

TEST REPORT

Applicant:	SHENZHEN 8BITDO TECH CO., LTD.
Address:	Room 210, Building 1, Nanhai Ecool, No.6 Xinghua Road, Shekou, Nanshan District, Shenzhen
Equipment Type:	8BitDo Lite SE Bluetooth gamepad
Model Name:	80KG (refer section 2.4)
Brand Name:	8BITDO
FCC ID:	2AOWF-LITESE
Test Standard:	47 CFR Part 15 Subpart C (refer section 3.1)
Test Date:	Jun. 08, 2022 - Jun. 14, 2022
Date of Issue:	Jun. 24, 2022

ISSUED BY:

Shenzhen BALUN Technology Co., Ltd.

Tested by: Yu Yingyuan

Checked by: Ye Hongji

Approved by: Liao Jianming (Technical Director)

Yu Ying Yuan

Ye this

min

Revision History				
Version	Issue Date	Revisions		
<u>Rev. 01</u> <u>Rev. 02</u>	<u>Jun. 22, 2022</u> Jun. 24, 2022	Initial Issue Update description of model name differentiation and section A.2.		

TABLE OF CONTENTS

1	GENER	AL INFORMATION	4
	1.1	Identification of the Testing Laboratory	4
	1.2	Identification of the Responsible Testing Location	4
2	PRODU	JCT INFORMATION	5
	2.1	Applicant Information	5
	2.2	Manufacturer Information	5
	2.3	Factory Information	5
	2.4	General Description for Equipment under Test (EUT)	5
	2.5	Technical Information	6
	2.6	Additional Instructions	8
3	SUMMA	ARY OF TEST RESULTS	9
	3.1	Test Standards	9
	3.2	Test Verdict1	0
4	GENER	AL TEST CONFIGURATIONS 1	1
	4.1	Test Environments 1	1
	4.2	Test Equipment List1	1
	4.3	Test Software List 1	1
	4.4	Measurement Uncertainty1	2
	4.5	Description of Test Setup 1	2
	4.6	Measurement Results Explanation Example1	5
5	TEST II	TEMS 1	6
	5.1	Antenna Requirements1	6
	5.2	Frequency Hopping Systems1	7

TiGroup

5.3	Number of Hopping Frequencies	. 19
5.4	Peak Output Power	. 20
5.5	Occupied Bandwidth	. 21
5.6	Carrier Frequency Separation	. 22
5.7	Time of Occupancy (Dwell time)	. 23
5.8	Conducted Spurious Emission & Authorized-band band-edge	. 25
5.9	Conducted Emission	. 26
5.10	Radiated Spurious Emission	. 27
5.11	Band Edge (Restricted-band band-edge)	. 29
ANNEX A	TEST RESULT	. 30
A.1	Number of Hopping Frequency	. 30
A.2	Peak Output Power	. 31
A.3	20 dB and 99% bandwidth	. 32
A.4	Hopping Frequency Separation	. 34
A.5	Average Time of Occupancy	. 35
A.6	Conducted Spurious Emissions & Authorized-band band-edge	. 37
A.7	Conducted Emissions	. 41
A.8	Radiated Spurious Emission	. 44
A.9	Band Edge (Restricted-band band-edge)	. 52
ANNEX B	TEST SETUP PHOTOS	. 54
ANNEX C	EUT EXTERNAL PHOTOS	. 54
ANNEX D	EUT INTERNAL PHOTOS	. 54

1 GENERAL INFORMATION

1.1 Identification of the Testing Laboratory

Company Name	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1/F, Baisha Science and Technology Park, Shahe West
Address	Road, Nanshan District, ShenZhen, GuangDong Province, China
Phone Number	+86 755 6685 0100

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.		
Address	Block B, 1/F, Baisha Science and Technology Park, Shahe West		
Address	Road, Nanshan District, ShenZhen, GuangDong Province, China		
Accreditation Certificate	The laboratory is a testing organization accredited by FCC as a		
Accreditation Certificate	accredited testing laboratory. The designation number is CN1196.		
	All measurement facilities used to collect the measurement data are		
Description	located at Block B, 1/F, Baisha Science and Technology Park, Shahe		
Description	West Road, Nanshan District, ShenZhen, GuangDong Province,		
	China		

2 **PRODUCT INFORMATION**

2.1 Applicant Information

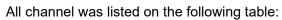
Applicant SHENZHEN 8BITDO TECH CO., LTD.	
Address	Room 210, Building 1, Nanhai Ecool, No.6 Xinghua Road, Shekou,
Audress	Nanshan District, Shenzhen

2.2 Manufacturer Information

Manufacturer SHENZHEN ONEBITDO TECH CO., LTD.		
Address	Room 203, Building 1, Huajian Building, Xinghua Road, Shekou,	
Address	Shuiwan Community, Zhaoshang Street, Nanshan District, Shenzhen	

2.3 Factory Information

Factory Shenzhen Zhongxingda Electronic Co., Ltd.		
Address	3-4/F, Bldg 10, Tongfuyu Industrial Zone, Lezhujiao Village, Xixiang,	
Audress	Baoan District, Shenzhen	


2.4 General Description for Equipment under Test (EUT)

EUT Name	8BitDo Lite SE Bluetooth gamepad
Model Name Under Test	80KG
Series Model Name	80KG01 80KG02 80KG03
Description of Model name differentiation	The Circuit, PCB Layout, Electrical Parts, and appearance of serial models are identical to the basic model, except the model names, colour and screen printing of the shell.
Hardware Version	V6
Software Version	V1.0
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A

2.5 Technical Information

	Network and Wireless connectivity	Bluetooth (BR)	
The	requirement for the followi	ng technical information of the EUT was tested in this report:	
	Modulation Technology	FHSS	
	Modulation Type	GFSK	
	Product Type	⊠ Portable	
		Fix Location	
	Transfer Rate	DH5: 1 Mbps	
	Frequency Range	The frequency range used is 2400 MHz to 2483.5 MHz.	
	Number of Channel	79 (at intervals of 1 MHz)	
	Tested Channel	0 (2402 MHz), 39 (2441 MHz), 78 (2480 MHz)	
	Antenna Type	PCB Antenna	
	Antenna Gain	0.84 dBi (In test items related to antenna gain, the final results	
	Antenna Gain	reflect this figure. This value is provided by the applicant.)	
	Antenna Impedance	50Ω	
	Antenna System (MIMO Smart Antenna) N/A		

Channel	Freq.	Channel	Freq.	Channel	Freq.	Channel	Freq.
number	(MHz)	number	(MHz)	number	(MHz)	number	(MHz)
0	2402	21	2423	42	2444	63	2465
1	2403	22	2424	43	2445	64	2466
2	2404	23	2425	44	2446	65	2467
3	2405	24	2426	45	2447	66	2468
4	2406	25	2427	46	2448	67	2469
5	2407	26	2428	47	2449	68	2470
6	2408	27	2429	48	2450	69	2471
7	2409	28	2430	49	2451	70	2472
8	2410	29	2431	50	2452	71	2473
9	2411	30	2432	51	2453	72	2474
10	2412	31	2433	52	2454	73	2475
11	2413	32	2434	53	2455	74	2476
12	2414	33	2435	54	2456	75	2477
13	2415	34	2436	55	2457	76	2478
14	2416	35	2437	56	2458	77	2479
15	2417	36	2438	57	2459	78	2480
16	2418	37	2439	58	2460	-	-
17	2419	38	2440	59	2461	-	-
18	2420	39	2441	60	2462	-	-
19	2421	40	2442	61	2463	-	-
20	2422	41	2443	62	2464	-	-

2.6 Additional Instructions

EUT Software Settings:

	Special software is used.
Mode	The software provided by client to enable the EUT under
Mode	transmission condition continuously at specific channel frequencies
	individually.

Power level setup in software					
Test Software Version	FCCTestToolV2.1				
Support Units	Description	Manufacturer	Model		
(Software installation media)	Notebook	HP	N/A		
Mode	Channel	Frequency (MHz)	Soft Set		
	CH0	2402	TX LEVEL is built-in set		
DH5	CH39	2441	parameters and cannot		
	CH78	2480	be changed and selected.		

Run Software:

A FCCTestTool V2.1				>
chip type YC31XX 💌		Bluetooth FCC te Frequency ModulationRate	st 2402MHZ <u> </u>	SELECT
Select ROM Download	>	TX/RX BT/BLE/2.4G	TX	SELECT SELECT
ROM Path: C:\Users\dell\Desktop\3121_fcc\program\ramcode.rom		Carrier/data Data Length		SELECT
CPU Stopped, PC 186: downloading loading micro code 100% done. 2416 bytes of code written, 0.080s set Frequency succeed set TX/RX succeed set TX/RX succeed set TX/RX succeed set Carrier/data succeed set Data Length succeed	~	Freq hop/fix	HOP	SELECT
<	>			

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title
1	47 CFR Part 15, Subpart C	Miscellaneous Wireless Communications Services
2	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices
3	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules

3.2 Test Verdict

No.	Description	FCC Part No.	Channel	Test Result	Verdict	Remark
1	Antenna Requirement	15.203	N/A		Pass	Note ¹
2	Number of Hopping Frequencies	15.247(a)	Hopping Mode	ANNEX A.1	Pass	
3	Peak Output Power	15.247(b)	Low/Middle/High	ANNEX A.2	Pass	
4	Occupied Bandwidth	15.247(a)	Low/Middle/High	ANNEX A.3	Pass	
5	Carrier Frequency Separation	15.247(a)	Hopping Mode	ANNEX A.4	Pass	
6	Time of Occupancy (Dwell time)	15.247(a)	Hopping Mode	ANNEX A.5	Pass	
7	Conducted Spurious Emission & Authorized-band band-edge	15.247(d)	Low/Middle/High	ANNEX A.6	Pass	
8	Conducted Emission	15.207	Low/Middle/High	ANNEX A.7	Pass	
9	Radiated Spurious Emission	15.209 15.247(d)	Hopping Mode, Low/Middle/High	ANNEX A.8	Pass	
10	Band Edge(Restricted-band band-edge)	15.209 15.247(d)	Hopping Mode, Low/Middle/High	ANNEX A.9	Pass	
11	Receiver Spurious Emissions				N/A	Note ²
Note ¹	Note ¹ : Please refer to section 5.1					
Note ² : Only radio communication receivers operating in stand-alone mode within the band 30-960						
	MHz, as well as scanner receivers, are subject to Industry Canada requirements, so this test is not applicable.					

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity	45% to 55%	
Atmospheric Pressure	100 kPa to 102 kPa	
Temperature	NT (Normal Temperature)	+22℃ to +25℃
Working Voltage of the EUT	NV (Normal Voltage)	3.7 V

4.2 Test Equipment List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	ROHDE&SCHWARZ	FSV-40	101544	2022.01.04	2023.01.03
Spectrum Analyzer	KEYSIGHT	N9020A	MY50330200	2022.05.19	2023.05.18
Signaling Unit	ROHDE&SCHWARZ	CMW500	142028	2022.05.19	2023.05.18
EMI Receiver	KEYSIGHT	N9038A	MY53220118	2021.09.13	2022.09.12
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2021.10.10	2022.10.09
LISN	SCHWARZBECK	NSLK 8127	8127-687	2022.06.01	2023.05.31
Test Antenna-		EMZD 1510	1510 027	2021.04.16	2024.04.15
Loop(9 kHz-30 MHz)	SCHWARZBECK	FMZB 1519	1519-037	2021.04.10	2024.04.15
Test Antenna-	SCHWARZBECK	VULB 9163	9163-624	2021.08.20	2024.08.19
Bi-Log(30 MHz-3 GHz)	SUNWARZDEUK	VULB 9103	9103-024	2021.00.20	2024.00.19
Test Antenna-	SCHWARZBECK	BBHA	9120D-1917	2019.07.02	2022.07.01
Horn(1-18 GHz)	SCHWARZDECK	9120D	91200-1917	2019.07.02	2022.07.01
Test Antenna-	A-INFO	LB-	J211060273	2021.07.02	2024.07.01
Horn (18-40 GHz)	A-INFO	180400KF	JZ11000273	2021.07.02	2024.07.01
Anechoic Chamber	RAINFORD	9m*6m*6m	N/A	2021.09.04	2024.09.09
Anechoic Chamber	EMC Electronic Co.,	20.10*11.60	N/A	2021.08.15	2024.08.14
Anechoic Chamber	Ltd	*7.35m	IN/A	2021.00.15	2024.00.14
Shielded Enclosure	ChangNing	CN-130701	130703		

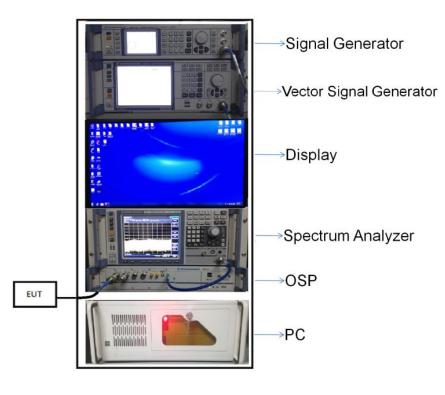
4.3 Test Software List

Description	Manufacturer	Software Version	Serial No.	Applicable test Setup
BL410R	BALUN	V2.1.1.488	N/A	The section 4.5.1
BL410E	BALUN	V19.8.28.435	N/A	The section 4.5.2&4.5.3&4.5.4&4.5.5

4.4 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

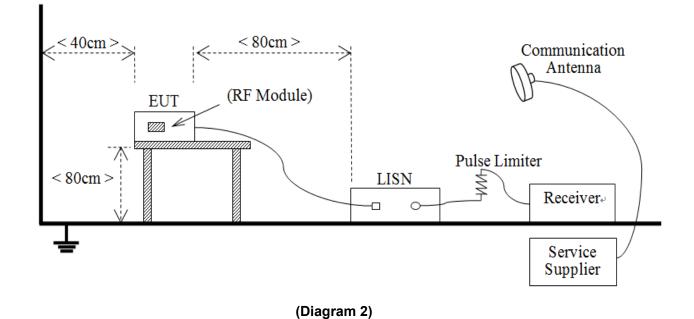
This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

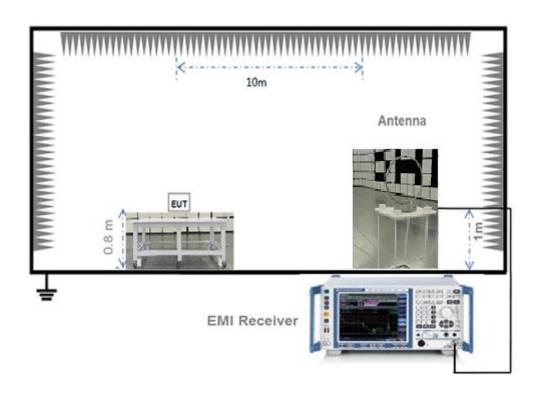

Parameters	Uncertainty
Occupied Channel Bandwidth	2.8%
RF output power, conducted	1.28 dB
Power Spectral Density, conducted	1.30 dB
Unwanted Emissions, conducted	1.84 dB
All emissions, radiated	5.36 dB
Temperature	0.82°C
Humidity	4.1%

4.5 Description of Test Setup

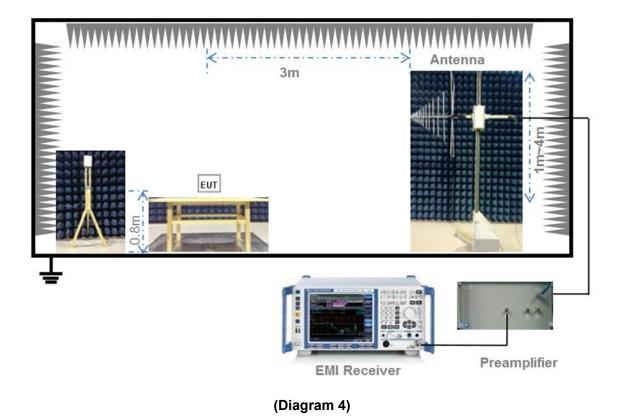
4.5.1 For Antenna Port Test

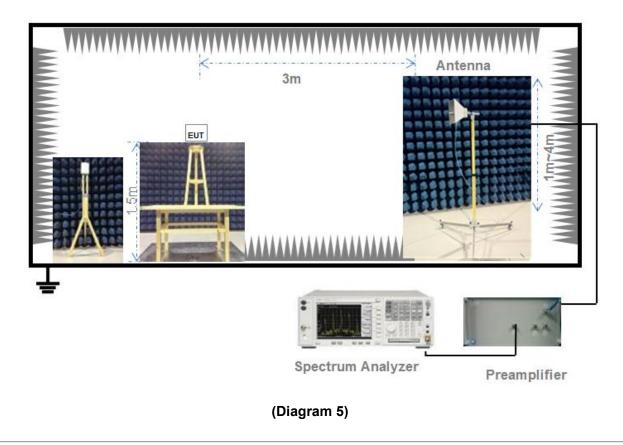
Conducted value (dBm) = Measurement value (dBm) + cable loss (dB)


For example: the measurement value is 10 dBm and the cable 0.5dBm used, then the final result of EUT: Conducted value (dBm) = 10 dBm + 0.5 dB = 10.5 dBm



4.5.2 For AC Power Supply Port Test


4.5.3For Radiated Test (Below 30 MHz)


(Diagram 3)

4.5.4 For Radiated Test (30 MHz-1 GHz)

4.5.5 For Radiated Test (Above 1 GHz)

4.6 Measurement Results Explanation Example

4.6.1 For conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

5 TEST ITEMS

5.1 Antenna Requirements

5.1.1 Relevant Standards

FCC §15.203 & 15.247(b)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

5.1.2 Antenna Anti-Replacement Construction

The Antenna Anti-Replacement as following method:

Protected Method	Description
The antenna is embedded in the	An embedded-in antenna design is used.
product.	

Reference Documents	Item
Photo	Please refer to the EUT Photo documents.

5.1.3Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

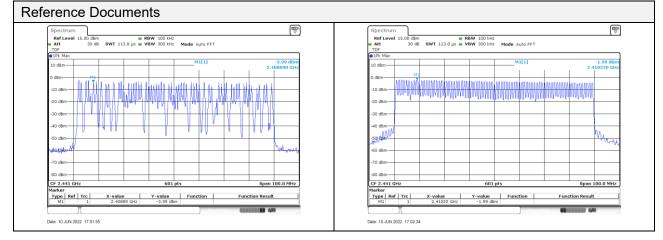
5.2 Frequency Hopping Systems

5.2.1 Relevant Standards

FCC §15.247(a) (1) (i) (ii) (iii) (iv); FCC §15.247(g); FCC §15.247(h)

Describe how the hopping sequence is generated. Provide an example of the hopping sequence channels, to demonstrate that the sequence meets the requirement specified in the definition of an FHSS system. Per the definition in Section 2.1(c), the hop set shall appear as random in the near term, shall appear as evenly distributed in the long term, and sequential hops shall be randomly distributed in both direction and magnitude of change.

Describe how each individual EUT meets the requirement that each of its hopping channels is used equally on average (e.g., that each new transmission event begins on the next channel in the hopping sequence after the final channel used in the previous transmission event).


Describe how the associated receiver(s) complies with the requirement that the input bandwidth (either RF or IF) matches the bandwidth of the transmitted signal.

Describe how the associated receiver(s) has the ability to shift frequencies in synchronization with the transmitted signals.

For short burst systems, describe how the EUT complies with the requirement that it be designed to be capable of operating as a true frequency hopping system. Specifically, the device shall comply with the equal frequency use and pseudorandom hopping sequence requirement when transmitting in short bursts, and shall be designed to comply when presented with continuous data (or information) stream. Describe how the EUT complies with the requirement that it not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

5.2.2 Description of the systems

- According to the preset procedure of the whole network, all the stations in the automatic control network synchronously change the frequency multiple times within one second, and temporarily stay on each frequency hopping channel. Periodic synchronization signaling is sent from the primary station, instructing all slaves to simultaneously change the operating frequency, then the hopping sequence is generated.
- 2. The hop set shall appear as random in the near term, shall appear as evenly distributed in the long term, and sequential hops shall be randomly distributed in both direction and magnitude of change.

- 3. Channels are classified into two categories, used and unused, where used channels are part of the hopping sequence and unused channels are replaced in the hopping sequence by used channels in a pseudo-random way. Make each individual EUT meets the requirement that each of its hopping channels is used equally on average.
- 4. The input bandwith and transmitted bandwith are both 1MHz, the associated receiver(s) complies with the requirement that the input bandwidth matches the bandwidth of the transmitted signal.
- 5. Connected devices communicate on the same physical channel by synchronizing with a common clock and hopping sequence.
- 6. EUT isn't short burst systems.
- 7. EUT can't have the ability to be coordinated with other FHSS systems in an effort.

5.3 Number of Hopping Frequencies

5.3.1 Limit

FCC §15.247(a) (1) (iii)

Frequency hopping systems operating in the 2400 MHz to 2483.5 MHz bands shall use at least 15 hopping frequencies.

5.3.2 Test Setup

See section 4.5.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.3.3 Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = The frequency band of operation RBW = To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize 5.3.4Test Result Please refer to ANNEX A.1.

5.4 Peak Output Power

5.4.1 Test Limit

FCC § 15.247(b)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 nonoverlapping hopping channels band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

5.4.2 Test Setup

See section 4.5.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.4.3 Test Procedure

The Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW > the 20 dB bandwidth of the emission being measured

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize.

5.4.4 Test Result

Please refer to ANNEX A.2.

5.5 Occupied Bandwidth

5.5.1 Limit

FCC §15.247(a)

Measurement of the 20dB bandwidth of the modulated signal.

5.5.2 Test Setup

See section 4.5.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.5.3 Test Procedure

Use the following spectrum analyzer settings:

Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = in the range of 1% to 5% of the OBW

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate, Allow the trace to stabilize.

5.5.4 Test Result

Please refer to ANNEX A.3.

5.6 Carrier Frequency Separation

5.6.1 Limit

FCC §15.247(a)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 2/3 of the 20 dB bandwidth of the hopping channel, whichever is greater.

5.6.2 Test Setup

See section 4.5.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.6.3 Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span

Video (or Average) Bandwidth (VBW) \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

5.6.4 Test Result

Please refer to ANNEX A.4.

5.7 Time of Occupancy (Dwell time)

5.7.1 Limit

FCC §15.247(a)

Frequency hopping systems in the 2400 MHz - 2483.5 MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

5.7.2 Test Setup

See section 4.5.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.7.3Test Procedure

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: Span: Zero span, centered on a hopping channel

RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel

Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel

Detector function: Peak

Trace: Max hold

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

The average time of occupancy on any channel within the Period can be calculated with formulas: For GFSK and 8-DPSK:

For DH1 package type {Total of Dwell} = {Pulse Time} * (1600 / 2) / {Number of Hopping Frequency} * {Period} {Period} = 0.4 s * {Number of Hopping Frequency} For DH3 package type {Total of Dwell} = {Pulse Time} * (1600 / 4) / {Number of Hopping Frequency} * {Period} {Period} = 0.4 s * {Number of Hopping Frequency} For DH5 package type {Total of Dwell} = {Pulse Time} * (1600 / 6) / {Number of Hopping Frequency} * {Period} {Period} = 0.4 s * {Number of Hopping Frequency} For AFH Mode: For DH1 package type {Total of Dwell} = {Pulse Time} * (800 / 2) / {Number of Hopping Frequency} * {Period} $\{\text{Period}\} =$ 0.4 s * {Number of Hopping Frequency} For DH3 package type {Total of Dwell} = {Pulse Time} * (800 / 4) / {Number of Hopping Frequency} * {Period} $\{\text{Period}\} =$ 0.4 s * {Number of Hopping Frequency} For DH5 package type {Total of Dwell} = {Pulse Time} * (800 / 6) / {Number of Hopping Frequency} * {Period} $\{Period\} =$ 0.4 s * {Number of Hopping Frequency}

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

5.7.4 Test Result

Please refer to ANNEX A.5.

5.8 Conducted Spurious Emission & Authorized-band band-edge

5.8.1 Limit

FCC §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.8.2 Test Setup

See section 4.5.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.8.3 Test Procedure

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz VBW = 300 kHz Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize

5.8.4 Test Result

Please refer to ANNEX A.6.

5.9 Conducted Emission

5.9.1 Limit

FCC §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)		
(MHz)	Quai-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5	56	46	
0.50 - 30	60 50		

5.9.2 Test Setup

See section 4.5.2 for test setup description for the AC power supply port. The photo of test setup please refer to ANNEX B.

5.9.3 Test Procedure

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

5.9.4 Test Result

Please refer to ANNEX A.7.

5.10 Radiated Spurious Emission

5.10.1 Limit

FCC §15.209&15.247(d)

Radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- 1. Field Strength (dB μ V/m) = 20*log[Field Strength (μ V/m)].
- 2. In the emission tables above, the tighter limit applies at the band edges.
- 3. For Above 1000 MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000 MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK).

5.10.2 Test Setup

See section 4.5.3 to 4.5.5 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.10.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for f ≥ 1 GHz, 100 kHz for f < 1 GHz VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported, Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

5.10.4 Test Result

Please refer to ANNEX A.8.

5.11 Band Edge (Restricted-band band-edge)

5.11.1 Limit

FCC §15.209&15.247(d)

Radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

5.11.2 Test Setup

See section 4.5.3 to 4.5.5 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.11.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

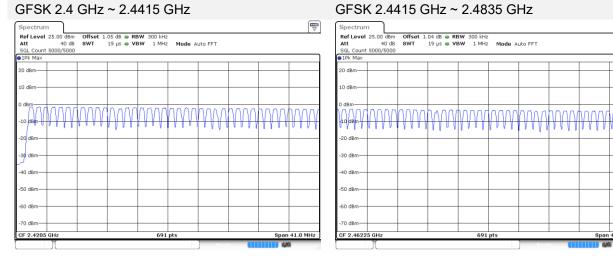
Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold

For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported, Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

5.11.4 Test Result

Please refer to ANNEX A.9.


ANNEX A TEST RESULT

A.1 Number of Hopping Frequency

Test Data

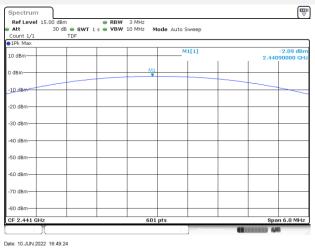
Test Mode	Frequency Block (MHz)	Measured Channel Numbers	Min. Limit	Verdict
GFSK	2400 - 2483.5	79	15	Pass

Test Plots

Date: 10.JUN.2022 16:59:56

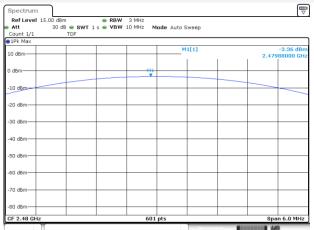
Date: 10.JUN.2022 17:00:25

A.2 Peak Output Power


Peak Power Test Data

	Measured Outp	out Peak Power	Lir	nit	
Channel	GFSK			mW	Verdict
	dBm	mW	dBm	11177	
Low	-0.72	0.85			Pass
Middle	-2.09	0.62	21	125	Pass
High	-3.36	0.46			Pass

Test Plots

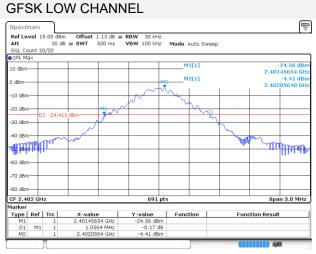


GFSK MIDDLE CHANNEL

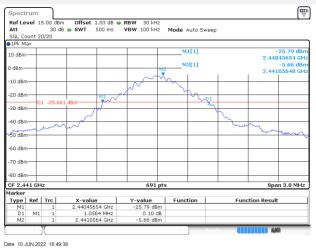
Date: 10.JUN.2022 16:45:26

GFSK HIGH CHANNEL

Date: 10.JUN.2022 16:52:41


A.3 20 dB and 99% bandwidth

Test Data


GFSK							
Channel	20 dB Bandwidth (MHz)	99% Bandwidth (MHz)					
Low	1.056400	0.937771					
Middle	1.056400	0.937771					
High	1.060790	0.937771					

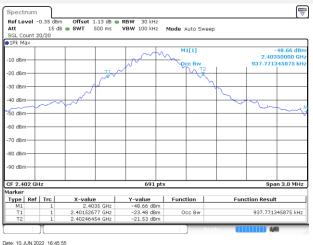
Test Plots

20 dB Bandwidth

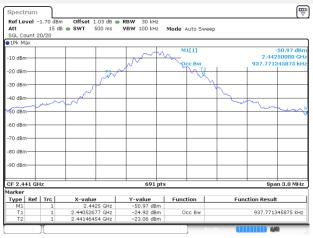
GFSK MIDDLE CHANNEL

Date: 10.JUN.2022 16:45:40

GFSK HIGH CHANNEL



Date: 10.JUN.2022 16:52:55



99% Bandwidth

GFSK LOW CHANNEL

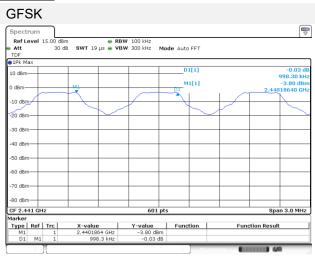
GFSK MIDDLE CHANNEL

Date: 10.JUN.2022 16:49:53

GFSK HIGH CHANNEL

Spectrum							E □
Ref Level -							
Att		B 😑 SWT 500 ms	VBW 100 kHz	Mode Auto Swe	ep		
SGL Count 2	20/20						
●1Pk Max							
			0.000	M1[1]			52.18 dBn
-10 dBm				~~~			50000 GH
			N	Occ Bw		937.7713	145875 kH
-20 dBm		<u> </u>	~	V X			
-30 dBm		pur .			<u></u>		
-30 ubm		<i>M</i>			The second secon		
-40 dBm		~			5		
10 abiii	N				- Land	non l	
5ÜrdBm	111					handlyn	Munder
TTTT	Į.						
-60 dBm					_		
-70 dBm			+		_		
-80 dBm					-		
-90 dBm							
-100 dBm							
CF 2.48 GH:	z		691 pts	;		Spa	n 3.0 MHz
larker							
Type Ref M1		2.4815 GHz	-52.18 dBm	Function	Fun	ction Result	
M1 T1	1	2.4815 GHZ 2.47952677 GHz	-52.18 dBm	Occ Bw		027 7712	45875 kHz
T2	1	2.48046454 GHz	-24.20 dBm	OCC BW		-37.7713	HOOTO KHZ
1.2	1 4	2110010404 012	24.20 UBIII				

Date: 10.JUN.2022 16:53:10



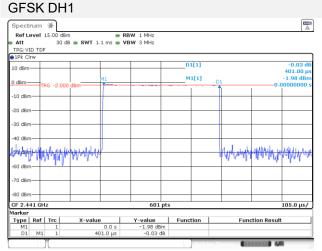
A.4 Hopping Frequency Separation

Test Data

Mode	Frequency separation (MHz)	2/3 of the 20 dB Bandwidth (MHz)	Verdict
GFSK	0.998	0.707193	Pass

Test Plots

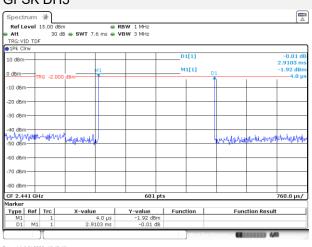
Date: 10.JUN.2022 17:01:07



A.5 Average Time of Occupancy

Test Data

	GFSK							
DH Packet	Pulse Width (ms)	Total of Dwell (ms)	Limit (sec)	Verdict				
DH 1	0.40100	128.320	0.4	Pass				
DH 3	1.65000	264.000	0.4	Pass				
DH 5	2.91030	310.432	0.4	Pass				
		AFH Mode						
DH Packet	Pulse Width (ms)	Total of Dwell (ms)	Limit (sec)	Verdict				
DH 1	0.40000	64.000	0.4	Pass				
DH 3	1.64833	131.866	0.4	Pass				
DH 5	2.90920	155.157	0.4	Pass				


Test Plots

Date: 14.JUN.2022 18:40:17


GFSK DH5

Date: 14.JUN.2022 18:43:18

AFH Mode DH1

AFH Mode DH3

Ref Le	vel	15.00 dB	m	- F	RBW 1 MHz				
Att			 18 🖷 SWT 4.						
FRG: VII				5 m3 🖕 (Dir String				
1Pk Cir									
			1			D1[1]			-0.15 d
0 dBm-	-		+			0.1[1]			1.64833 m
				41		M1[1]			-1.80 dB
dBm—	TF	RG -2.00	0 d8m	Ŷ			D1		8.00
				[
LO dBm									
20 dBm									
20 abm									
30 dBm									
40 dBm	\rightarrow							_	-
al no -							and the set	And Million	Il.a. i.a
O dBm	WW/14	with h	the work and				- 444ppp	c.Abbrait@Parts.ab	htter and the second
50 dBm	+								
70 dBm									
30 dBm									
F 2.44	1 GH	z			601 pt	is .			430.0 µs/
arker		- I				Function	1	unction Res	
Fype M1	Ket	1	X-value	8.0 µs	-1.80 dBm	Function	- FI	unction Res	uit
D1	M1	1		833 ms	-0.15 dB				

Date: 14.JUN.2022 18:37:25

AFH Mode DH5

RefLe	vel	15.00 0	Bm	😑 R	BW 1 MHz			(
Att			dB . SWT 7.6					
TRG: VI	D TDF							
1Pk Clr	w							
10 dBm-						D1[1]		-0.12 di
to abm-								2.9092 m
0 dBm—				1		M1[1]	D1	-1.87 dBn
o abiii	TI	RG -2.0	00 dBm			1	1	2.5 µ
-10 dBm	\rightarrow		_					
-20 dBm	+							
-30 dBm	+						-	
			1 1					
-40 dBm		Na.	Marrielypune					1
-50 dBm	Abba	Journal V	1 parriely been				montal	1 We phillips where he reader
-JU UBIII								
-60 dBm	\rightarrow							
-70 dBm	+				+			
-80 dBm	+		-					
CF 2.44	1 GH	z			601 pts			760.0 µs/
1arker								
Type	Ref	Trc	X-value		Y-value	Function	Fur	nction Result
M1		1		.5 µs	-1.87 dBm			
D1	M1	1	2.909	2 ms	-0.12 dB			

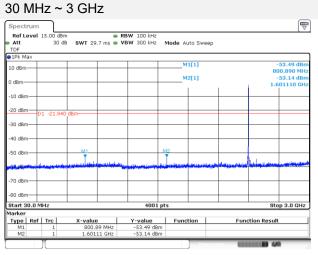
Date: 14.JUN.2022 18:38:27

A.6 Conducted Spurious Emissions & Authorized-band band-edge

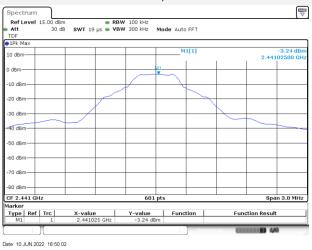
Test	Data

		GFSK		
	Measured Max.	Limit ((dBm)	
Channel	Out of Band	Carrier Level	Calculated	Verdict
	Emission (dBm)		20 dBc Limit	
Low	-39.92	-1.94	-21.94	Pass
Middle	-46.40	-3.24	-23.24	Pass
High	-47.84	-4.36	-24.36	Pass
		Hopping Mode		
	Measured Max.	Limit ((dBm)	
Mode	Out of Band	Carrier Level	Calculated	Verdict
	Emission (dBm)		20 dBc Limit	
GFSK	-36.71	-2.60	-22.60	Pass

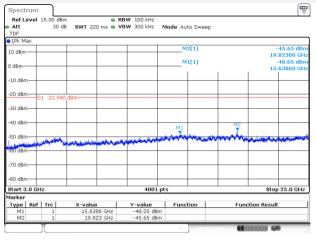
Test Plots


GFSK LOW CHANNEL, CARRIER LEVEL

GFSK LOW CHANNEL, BAND EDGE

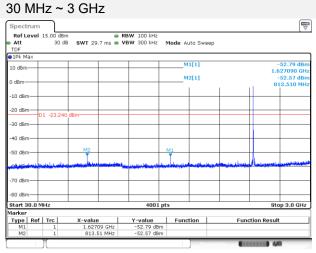


GFSK LOW CHANNEL, SPURIOUS

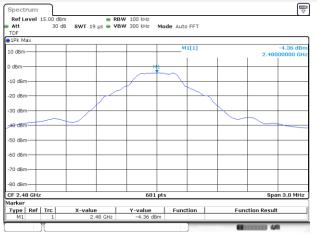

Date: 10.JUN.2022 16:46:53

GFSK MIDDLE CHANNEL, CARRIER LEVEL

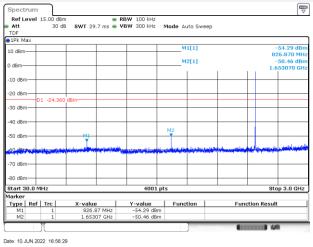
M3 1 2.399517 GHz -42.51 dBm


GFSK LOW CHANNEL, SPURIOUS 3 GHz ~ 25 GHz

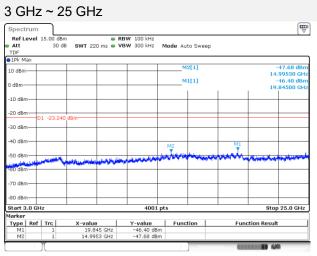
Date: 10.JUN.2022 16:47:15



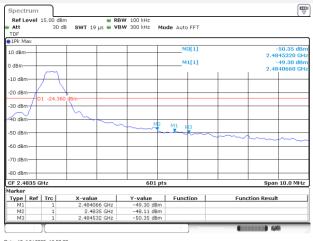
GFSK MIDDLE CHANNEL, SPURIOUS



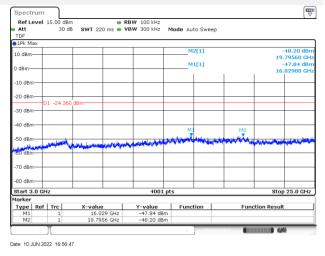
Date: 10.JUN.2022 16:50:57


GFSK HIGH CHANNEL, CARRIER LEVEL

GFSK HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz



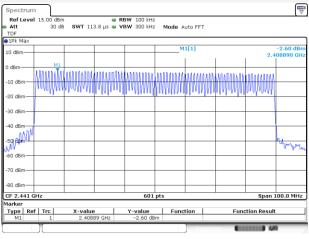
GFSK MIDDLE CHANNEL, SPURIOUS


Date: 10.JUN.2022 16:51:18

GFSK HIGH CHANNEL, BAND EDGE

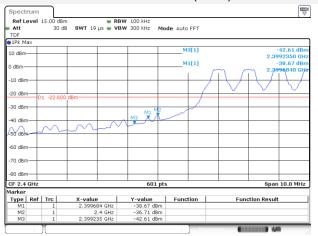
Date: 10.JUN.2022 16:57:27

GFSK HIGH CHANNEL, SPURIOUS 3 GHz ~ 25 GHz

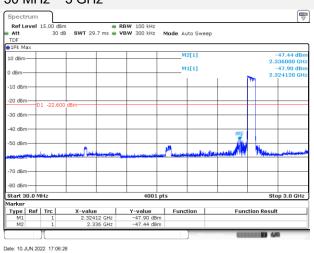


Tel: +86-755-66850100 E-mail: qc@baluntek.com Page No. 39 / 55 Web: www.titcgroup.com Template No.: TRP-FCC Part 15.247 (2022-01-12) Add: Block B, 1/F, Baisha Science and Technology Park, Shahe West Road, Nanshan District, ShenZhen, GuangDong Province, China

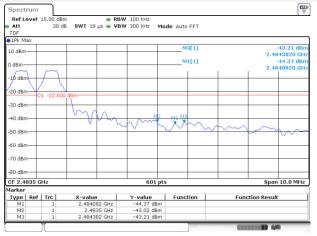
Date: 10.JUN.2022 16:53:25



GFSK HOPPING, CARRIER LEVEL

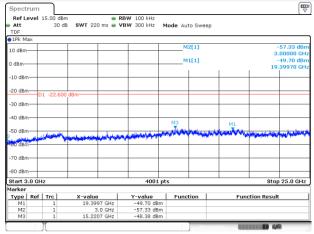

Date: 10.JUN.2022 17:02:08

GFSK HOPPING BAND EDGE (LOW)



Date: 10.JUN.2022 17:09:04

GFSK Hopping Mode, SPURIOUS 30 MHz ~ 3 GHz



GFSK HOPPING BAND EDGE (HIGH)

Date: 10.JUN.2022 17:08:18

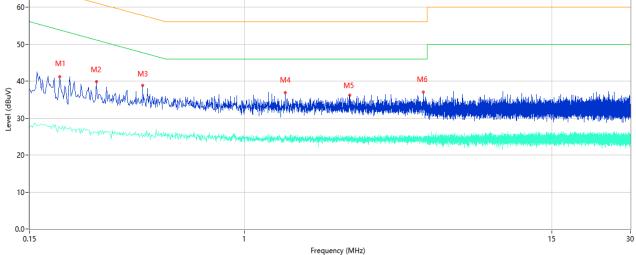
GFSK Hopping Mode, SPURIOUS 3GHz ~ 25 GHz

Date: 10.JUN.2022 17:06:33

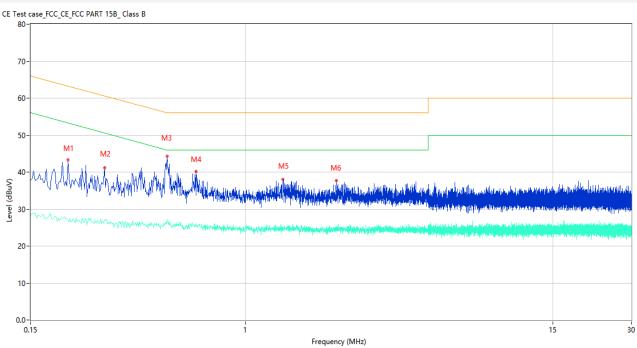
A.7 Conducted Emissions

Note ¹: The EUT is working in the Normal link mode. All modes have been tested and normal link mode is worst.

Note ²: Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 60 Hz and 240 VAC, 50 Hz) for which the device is capable of operation. So, The configuration 120 VAC, 60 Hz and 240 VAC, 50 Hz were tested respectively, but only the worst configuration (120 VAC, 60 Hz) shown here.


Note ³: Results (dBuV) = Original reading level of Spectrum Analyzer (dBuV) + Factor (dB)

Test Data and Plots



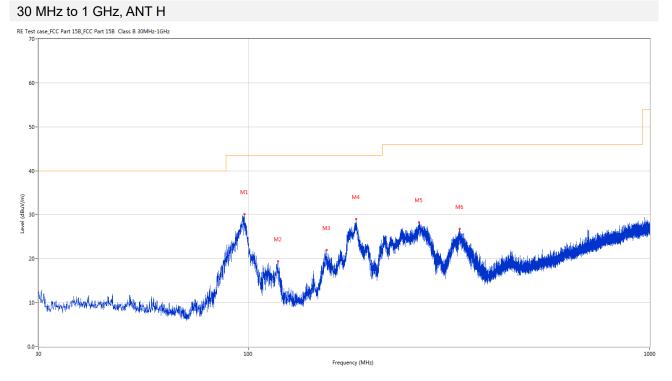
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Line	Verdict
	(MHz)	(dBuV)	(dB)	(dBuV)	(dB)			
1	0.196	41.19	10.96	63.78	-22.59	Peak	L	Pass
1**	0.196	27.35	10.96	53.78	-26.43	AV	L	Pass
2	0.270	39.92	10.90	61.12	-21.20	Peak	L	Pass
2**	0.270	26.18	10.90	51.12	-24.94	AV	L	Pass
3	0.406	38.90	10.90	57.73	-18.83	Peak	L	Pass
3**	0.406	24.86	10.90	47.73	-22.87	AV	L	Pass
4	1.426	36.83	10.72	56.00	-19.17	Peak	L	Pass
4**	1.426	25.13	10.72	46.00	-20.87	AV	L	Pass
5	2.520	36.27	10.72	56.00	-19.73	Peak	L	Pass
5**	2.520	25.34	10.72	46.00	-20.66	AV	L	Pass
6	4.838	37.07	10.69	56.00	-18.93	Peak	L	Pass
6**	4.838	24.62	10.69	46.00	-21.38	AV	L	Pass

PHASE N

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Line	Verdict
	(MHz)	(dBuV)	(dB)	(dBuV)	(dB)			
1	0.208	43.33	10.95	63.28	-19.95	Peak	Ν	Pass
1**	0.208	26.88	10.95	53.28	-26.40	AV	Ν	Pass
2	0.288	41.17	10.89	60.58	-19.41	Peak	Ν	Pass
2**	0.288	27.04	10.89	50.58	-23.54	AV	Ν	Pass
3	0.500	44.31	10.92	56.00	-11.69	Peak	Ν	Pass
3**	0.500	27.31	10.92	46.00	-18.69	AV	Ν	Pass
4	0.646	40.11	10.86	56.00	-15.89	Peak	Ν	Pass
4**	0.646	26.03	10.86	46.00	-19.97	AV	Ν	Pass
5	1.390	37.94	10.72	56.00	-18.06	Peak	Ν	Pass
5**	1.390	25.04	10.72	46.00	-20.96	AV	Ν	Pass
6	2.226	37.71	10.74	56.00	-18.29	Peak	Ν	Pass
6**	2.226	24.08	10.74	46.00	-21.92	AV	Ν	Pass

A.8 Radiated Spurious Emission

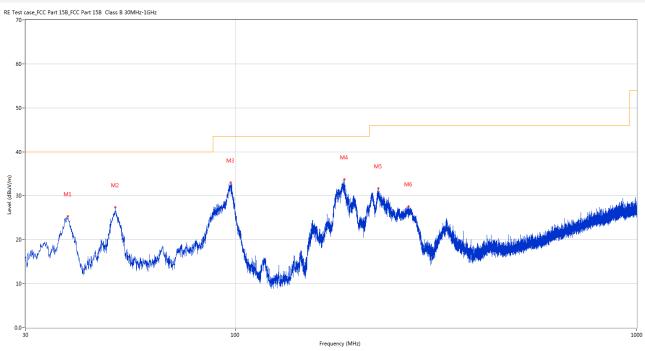
Note ¹: The symbol of "--" in the table which means not application.


Note ²: For the test data above 1 GHz, according the ANSI C63.10-2013, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.

Note ³: The EUT is working in the Normal link mode below 1 GHz. All modes have been tested and DH5-Hopping mode is the worst.

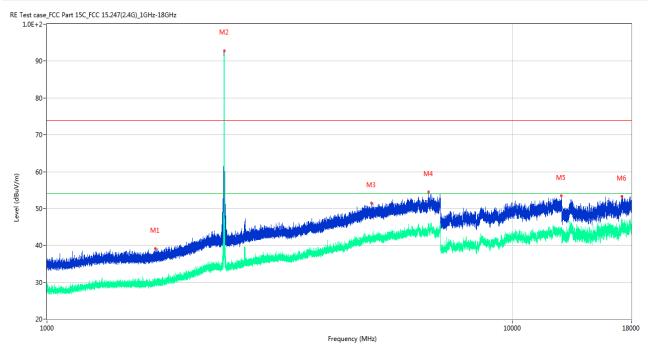
Note 4: Results (dBuV/m) = Original reading level of Spectrum Analyzer (dBuV/m) + Factor (dB)

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


Test Data and Plots

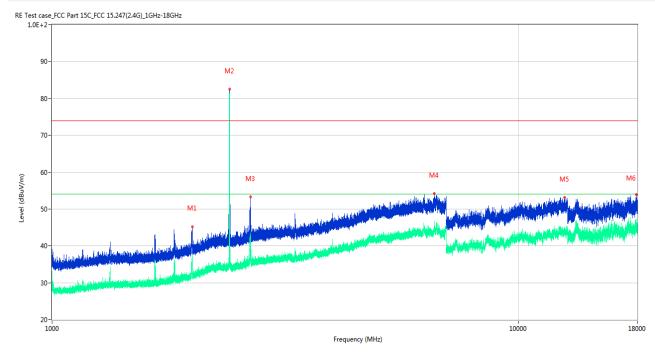
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	97.755	30.15	-29.47	43.5	-13.35	Peak	183.00	200	Horizontal	Pass
2	118.512	19.41	-27.32	43.5	-24.09	Peak	176.00	200	Horizontal	Pass
3	156.828	22.01	-24.79	43.5	-21.49	Peak	68.00	200	Horizontal	Pass
4	185.297	29.06	-27.49	43.5	-14.44	Peak	279.00	100	Horizontal	Pass
5	266.098	28.32	-25.53	46.0	-17.68	Peak	242.00	100	Horizontal	Pass
6	336.083	26.79	-22.80	46.0	-19.21	Peak	242.00	100	Horizontal	Pass

30 MHz to 1 GHz, ANT V


No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	38.294	25.31	-26.38	40.0	-14.69	Peak	318.00	100	Vertical	Pass
2	50.176	27.41	-26.66	40.0	-12.59	Peak	88.00	100	Vertical	Pass
3	97.318	33.05	-29.48	43.5	-10.45	Peak	64.00	100	Vertical	Pass
4	186.752	33.70	-28.02	43.5	-9.80	Peak	334.00	100	Vertical	Pass
5	226.958	31.70	-27.11	46.0	-14.30	Peak	210.00	100	Vertical	Pass
6	269.978	27.55	-25.59	46.0	-18.45	Peak	360.00	100	Vertical	Pass

Note 1: The marked spikes near 2400 MHz with circle should be ignored because they are Fundamental signal.

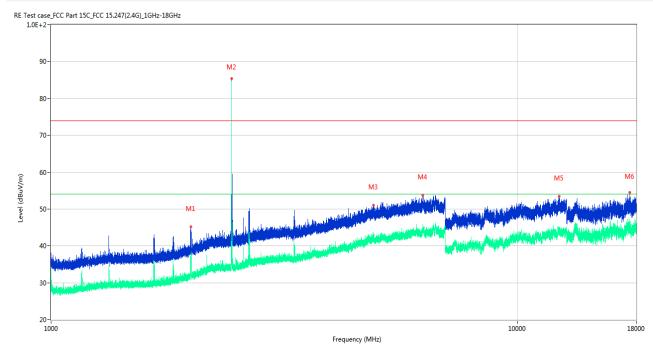
Note 2: The spurious from 18GHz-25GHz is noise only, do not show on the report.


GFSK LOW CHANNEL 1 GHz to 18 GHz, ANT H

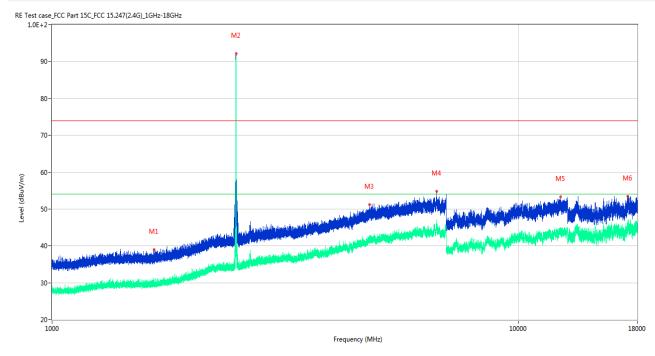
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1707.200	39.15	-17.23	74.0	-34.85	Peak	355.00	150	Horizontal	Pass
1**	1707.200	30.10	-17.23	54.0	-23.90	AV	355.00	150	Horizontal	Pass
2	2402.000	92.84	-12.26	74.0	18.84	Peak	78.00	150	Horizontal	N/A
2**	2402.000	92.38	-12.26	54.0	38.38	AV	78.00	150	Horizontal	N/A
3	4977.400	51.43	-3.03	74.0	-22.57	Peak	18.00	150	Horizontal	Pass
3**	4977.400	40.97	-3.03	54.0	-13.03	AV	18.00	150	Horizontal	Pass
4	6610.200	54.53	0.17	74.0	-19.47	Peak	0.00	150	Horizontal	Pass
4**	6610.200	45.62	0.17	54.0	-8.38	AV	0.00	150	Horizontal	Pass
5	12734.474	53.46	1.31	74.0	-20.54	Peak	342.00	150	Horizontal	Pass
5**	12734.474	44.35	1.31	54.0	-9.65	AV	342.00	150	Horizontal	Pass
6	17192.813	53.25	2.25	74.0	-20.75	Peak	330.00	150	Horizontal	Pass
6**	17192.813	44.69	2.25	54.0	-9.31	AV	330.00	150	Horizontal	Pass

GFSK LOW CHANNEL 1 GHz to 18 GHz, ANT V

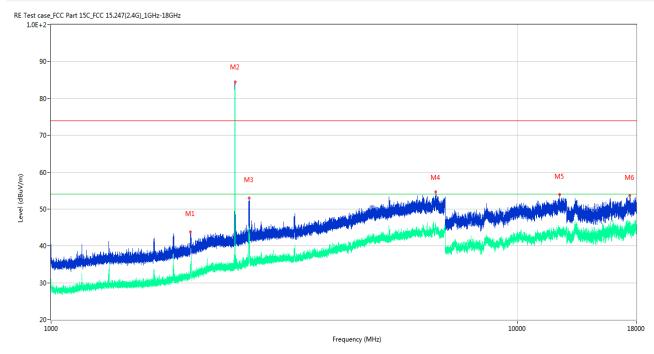
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1999.300	45.21	-15.49	74.0	-28.79	Peak	178.00	150	Vertical	Pass
1**	1999.300	35.62	-15.49	54.0	-18.38	AV	178.00	150	Vertical	Pass
2	2401.900	82.56	-12.26	74.0	8.56	Peak	104.00	150	Vertical	N/A
2**	2401.900	82.00	-12.26	54.0	28.00	AV	104.00	150	Vertical	N/A
3	2665.200	53.32	-11.17	74.0	-20.68	Peak	152.00	150	Vertical	Pass
3**	2665.200	43.50	-11.17	54.0	-10.50	AV	152.00	150	Vertical	Pass
4	6598.800	54.13	-0.59	74.0	-19.87	Peak	53.00	150	Vertical	Pass
4**	6598.800	44.94	-0.59	54.0	-9.06	AV	53.00	150	Vertical	Pass
5	12572.325	53.18	1.72	74.0	-20.82	Peak	202.00	150	Vertical	Pass
5**	12572.325	43.69	1.72	54.0	-10.31	AV	202.00	150	Vertical	Pass
6	17895.262	53.96	3.68	74.0	-20.04	Peak	170.00	150	Vertical	Pass
6**	17895.262	45.62	3.68	54.0	-8.38	AV	170.00	150	Vertical	Pass


GFSK MIDDLE CHANNEL 1 GHz to 18 GHz, ANT H

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1595.100	39.67	-17.58	74.0	-34.33	Peak	142.00	150	Horizontal	Pass
1**	1595.100	29.31	-17.58	54.0	-24.69	AV	142.00	150	Horizontal	Pass
2	2441.100	92.67	-12.83	74.0	18.67	Peak	81.00	150	Horizontal	N/A
2**	2441.100	92.16	-12.83	54.0	38.16	AV	81.00	150	Horizontal	N/A
3	4982.600	50.91	-2.93	74.0	-23.09	Peak	196.00	150	Horizontal	Pass
3**	4982.600	41.10	-2.93	54.0	-12.90	AV	196.00	150	Horizontal	Pass
4	6685.800	54.66	-0.19	74.0	-19.34	Peak	196.00	150	Horizontal	Pass
4**	6685.800	45.39	-0.19	54.0	-8.61	AV	196.00	150	Horizontal	Pass
5	12588.425	53.01	1.65	74.0	-20.99	Peak	193.00	150	Horizontal	Pass
5**	12588.425	44.46	1.65	54.0	-9.54	AV	193.00	150	Horizontal	Pass
6	17181.786	53.88	2.63	74.0	-20.12	Peak	171.00	150	Horizontal	Pass
6**	17181.786	44.97	2.63	54.0	-9.03	AV	171.00	150	Horizontal	Pass


GFSK MIDDLE CHANNEL 1 GHz to 18 GHz, ANT V

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1996.200	45.12	-15.52	74.0	-28.88	Peak	156.00	150	Vertical	Pass
1**	1996.200	35.18	-15.52	54.0	-18.82	AV	156.00	150	Vertical	Pass
2	2441.000	85.32	-12.82	74.0	11.32	Peak	107.00	150	Vertical	N/A
2**	2441.000	84.53	-12.82	54.0	30.53	AV	107.00	150	Vertical	N/A
3	4914.400	50.99	-2.31	74.0	-23.01	Peak	189.00	150	Vertical	Pass
3**	4914.400	41.72	-2.31	54.0	-12.28	AV	189.00	150	Vertical	Pass
4	6271.400	53.71	-0.29	74.0	-20.29	Peak	0.00	150	Vertical	Pass
4**	6271.400	44.42	-0.29	54.0	-9.58	AV	0.00	150	Vertical	Pass
5	12298.050	53.45	1.51	74.0	-20.55	Peak	94.00	150	Vertical	Pass
5**	12298.050	44.15	1.51	54.0	-9.85	AV	94.00	150	Vertical	Pass
6	17415.412	54.53	3.65	74.0	-19.47	Peak	131.00	150	Vertical	Pass
6**	17415.412	45.14	3.65	54.0	-8.86	AV	131.00	150	Vertical	Pass


GFSK HIGH CHANNEL 1 GHz to 18 GHz, ANT H

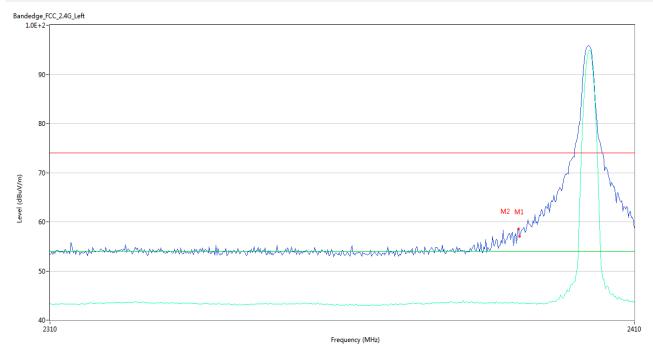
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1655.100	38.93	-17.58	74.0	-35.07	Peak	282.00	150	Horizontal	Pass
1**	1655.100	29.22	-17.58	54.0	-24.78	AV	282.00	150	Horizontal	Pass
2	2480.000	92.14	-12.43	74.0	18.14	Peak	84.00	150	Horizontal	N/A
2**	2480.000	91.14	-12.43	54.0	37.14	AV	84.00	150	Horizontal	N/A
3	4802.000	51.21	-2.61	74.0	-22.79	Peak	360.00	150	Horizontal	Pass
3**	4802.000	42.18	-2.61	54.0	-11.82	AV	360.00	150	Horizontal	Pass
4	6685.000	54.84	-0.21	74.0	-19.16	Peak	274.00	150	Horizontal	Pass
4**	6685.000	46.01	-0.21	54.0	-7.99	AV	274.00	150	Horizontal	Pass
5	12331.688	53.34	1.39	74.0	-20.66	Peak	106.00	150	Horizontal	Pass
5**	12331.688	43.89	1.39	54.0	-10.11	AV	106.00	150	Horizontal	Pass
6	17184.676	53.47	2.54	74.0	-20.53	Peak	222.00	150	Horizontal	Pass
6**	17184.676	44.50	2.54	54.0	-9.50	AV	222.00	150	Horizontal	Pass

GFSK HIGH CHANNEL 1 GHz to 18 GHz, ANT V

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1991.200	43.80	-15.51	74.0	-30.20	Peak	136.00	150	Vertical	Pass
1**	1991.200	33.24	-15.51	54.0	-20.76	AV	136.00	150	Vertical	Pass
2	2479.800	84.43	-12.43	74.0	10.43	Peak	108.00	150	Vertical	N/A
2**	2479.800	82.76	-12.43	54.0	28.76	AV	108.00	150	Vertical	N/A
3	2659.600	53.02	-11.12	74.0	-20.98	Peak	159.00	150	Vertical	Pass
3**	2659.600	38.22	-11.12	54.0	-15.78	AV	159.00	150	Vertical	Pass
4	6684.400	54.59	-0.28	74.0	-19.41	Peak	0.00	150	Vertical	Pass
4**	6684.400	46.25	-0.28	54.0	-7.75	AV	0.00	150	Vertical	Pass
5	12340.600	53.87	1.29	74.0	-20.13	Peak	48.00	150	Vertical	Pass
5**	12340.600	43.14	1.29	54.0	-10.86	AV	48.00	150	Vertical	Pass
6	17421.449	53.57	3.72	74.0	-20.43	Peak	90.00	150	Vertical	Pass
6**	17421.449	45.99	3.72	54.0	-8.01	AV	90.00	150	Vertical	Pass

A.9 Band Edge (Restricted-band band-edge)

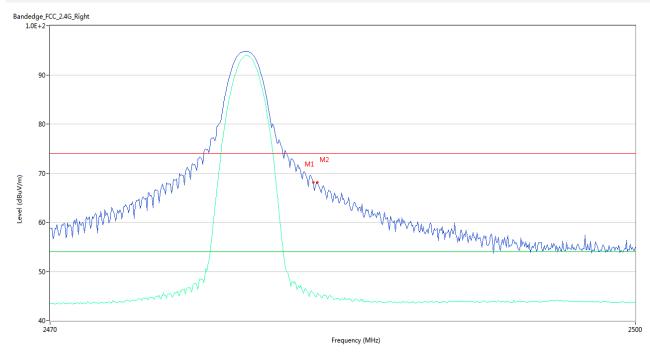
Note ¹: The lowest and highest channels are tested to verify the band edge emissions. Please refer to the following the plots for emissions values.


Note ²: The test data all are tested in the vertical and horizontal antenna which the trace is max hold. So these plots have shown the worst case.

Note ³: According the ANSI C63.10-2013, where limits are specified for both average and peak (or quasipeak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.

Note 4: The Level (dBuV/m) has been corrected by factor.

Test Data and Plots


GFSK LOW CHANNEL

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	2390.000	57.06	-0.50	74.0	-16.94	Peak	279.00	150	Horizontal	Pass
1**	2390.000	43.42	-0.50	54.0	-10.58	AV	279.00	150	Horizontal	Pass
2	2389.833	58.51	-0.50	74.0	-15.49	Peak	273.00	150	Horizontal	Pass
2**	2389.833	43.38	-0.50	54.0	-10.62	AV	273.00	150	Horizontal	Pass

GFSK HIGH CHANNEL

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	2483.500	68.14	-0.36	74.0	-5.86	Peak	17.00	150	Horizontal	Pass
1**	2483.500	45.55	-0.36	54.0	-8.45	AV	17.00	150	Horizontal	Pass
2	2483.650	68.15	-0.35	74.0	-5.85	Peak	92.00	150	Horizontal	Pass
2**	2483.650	45.54	-0.35	54.0	-8.46	AV	92.00	150	Horizontal	Pass

ANNEX B TEST SETUP PHOTOS

Please refer the document "BL-SZ2260161-AR.PDF".

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document "BL-SZ2260161-AW.PDF".

ANNEX D EUT INTERNAL PHOTOS

Please refer the document "BL-SZ2260161-AI.PDF".

Statement

1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.

2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.

3. For the report with CNAS mark or A2LA mark, the items marked with "☆" are not within the accredited scope.

4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.

5. The test data and results are only valid for the tested samples provided by the customer.

6. This report shall not be partially reproduced without the written permission of the laboratory.

7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

--END OF REPORT--