.GHz	Y-value 3.81 dBr	n Funct	tion	Func	tion Resul	t
M2 1 M3 1	2.48	35 GHz 2.5 GHz	-46.50 dBr -45.04 dBr	n				
M4 1		94 GHz	-42.63 dBr	n	1			
Spectrum	Edge(Hopp	- A	in the second	H5 248	0MHz A	nt1 Hop	pping R	Ref
Spectrum Ref Level 27.60 Att 40 SGL Count 8000/8	dBm Offset 7. DdB SWT 18	.60 dB 🐞 R	VNT 3-DI	13.21		nt1 Hop	ping R	
Spectrum Ref Level 27.60 Att 40	dBm Offset 7. DdB SWT 18	.60 dB 🐞 R	BW 100 kHz	Mode Au		ant1 Hop		8.74 dBn
Spectrum Ref Level 27.60 Att 40 SGL Count 8000/8	dBm Offset 7. DdB SWT 18	.60 dB 🐞 R	BW 100 kHz	Mode Au	uto FF T	ant1 Hop		Δ
Spectrum Ref Level 27.60 / Att 40 SGL Count 8000/8 1Pk Max	dBm Offset 7. DdB SWT 18	.60 dB 🐞 R	BW 100 kHz	Mode Au	uto FF T	nt1 Hop		8.74 dBn
Spectrum Ref Level 27.60 Att 46 SGL Count 8000/8 1Pk Max 20 dBm 10 dBm	dBm Offset 7. DdB SWT 18	60 dB 🗰 R 8,9 µs 🖷 V	BW 100 kHz	Mode Au	uto FF T	Ant1 Hop		8.74 dBn
Spectrum Ref Level 27.60 Att 40 SGL Count 8000/8 1Pk Max 20 dBm-	dBm Offset 7. 0 dB SWT 10	.60 dB 🐞 R	BW 100 kHz	Mode Au	uto FF T	Int1 Hop		8.74 dBn
Spectrum Ref Level 27.60 Att 46 SGL Count 8000/8 1Pk Max 20 dBm 10 dBm	dBm Offset 7. 0 dB SWT 10	60 dB 🗰 R 8,9 µs 🖷 V	BW 100 kHz	Mode Au	uto FF T	Ant1 Hop		8.74 dBn
Spectrum Ref Level 27.60 Att 40 SGL Count 8000/8 PIPK Max 20 dBm 19 dBm 0 dBm	dBm Offset 7. 0 dB SWT 10	60 dB 🗰 R 8,9 µs 🖷 V	BW 100 kHz	Mode Au	uto FF T	Ant1 Hop		8.74 dBn
Spectrum Ref Level 27.60 Att 44 SGL Count 8000/8 IPk Max 20 dBm 19 dBm -10 dBm -20 dBm	dBm Offset 7. 0 dB SWT 10	60 dB 🗰 R 8,9 µs 🖷 V	BW 100 kHz	Mode Au	uto FF T	Ant1 Hop		8.74 dBn
Spectrum Ref Level 27.60 Att 40 SGL Count 8000/8 PIPK Max 20 dBm 10 dBm -10 dBm	dBm Offset 7. 0 dB SWT 10	60 dB 🗰 R 8,9 µs 🖷 V	BW 100 kHz	Mode Au	uto FF T	Ant1 Hop		8.74 dBn
Spectrum Ref Level 27.60 Att 44 SGL Count 8000/8 IPk Max 20 dBm 19 dBm -10 dBm -20 dBm	dBm Offset 7. 0 dB SWT 10	60 dB 🗰 R 8,9 µs 🖷 V	BW 100 kHz	Mode Au	uto FF T	Ant1 Hop		8.74 dBn
Spectrum Ref Level 27.60 Att 40 SGL Count 8000/8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 7. 0 dB SWT 10	60 dB 🗰 R 8,9 µs 🖷 V	BW 100 kHz	Mode Au	uto FF T	Ant1 Hop		8.74 dBn
Spectrum Ref Level 27.60 Att 40 SGL Count 8000/8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	dBm Offset 7. 0 dB SWT 10	60 dB 🗰 R 8,9 µs 🖷 V	BW 100 kHz	Mode Au	uto FF T	Ant1 Hop		8.74 dBn
Spectrum Ref Level 27.60 Att 40 SGL Count 8000/8 IPk Max 20 dBm 0 dBm 10 dBm -20 dBm -30 dBm	dBm Offset 7. 0 dB SWT 10	60 dB 🗰 R 8,9 µs 🖷 V	BW 100 kHz	Mode Au	uto FF T	Ant1 Hop		8.74 dBn
Spectrum Ref Level 27.60 Att 40 SGL Count 8000/E IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dBm Offset 7. 0 dB SWT 10	60 dB 🗰 R 8,9 µs 🖷 V	BW 100 kHz	Mode Au	uto FF T	Ant1 Hop	2.47)	8.74 dBn 615580 GH2
Spectrum Ref Level 27.60 Att 40 SGL Count 8000/E IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dBm Offset 7. 0 dB SWT 10	60 dB 🗰 R 8,9 µs 🖷 V	BW 100 kHz	Mode Au	uto FF T	Ant1 Hop	2.47)	8.74 dBm 615580 GHz
Spectrum Ref Level 27.60 Att 40 SGL Count 8000/E IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dBm Offset 7. 0 dB SWT 10	60 dB 🗰 R 8,9 µs 🖷 V	BW 100 kHz	Mode Au	uto FF T	Ant1 Hop	2.47)	8.74 dBm 615580 GHz
Spectrum Ref Level 27.60 Att 40 SGL Count 8000/E IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dBm Offset 7. 0 dB SWT 11	60 dB 🗰 R 8,9 µs 🖷 V	BW 100 kHz	Mode Au	uto FF T	Ant1 Hop	2.47)	8.74 dBm 615580 GHz

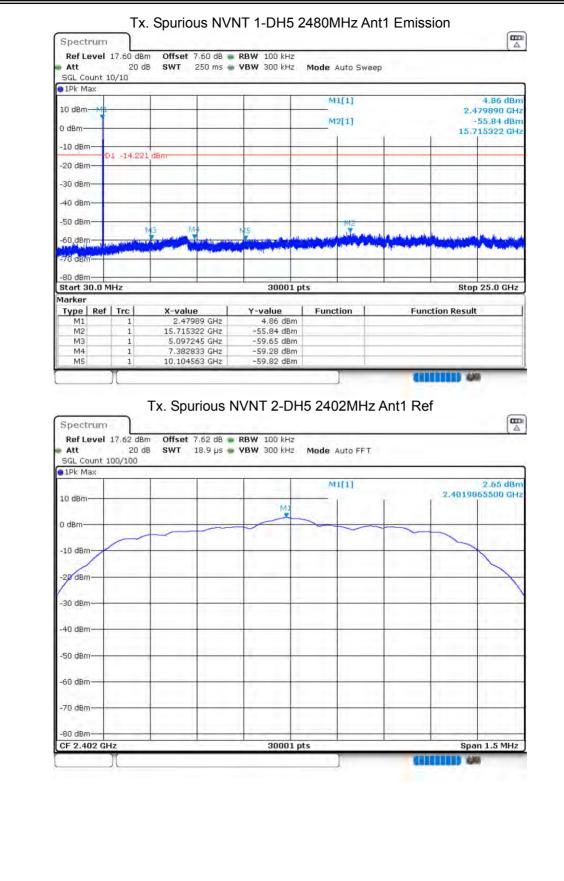

	rum					
	vel 2	7.60 dBm			Association and	
Att	unt 1	40 dE 000/1000		VBW 300 kHz	Mode Auto FF1	r.
D1Pk M		000/1000	,			
	1			1	M1[1]	7.85 dB
20 dBm				-		2.47605000 G
1				1.	M2[1]	-45.00 dB
10 dBm		-				2.48350000 G
aldam-						
and and in						
-10 cBn		1 -11.25	7 dBm			
		1 111120				
-20 dBn	1-1-					
-30 dBn						
-30 060				-		
-40 d8n	12		M4 M3			
les .	- shihih	when a contract with	norther of the second second second	two man how the log were	merchanthally-benerichteries	an charter provident and the provident
-50 dBn	1-					
-60 dBn)			1 1 1		
-70 dBn				_		
Start 2		GHz	1 1	1001 pt	ts	Stop 2.576 GH
Marker	1	1.1.1			Contract and	
Type	Ref	Trc	X-value	Y-value	Function	Function Result
M1		1	2.47605 GHz	7.85 dBm		
M2		1	2.4835 GHz	-45.00 dBm		
M3 M4	-	1	2.5 GHz 2.497 GHz	-44.49 dBm -42.21 dBm		

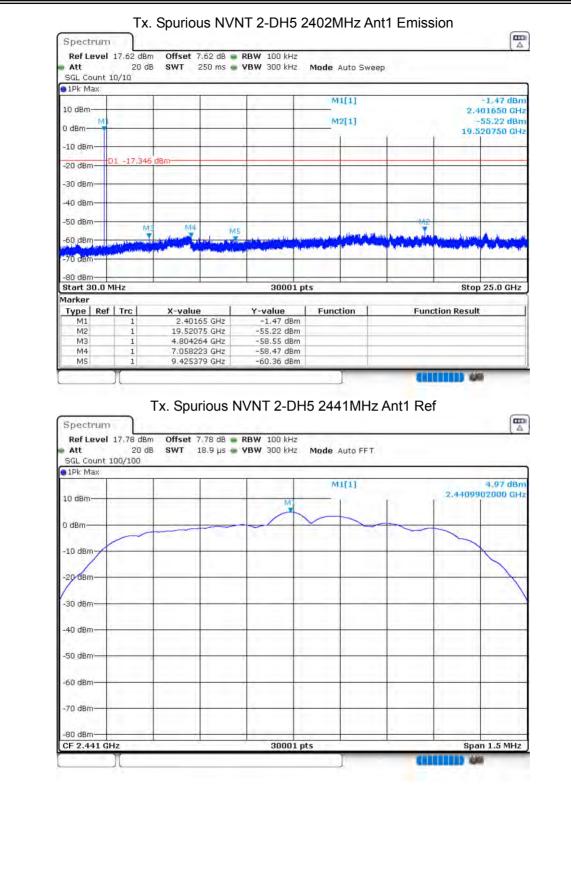
8.7 CONDUCTED RF SPURIOUS EMISSION

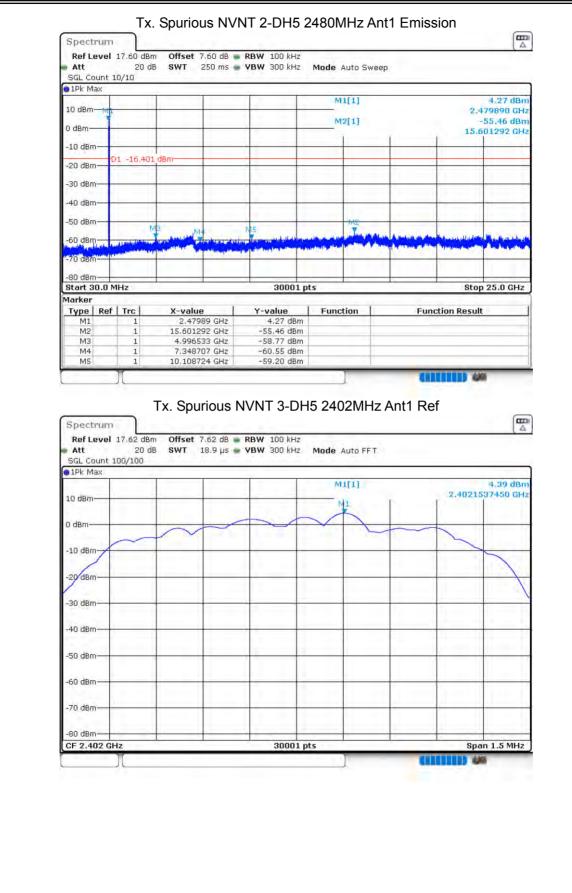

00000	001001		01011			
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-42.51	-20	Pass
NVNT	1-DH5	2441	Ant 1	-28.14	-20	Pass
NVNT	1-DH5	2480	Ant 1	-61.61	-20	Pass
NVNT	2-DH5	2402	Ant 1	-57.86	-20	Pass
NVNT	2-DH5	2441	Ant 1	-60.17	-20	Pass
NVNT	2-DH5	2480	Ant 1	-59.06	-20	Pass
NVNT	3-DH5	2402	Ant 1	-48.3	-20	Pass
NVNT	3-DH5	2441	Ant 1	-60.27	-20	Pass
NVNT	3-DH5	2480	Ant 1	-60.79	-20	Pass

Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref

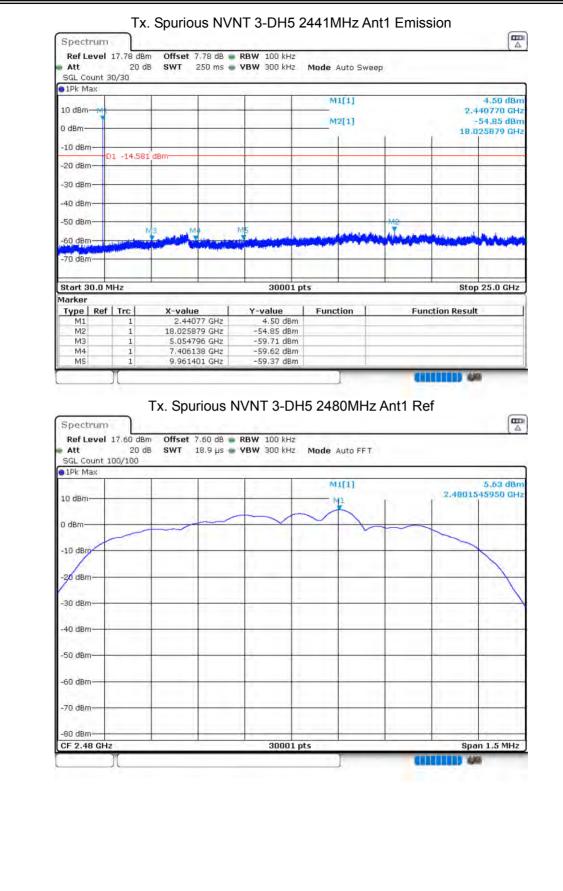








10 dBm-ML					M1	[1]			0,42 0
					_	[1]			441610 -55.20 c
0 dBm	-		-			41)	(·····		406991
-10 dBm	15,026	dBm							
-20 dBm	10,020	GDOT						-	-
-30 dBm	-	-	-	1	-	_	-	-	
-40 dBm			-			-		+	
-50 dBm	M		-			ME	-		-
-60 dBm	Lana and La	allow allow allow	VIP+	ME	destants at the	Lauthols and shares		A destruction of the	Aurine
-70 asm	ALCON - DOWNS				1000 March		1	1.	
				00001		_		-	05.0.0
Start 30.0 MHz Marker				30001 p	its			Sto	p 25.0 G
Type Ref T M1	rc	X-valu 2.441	e	Y-value 0.42 dBm	Funct	ion	Fun	ction Resul	t
M2	1	16.4069	991 GHz	-55.20 dBm					
M3 M4	1		389 GHz	-59.73 dBm -60.01 dBm					
			126 GHz	-60.54 dBm		1			
M5 Spectrum Ref Level 17. Att SGL Count 100/	60 dBm 20 dB	Tx. Spu Offset	Irious N 7.60 dB	NVNT 2-DH RBW 100 kHz VBW 300 kHz				f	
Spectrum Ref Level 17.	60 dBm 20 dB	Tx. Spu Offset	Irious N 7.60 dB	IVNT 2-DH	Mode A				
Spectrum Ref Level 17. Att SGL Count 100/	60 dBm 20 dB	Tx. Spu Offset	Irious N 7.60 dB	IVNT 2-DH	Mode A	uto FFT			
Spectrum Ref Level 17. Att SGL Count 100/ 1Pk Max	60 dBm 20 dB	Tx. Spu Offset	Irious N 7.60 dB	IVNT 2-DH	Mode A	uto FFT			3,60 c 067460
Spectrum Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm	60 dBm 20 dB	Tx. Spu Offset	Irious N 7.60 dB	IVNT 2-DH	Mode A	uto FFT			
Spectrum Ref Level 17, Att SGL Count 100/ 1Pk Max 10 dBm-	60 dBm 20 dB	Tx. Spu Offset	Irious N 7.60 dB	IVNT 2-DH	Mode A	uto FFT			
Spectrum Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm	60 dBm 20 dB	Tx. Spu Offset	Irious N 7.60 dB	IVNT 2-DH	Mode A	uto FFT			
Spectrum Ref Level 17: Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm	60 dBm 20 dB	Tx. Spu Offset	Irious N 7.60 dB	IVNT 2-DH	Mode A	uto FFT			
Spectrum Ref Level 17. Att SGL Count 100/ • 1Pk Max 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm	60 dBm 20 dB	Tx. Spu Offset	Irious N 7.60 dB	IVNT 2-DH	Mode A	uto FFT			
Spectrum Ref Level 17. Att SGL Count 100/ • 1Pk Max 10 dBm 0 dBm -10 dBm -10 dBm	60 dBm 20 dB	Tx. Spu Offset	Irious N 7.60 dB	IVNT 2-DH	Mode A	uto FFT			
Spectrum Ref Level 17. Att SGL Count 100/ • 1Pk Max 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm	60 dBm 20 dB	Tx. Spu Offset	Irious N 7.60 dB	IVNT 2-DH	Mode A	uto FFT			
Spectrum Ref Level 17. Att SGL Count 100/ IPK Max 10 dBm 0 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	60 dBm 20 dB	Tx. Spu Offset	Irious N 7.60 dB	IVNT 2-DH	Mode A	uto FFT			
Spectrum Ref Level 17. Att SGL Count 100/ • 1Pk Max 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	60 dBm 20 dB	Tx. Spu Offset	Irious N 7.60 dB	IVNT 2-DH	Mode A	uto FFT			
Spectrum Ref Level 17. Att SGL Count 100/ IPK Max 10 dBm 0 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	60 dBm 20 dB	Tx. Spu Offset	Irious N 7.60 dB	IVNT 2-DH	Mode A	uto FFT			
Spectrum Ref Level 17. Att SGL Count 100/ • IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	60 dBm 20 dB	Tx. Spu Offset	Irious N 7.60 dB	IVNT 2-DH	Mode A	uto FFT			
Spectrum Ref Level 17. Att SGL Count 100/ • IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	60 dBm 20 dB	Tx. Spu Offset	Irious N 7.60 dB	IVNT 2-DH	Mode A	uto FFT		2.48010	



• 1Pk Max 10 dBm-M					_	1[1] 2[1]			2.80 d 02490 d 43.91 d
0 dBm					141	2[1]			46271 (
-10 dBm-	+D1 -15.613	dBm							
-20 dBm-									
-30 dBm-			-					1	-
-40 dBm									
-50 dBm-	1M	a M4	4 M	5		and define	4	e e chas	
-60 dBm	and the second se								nya y
-70 dBm				-	1			1	
-80 dBm- Start 30.0	MHz			30001	pts			Stop	25.0 G
Marker Type Re	of Tec	X-value		Y-value	Func	tion 1	E.m.	tion Result	
M1 M2 M3 M4	1 1 1 1	2.402 1.7462 4.9157 7.2995	49 GHz 71 GHz 97 GHz	2.80 dBr -43.91 dBr -60.13 dBr -59.30 dBr -59.80 dBr	n n n		Tunc	tion result	
M5	1								
Spectrur Ref Leve Att SGL Count	n	Tx. Spu	rious N	VNT 3-D RBW 100 kHz VBW 300 kHz	: Mode /	Auto FFT.	Ant1 Ref		(
Spectrur Ref Leve Att SGL Count	n	Tx. Spu	rious N	RBW 100 kHz	: Mode /	Auto FFT.	Ant1 Ref	2.44114	5,42 d
Spectrur Ref Leve Att SGL Count 1Pk Max	n	Tx. Spu	rious N	RBW 100 kHz	Mode /	Auto FFT.	Ant1 Ref		5,42 d
Spectrur Ref Leve Att SGL Count 1Pk Max 10 dBm	n	Tx. Spu	rious N	RBW 100 kHz	Mode /	Auto FFT.	Ant1 Ref		5,42 d
Spectrur Ref Leve Att SGL Count 1Pk Max 10 dBm-	n	Tx. Spu	rious N	RBW 100 kHz	Mode /	Auto FFT.	Ant1 Ref		5,42 d
Spectrur Ref Leve Att SGL Count 1Pk Max 10 dBm	n	Tx. Spu	rious N	RBW 100 kHz	Mode /	Auto FFT.	Ant1 Ref		5,42 d
Spectrur Ref Leve Att SGL Count SGL Count 10 dBm- 0 dBm- -10 dBm- -20 dBm-	n	Tx. Spu	rious N	RBW 100 kHz	Mode /	Auto FFT.	Ant1 Ref		5,42 d
Spectrur Ref Leve Att SGL Count 10 dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm-	n	Tx. Spu	rious N	RBW 100 kHz	Mode /	Auto FFT.	Ant1 Ref		5,42 d
Spectrur Ref Leve Att SGL Count SGL Count 10 dBm- 0 dBm- -10 dBm- -20 dBm-	n	Tx. Spu	rious N	RBW 100 kHz	Mode /	Auto FFT.	Ant1 Ref		5,42 d
Spectrur Ref Leve Att SGL Count 10 dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm-	n	Tx. Spu	rious N	RBW 100 kHz	Mode /	Auto FFT.	Ant1 Ref		5,42 d
Spectrur Ref Leve Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	n	Tx. Spu	rious N	RBW 100 kHz	Mode /	Auto FFT.	Ant1 Ref		5,42 d
Spectrur Ref Leve Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	n	Tx. Spu	rious N	RBW 100 kHz	Mode /	Auto FFT.	Ant1 Ref		5,42 d
Spectrur Ref Leve Att SGL Count • 1Pk Max 10 dBm - 0 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm - 50 dBm	n	Tx. Spu	rious N	RBW 100 kHz	Mode /	Auto FFT.	Ant1 Ref		5,42 d
Spectrur Ref Leve Att SGL Count • 1Pk Max 10 dBm	n	Tx. Spu	rious N	RBW 100 kHz	Mode /	Auto FFT.	Ant1 Ref		5,42 d
Spectrur Ref Leve Att SGL Count • 1Pk Max 10 dBm	n 1 17.78 dBm 20 dB 1 100/100	Tx. Spu	rious N	RBW 100 kHz	Mode	Auto FFT.	Ant1 Ref	2.44114	94450 (
Spectrur Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm -70 dBm	n 1 17.78 dBm 20 dB 1 100/100	Tx. Spu	rious N	RBW 100 kHz VBW 300 kHz	Mode	Auto FFT.	Ant1 Ref	2,44114	94450 1

Att SGL Co	iunt 3				RBW 100 kHz VBW 300 kHz	Mode /	uto Sweep			
1Pk M	ax	-	1		1	M	1[1]			4.94 dBm
10 dBm	MIL			_					2.4	479890 GHz
	1					M	2[1]			-55,16 dBm
0 dBm-				-					22.7	721071 GHz
-10 dBn		_								
		1 -14.3	166 dBm					-		
-20 dBn	1-1-					- 1	1		-	
-30 dBn	-	_								
										11
-40 dBn	יי							-		
-50 dBn									1	110
00 000			M3 M4	N	15		A. Marcale and in our			T.
-60 dBn	1-	A Local Dates		There is a second second	and the second sec	distanting delay	-	A STATE AND	Management and the second	
-70 dBn	In produced by the second	La proposition of		and the second second	a survey of the			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
-70 000								·		1.000
-80 dBn							_		-	
Start 3	0.0 M	Hz			30001 p	ts			Sto	p 25.0 GHz
Marker						-		- montain		
Type M1	Ref	Trc 1	X-value 2.4798	0.011-	Y-value 4.94 dBm	Funct	ion	Func	tion Result	t
M1 M2		1	2.4798		-55.16 dBm					
M3	-	1	5.10307		-59.61 dBm					
M4		1	7.31957		-60.07 dBm					
M5	-	1	9,84237	8 GHz	-59.30 dBm		1			

END OF REPORT