

FCC Test Report

Report No.: AGC01278190422FE03

FCC ID 2A0W6IAHB239

APPLICATION PURPOSE **Original Equipment**

PRODUCT DESIGNATION Wireless Headphones

BRAND NAME ILIVE

MODEL NAME IAHB239

CLIENT Shantou Xinyu Industry Co., Ltd.

DATE OF ISSUE May 10, 2019

STANDARD(S) FCC Part 15.247

REPORT VERSION

Attestation of Global Compliance (Shenzhen) Co., Ltd

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results shown this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 💢 🗲, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be

Attestation of Global Compliance

Fax: +86-755 2600 8484

E-mail: agc@agc-cert.com

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 2 of 70

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	40	May 10, 2019	Valid	Initial Release

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY		5
2. GENERAL INFORMATION		6
2.1. PRODUCT DESCRIPTION	承整型 《卷型》 "承息	6
2.2. TABLE OF CARRIER FREQUENCY	YS	6
2.4. EXAMPLE OF A HOPPING SEQUE	NCY IN DATA MODE	7
	QUENCIES AND BEHAVIOUR	
2.6. RELATED SUBMITTAL(S) / GRANT	Γ(S)	8
2.7. TEST METHODOLOGY		8
2.9. EQUIPMENT MODIFICATIONS		8
3. MEASUREMENT UNCERTAINTY		9
4. DESCRIPTION OF TEST MODES		10
5. SYSTEM TEST CONFIGURATION	# In the second of the second	11
5.1. CONFIGURATION OF EUT SYSTE	:M	11
5.2 EQUIPMENT USED IN TESTED SY	STEM	11
5.3. SUMMARY OF TEST RESULTS		11
6. TEST FACILITY		12
7. PEAK OUTPUT POWER		Harris Of Harrison 13
Glov	OF CONFIGURATION)	
	SULT	
8. 20DB BANDWIDTH		
8.1. MEASUREMENT PROCEDURE		18
8.2. TEST SET-UP (BLOCK DIAGRAM)	OF CONFIGURATION)	18
	SULTS	
9. CONDUCTED SPURIOUS EMISSION.	0 # 3 m C 3 m	23
3. 1. IVILAGUNLIVILINI FRUCEDURE		23

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at the confirm

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	23
9.3. MEASUREMENT EQUIPMENT USED	23
9.4. LIMITS AND MEASUREMENT RESULT	23
10. RADIATED EMISSION	31
10.1. MEASUREMENT PROCEDURE	31
10.2. TEST SETUP	33
10.3. LIMITS AND MEASUREMENT RESULT	
10.4. TEST RESULT	
11. NUMBER OF HOPPING FREQUENCY	
11.1. MEASUREMENT PROCEDURE	
11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	
11.3. MEASUREMENT EQUIPMENT USED	44
11.4. LIMITS AND MEASUREMENT RESULT	44
12. TIME OF OCCUPANCY (DWELL TIME)	45
12.1. MEASUREMENT PROCEDURE	45
12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	45
12.3. MEASUREMENT EQUIPMENT USED	
12.4. LIMITS AND MEASUREMENT RESULT	
13. FREQUENCY SEPARATION	
13.1. MEASUREMENT PROCEDURE	49
13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	49
13.3. MEASUREMENT EQUIPMENT USED	49
13.4. LIMITS AND MEASUREMENT RESULT	49
14. FCC LINE CONDUCTED EMISSION TEST	50
14.1. LIMITS OF LINE CONDUCTED EMISSION TEST	50
14.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	
14.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	51
14.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	51
14.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	54
APPENDIX B: PHOTOGRAPHS OF EUT	56
// LIVE// D.	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KEC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gent.com.

Page 5 of 70

1. VERIFICATION OF CONFORMITY

30 de 10 de			
Shantou Xinyu Industry Co., Ltd.			
Heping Zhongzhai Industrial Zone Chaoyang District, Shantou, Guangdong, China			
Shantou Xinyu Industry Co., Ltd.			
Heping Zhongzhai Industrial Zone Chaoyang District, Shantou, Guangdong China			
Shantou Xinyu Industry Co., Ltd.			
Heping Zhongzhai Industrial Zone Chaoyang District, Shantou, Guangdong, China			
Wireless Headphones			
ILIVE			
IAHB239			
May 06, 2019 to May 10, 2019			
None 1			
Normal			
Pass			
AGCRT-US-BR/RF			

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC PART 15.247.

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Report No.: AGC01278190422FE03 Page 6 of 70

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is designed as "Wireless Headphones". It is designed by way of utilizing the GFSK, $\pi/4$ DQPSK technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480GHz
RF Output Power	-6.815dBm(Max)
Bluetooth Version	V 5.0
Modulation	BR ⊠GFSK, EDR ⊠π /4-DQPSK, □8DPSK BLE □GFSK 1Mbps □GFSK 2Mbps
Number of channels	79
Hardware Version	V1.0
Software Version	V1.1
Antenna Designation	PCB Antenna(Comply with requirements of the FCC part 15.203)
Antenna Gain	-0.68dBi
Power Supply	DC 3.7V by battery

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency	
:10	O The Table of the Comment of the Co	2402MHZ	
	Entransian Contraction CO	2403MHZ	
		· · · · · · · · · · · · · · · · · · ·	
	38	2440 MHZ	
2402~2480MHZ	39	2441 MHZ	
	40	2442 MHZ	
		· 在想 · 在想 · 多美。	
	77	2479 MHZ	
	78	2480 MHZ	

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 7 of 70

2.3. RECEIVER INPUT BANDWIDTH

The input bandwidth of the receiver is 1.3MHZ, In every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection(e.g. single of multislot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also the slave of the connection will use these settings.

Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE

Example of a 79 hopping sequence in data mode: 40,21,44,23,42,53,46,55,48,33,52,35,50,65,54,67 56,37,60,39,58,69,62,71,64,25,68,27,66,57,70,59 72,29,76,31,74,61,78,63,01,41,05,43,03,73,07,75 09,45,13,47,11,77,15,00,64,49,66,53,68,02,70,06 01, 51, 03, 55, 05, 04

2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR

The generation of the hopping sequence in connection mode depends essentially on two input values:

- 1. LAP/UAP of the master of the connection.
- 2. Internal master clock

The LAP(lower address part) are the 24 LSB's of the 48 BD ADDRESS. The BD ADDRESS is an unambiguous number of every Bluetooth unit. The UAP(upper address part) are the 24MSB's of the 48BD ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For ehavior zation with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us. The clock has a cycle of about one day(23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire. LAP(24 bits),4LSB's(4bits)(Input 1) and the 27MSB's of the clock(Input 2) are used. With this input values different mathematical procedures(permutations, additions, XOR-operations) are performed to generate te Sequence This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following ehavior:

The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer(and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always Differ from the first one.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 💢 Ĉ, this documant be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com.

C C S

Page 8 of 70

2.6. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID: 2AOW6IAHB239 filing to comply with the FCC PART 15.247 requirements.

2.7. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013) Radiated testing was performed at an antenna to EUT distance 3 meters.

2.8. SPECIAL ACCESSORIES

Refer to section 5.2.

2.9. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

The results spowed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 🕊 €, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

Page 9 of 70

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB
- Uncertainty of total RF power, conducted, Uc = ±0.8dB
- Uncertainty of spurious emissions, conducted, Uc = ±2.7dB
- Uncertainty of Occupied Channel Bandwidth: Uc = ±2 %
- Uncertainty of Dwell Time: Uc = ±2 %
- Uncertainty of Frequency: Uc = ±2 %

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

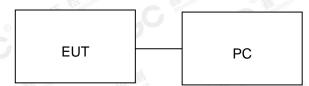
Page 10 of 70

4. DESCRIPTION OF TEST MODES

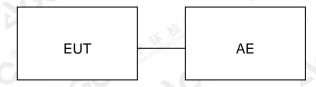
NO.	TEST MODE DESCRIPTION				
Kanana 1	Low channel GFSK				
© 2	Middle channel GFSK				
3	High channel GFSK				
4	Low channel π/4-DQPSK				
5	Middle channel π/4-DQPSK				
6	High channel π/4-DQPSK				
7	Hopping mode GFSK				
8 4 7	Hopping mode π/4-DQPSK				

Note: 1. Only the result of the worst case was recorded in the report, if no other cases.

- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.



Page 11 of 70


5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Radiated Emission Configure :

Conducted Emission Configure:

5.2 EQUIPMENT USED IN TESTED SYSTEM

9/11/1	. Par IV is	22 *bbb*		
Item	Equipment	Model No.	ID or Specification	Remark
L.C	Wireless Headphones	IAHB239	2AOW6IAHB239	EUT
2	PC	16301-01	N/A	AE
3	USB Cable	N/A	1m unshielded	AE

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
15.247 (b)(1)	Peak Output Power	Compliant
15.247 (a)(1)	20 dB Bandwidth	Compliant
15.247 (d)	Conducted Spurious Emission	Compliant
15.209	Radiated Emission	Compliant
15.247 (a)(1)(iii)	Number of Hopping Frequency	Compliant
15.247 (a)(1)(iii)	Time of Occupancy	Compliant
15.247 (a)(1)	Frequency Separation	Compliant
15.207	Conducted Emission	Compliant

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 12 of 70

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd				
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China				
Designation Number	CN1259				
FCC Test Firm Registration Number	975832				
A2LA Cert. No.	5054.02				
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA				

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

Equipment Manufacturer		Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESPI	101206	Jun. 12, 2018	Jun. 11, 2019
LISN	R&S	ESH2-Z5	100086	Aug. 28, 2018	Aug. 27, 2019

TEST EQUIPMENT OF RADIATED EMISSION TEST

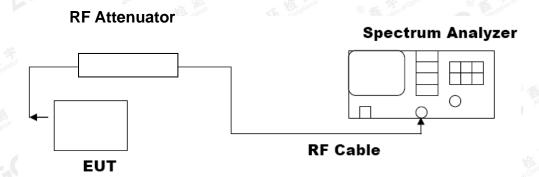
Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2018	Jun. 11, 2019
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 20, 2018	Dec. 19, 2019
2.4GHz Fliter	Micro-tronics	087	N/A	Jun. 12, 2018	Jun. 11, 2019
Attenuator	Weinachel Corp	58-30-33	N/A	Jun. 12, 2018	Jun. 11, 2019
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 21, 2017	Sep. 20, 2020
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	Jun. 14, 2018	Jun. 13, 2020
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May. 26, 2018	May. 25, 2020
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Oct. 25, 2018	Oct. 24, 2019
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep. 28, 2017	Sep. 27, 2019

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.geat.com.

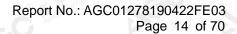
Page 13 of 70

7. PEAK OUTPUT POWER

7.1. MEASUREMENT PROCEDURE


For peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 3. RBW > 20 dB bandwidth of the emission being measured.
- 4. VBW ≥RBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.


Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

PEAK POWER TEST SETUP

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

7.3. LIMITS AND MEASUREMENT RESULT

PEAK OUTPUT POWER MEASUREMENT RESULT FOR GFSK MOUDULATION								
Frequency (GHz)	Applicable Limits (dBm)	Pass or Fail						
2.402	-8.478	30	Pass					
2.441	9 -7.731	30	Pass					
2.480	-7.914	30	Pass					

CH₀

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

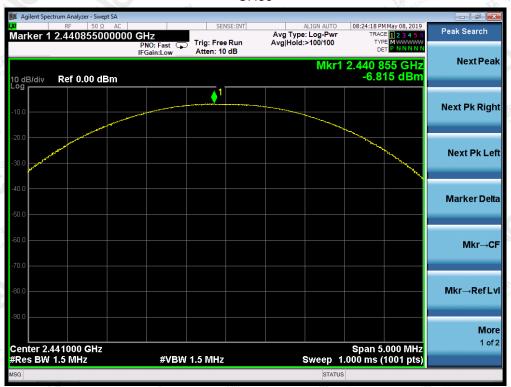
CH39

CH78

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

PEAK OUTPUT POWER MEASUREMENT RESULT FOR II /4-DQPSK MODULATION								
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)						
2.402	-7.570	30	Pass					
2.441	-6.815	30	Pass					
2.480	-7.017	30	Pass					

CH₀



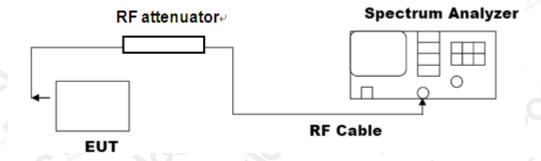
The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the confirmed a

IGC 8

CH39

CH78

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.


Page 18 of 70

8. 20DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hoping channel
 The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video
 bandwidth (VBW) shall be approximately three times RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

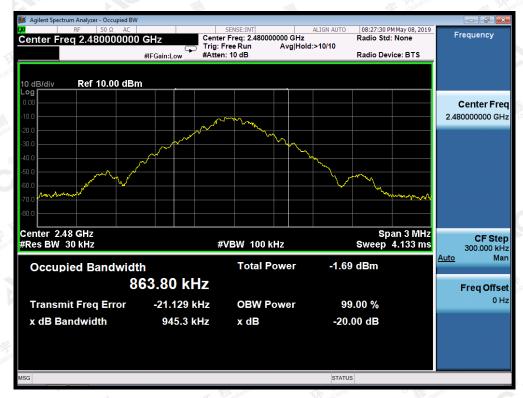
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

8.3. LIMITS AND MEASUREMENT RESULTS

MEASUREMENT RESULT FOR GFSK MOUDULATION							
Measurement Result							
Applicable Limits	Test Da	Test Data (MHz)					
The State County	Low Channel	0.9459	PASS				
N/A	Middle Channel	0.9387	PASS				
	High Channel	0.9453	PASS				

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL


TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

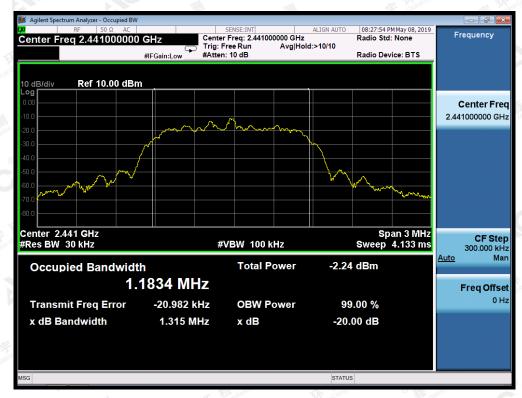
The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XOC, this document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only are retained

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

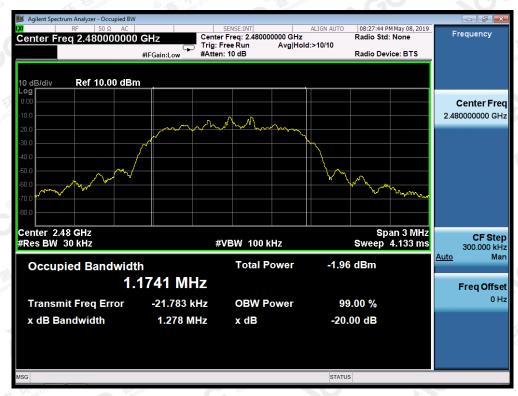
The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (CC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a tittp://www.agc.com.

MEASUREMENT RESULT FOR ∏ /4-DQPSK MODULATION								
Measurement Result								
Applicable Limits	Test Data	Criteria						
GU T	Low Channel	1.304	PASS					
N/A	Middle Channel	1.315	PASS					
	High Channel	1.278	PASS					

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL



The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


IGC 8

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

VGC 8

Page 23 of 70

9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.
 RBW = 100 kHz; VBW= 300 kHz; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

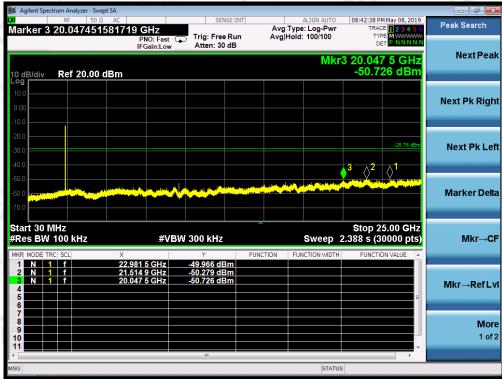
The same as described in section 8.2

9.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

9.4. LIMITS AND MEASUREMENT RESULT


LIMITS AND MEASUREMENT RESULT								
	Measurement Result							
Applicable Limits	Test Data	Criteria						
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency	At least -20dBc than the limit Specified on the BOTTOM Channel	PASS						
power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a))	At least -20dBc than the limit Specified on the TOP Channel	PASS						

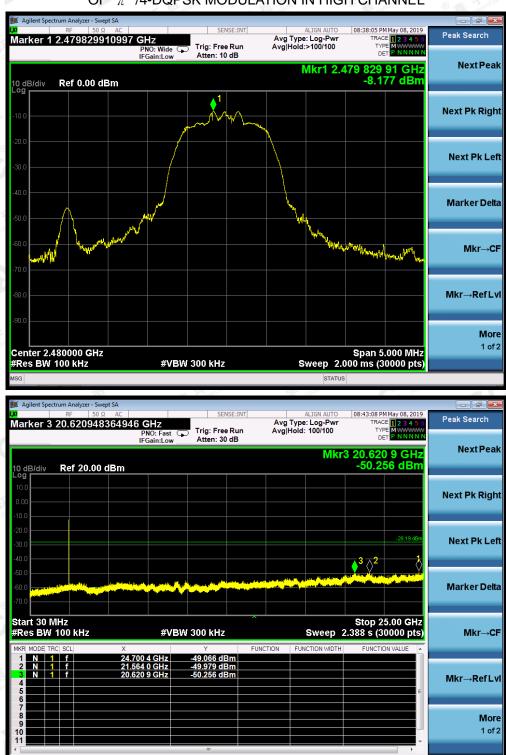

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

TEST RESULT FOR ENTIRE FREQUENCY RANGE

TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF $\,\pi\,$ /4-DQPSK MODULATION IN LOW CHANNEL

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

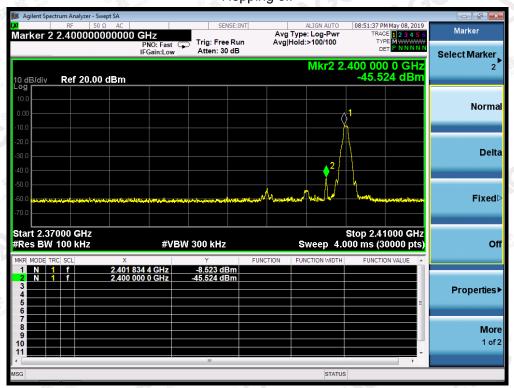
TEST PLOT OF OUT OF BAND EMISSIONS OF π /4-DQPSK MODULATION IN MIDDLE CHANNEL



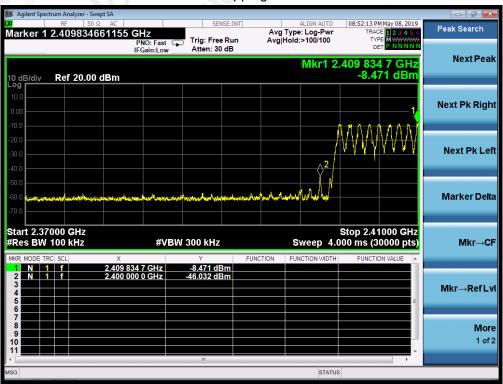
The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

TEST PLOT OF OUT OF BAND EMISSIONS DF π /4-DQPSK MODULATION IN HIGH CHANNEL

Note: The peak emissions without marker on the above plots are fundamental wave and need not to compare with the limit. The π /4-DQPSK modulation is the worst case and only those data recorded in the report.


The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a the confirmed at a three-like the confirmed at a three-like three-like

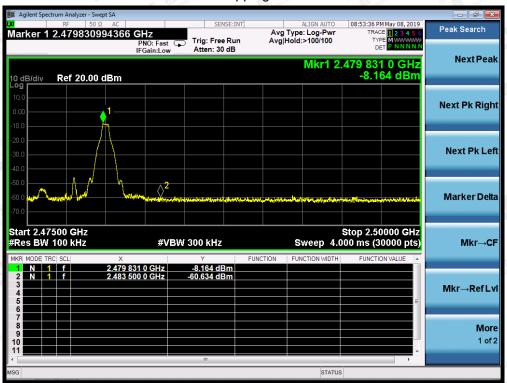
(GC) S



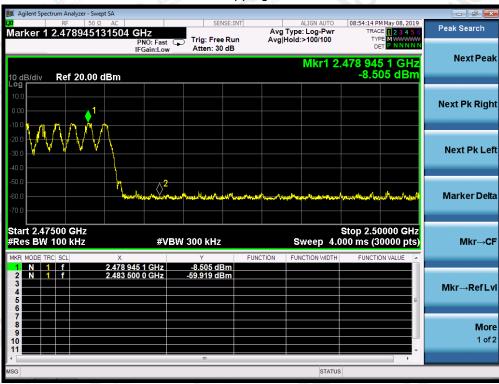
TEST RESULT FOR BAND EDGE

GFSK MODULATION IN LOW CHANNEL Hopping off

Hopping on

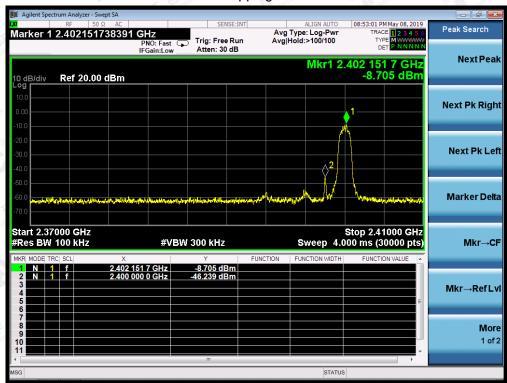


The results spowth this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

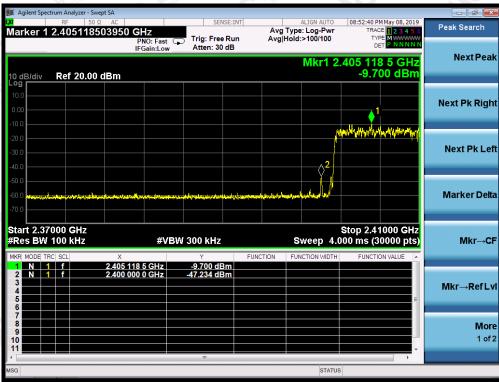

IGC 8

GFSK MODULATION IN HIGH CHANNEL Hopping off

Hopping on

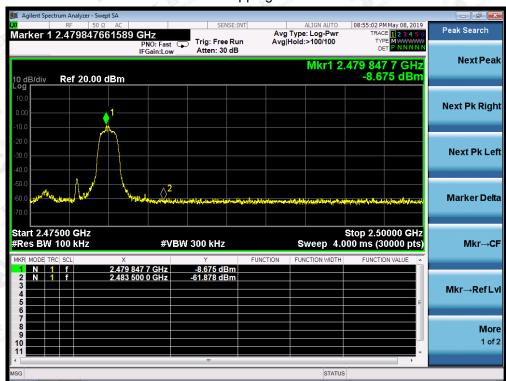


The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gent.com.

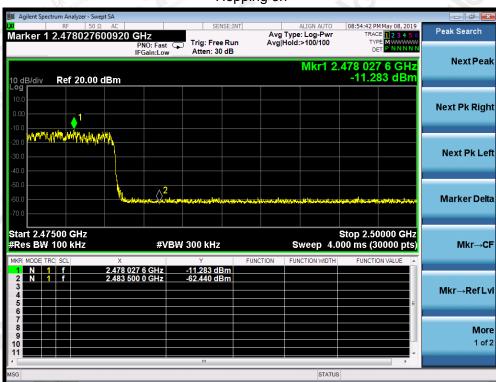

AIGC 8

π /4-DQPSK MODULATION IN LOW CHANNEL Hopping off

Hopping on



The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.


AIGC 2

π /4-DQPSK MODULATION IN HIGH CHANNEL Hopping off

Hopping on

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

AIGC 2

Page 31 of 70

10. RADIATED EMISSION

10.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

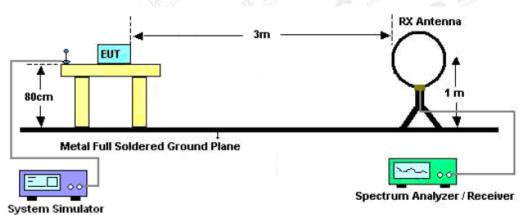
The results spown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.gent.com.

(GC) S

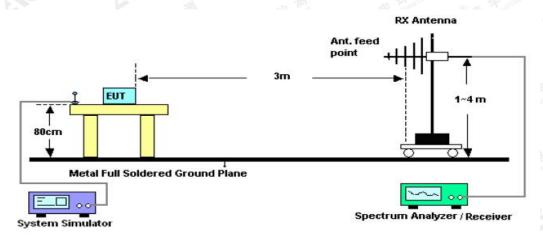
Page 32 of 70

The following table is the setting of spectrum analyzer and receiver.

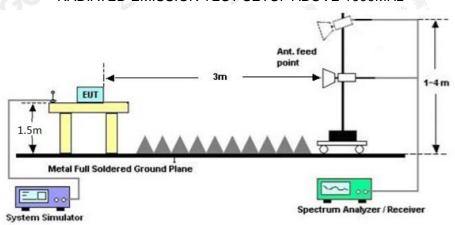
	Spectrum Parameter	Setting
Kampianos Allin	Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
© 25.	Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
GO "	Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
The state of the s	Start ~Stop Frequency	1GHz~26.5GHz 1MHz/3MHz for Peak, 1MHz/3MHz for Average


Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the confirmed a



10.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 34 of 70

10.3. LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

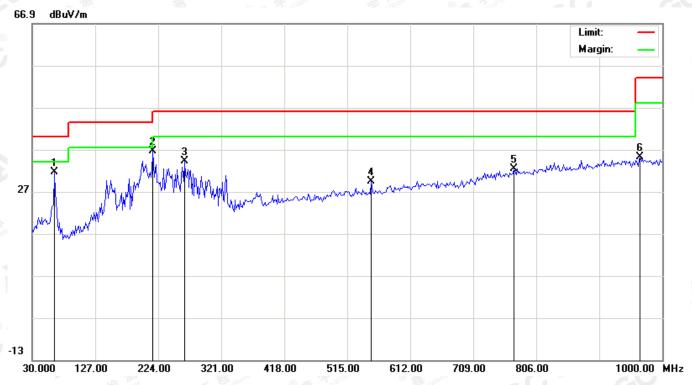
Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	The same of the sa
216~960	200	3
Above 960	500	3

Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

10.4. TEST RESULT

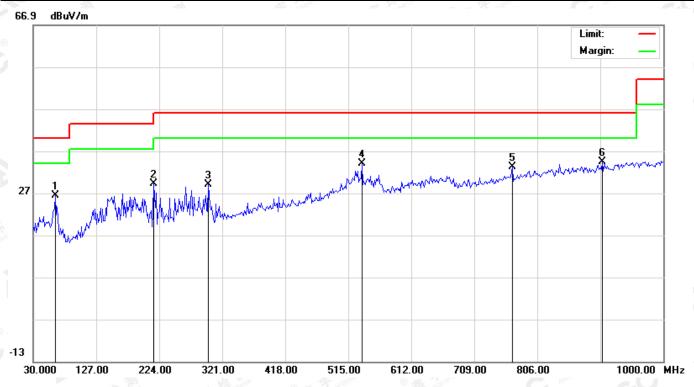
RADIATED EMISSION BELOW 30MHZ


No emission found between lowest internal used/generated frequencies to 30MHz.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gent.com.

RADIATED EMISSION BELOW 1GHZ

EUT	Wireless Headphones	Model Name	IAHB239
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 5	Antenna	Horizontal


		- 18 - VOII.		- 10°				Ne.			
No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		63.9500	13.39	18.17	31.56	40.00	-8.44	peak			
2	*	215.9167	19.57	17.00	36.57	43.50	-6.93	peak			
3		264.4167	15.53	18.67	34.20	46.00	-11.80	peak			
4		552.1833	3.41	26.01	29.42	46.00	-16.58	peak			
5		772.0500	2.55	29.78	32.33	46.00	-13.67	peak			
6		966.0500	2.94	32.27	35.21	54.00	-18.79	peak			

RESULT: PASS

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

EUT	Wireless Headphones	Model Name	IAHB239
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 5	Antenna	Vertical

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		63.9500	8.31	18.17	26.48	40.00	-13.52	peak			
2		215.9167	12.18	17.00	29.18	43.50	-14.32	peak			
3		299.9833	9.50	19.47	28.97	46.00	-17.03	peak			
4		536.0167	8.32	25.70	34.02	46.00	-11.98	peak			
5		767.2000	3.44	29.67	33.11	46.00	-12.89	peak			
6	*	906.2333	2.69	31.75	34.44	46.00	-11.56	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. All test modes had been pre-tested. The mode 5 is the worst case and recorded in the report.

The results showed the sample (s) tested unless otherwise stated and the sample (s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

Report No.: AGC01278190422FE03

Page 37 of 70

RADIATED EMISSION ABOVE 1GHZ

EUT	Wireless Headphones	Model Name	IAHB239
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4824.076	46.47	0.08	46.55	74	-27.45	peak
4824.104	39.23	0.08	39.31	54	-14.69	AVG
7236.085	44.91	2.21	47.12	74	-26.88	peak
7236.059	38.55	2.21	40.76	54	-13.24	AVG
(B) Station of	® Alaion of C.	Altestation				
	C Am				LITTE:	A THIN
mark:						

Remark

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

EUT	Wireless Headphones	Model Name	IAHB239
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4824.076	45.87	0.08	45.95	74	-28.05	peak
4824.096	38.48	0.08	38.56	54	-15.44	AVG
7236.093	43.31	2.21	45.52	74	-28.48	peak
7236.102	37.51	2.21	39.72	54	-14.28	AVG
	TK Compilar	Z ZNobal Com	® Alajon of	Allestation		
	Finor Glove	station of	- C			

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the confirmed a

Attestation of Global Compliance

Report No.: AGC01278190422FE03

Page 38 of 70

EUT	Wireless Headphones	Model Name	IAHB239
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 5	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4874.120	48.86	0.14	49	74	-25	peak
4874.083	42.65	0.14	42.79	54	-11.21	AVG
7311.060	43.79	2.36	46.15	74	-27.85	peak
7311.030	37.66	2.36	40.02	54	-13.98	AVG
(B) Station C.	(8) And the station of the	Allestation				
					<u>-1111)</u>	Mes and
emark:			lin-	376	Kil	FV pal Complies
actor = Anter	nna Factor + Cabl	e Loss – Pre-	amplifier.	@ # ForGot	® 5 310	in of Gio

EUT	Wireless Headphones	Model Name	IAHB239
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 5	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- value Type
4874.040	47.74	0.14	47.88	74	-26.12	peak
4874.047	40.21	0.14	40.35	54	-13.65	AVG
7311.035	42.58	2.36	44.94	74	-29.06	peak
7311.049	38.97	2.36	41.33	54	-12.67	AVG
pliance @ 4	A Clops,	a lation of G	Alles.			
-6	lester C					
emark:						

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the confirmed a

Report No.: AGC01278190422FE03 Page 39 of 70

EUT	Wireless Headphones	Model Name	IAHB239
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 6	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4924.101	46.35	0.22	46.57	74	-27.43	peak
4924.082	38.52	0.22	38.74	54	-15.26	AVG
7386.020	40.19	2.64	42.83	74	-31.17	peak
7386.048	36.69	2.64	39.33	54	-14.67	AVG
® Station of	® Agailon of G.	Allestation				
					1997	THE SALE
Remark:			lin-	Ţ.K	Compliance	That Compile
actor = Anter	nna Factor + Cable	Loss – Pre-	amplifier.	Q E F OF GIO	® \$5.	ion of Gio

EUT	Wireless Headphones	Model Name	IAHB239
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 6	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4924.107	44.87	0.22	45.09	74	-28.91	peak
4924.039	37.63	0.22	37.85	54	-16.15	AVG
7386.033	39.58	2.64	42.22	74	-31.78	peak
7386.109	35.33	2.64	37.97	54	-16.03	AVG
(B) ## 13	of Globall ®	atation of Gib	Attest			
Alfestati						and a
emark:				Light - Sill		AST TOUCE
actor = Anten	na Factor + Cable	e Loss – Pre-	amplifier.	EX Kill Dilan	孙	Comp
		arti	- 17			

RESULT: PASS

Note:

Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report. Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

All test modes had been tested. The π /4-DQPSK modulation is the worst case and recorded in the report.

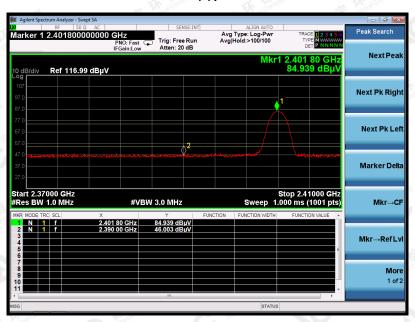

The results spown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.


TEST RESULT FOR RESTRICTED BANDS REQUIREMENTS

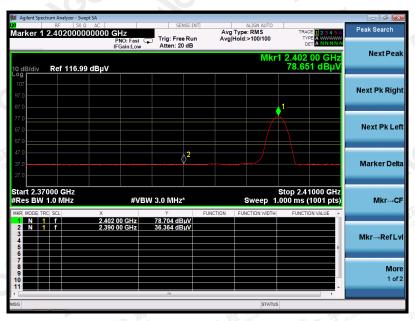
	EUT	Wireless Headphones	Model Name	IAHB239
4	Temperature	25°C	Relative Humidity	55.4%
nof	Pressure	960hPa	Test Voltage	Normal Voltage
	Test Mode	Mode 4	Antenna	Horizontal

PK

ΑV


RESULT: PASS

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.



EUT	Wireless Headphones	Model Name	IAHB239
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage Normal Voltage	
Test Mode	Mode 4	Antenna	Vertical

PK

AV

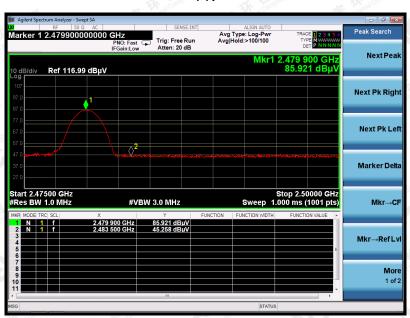
RESULT: PASS

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

EUT	Wireless Headphones	Model Name	IAHB239
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 6	Antenna	Horizontal

PK

AV


RESULT: PASS

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

EUT	Wireless Headphones	Model Name	IAHB239
Temperature	25°C	Relative Humidity	
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 6	Antenna	Vertical

PK

AV

RESULT: PASS

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F. All test modes had been pre-tested. The π /4-DQPSK modulation is the worst case and recorded in the report.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XCC, this document is a sample (s) are retained for 30 days only. The document is issued by XCC, this document is a sample (s) are retained for 30 days only. The document is issued by XCC, this document is a sample (s) are retained for 30 days only. The document is issued by XCC, this document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only are retained fo

\GC s

Report No.: AGC01278190422FE03 Page 44 of 70

11.1. MEASUREMENT PROCEDURE

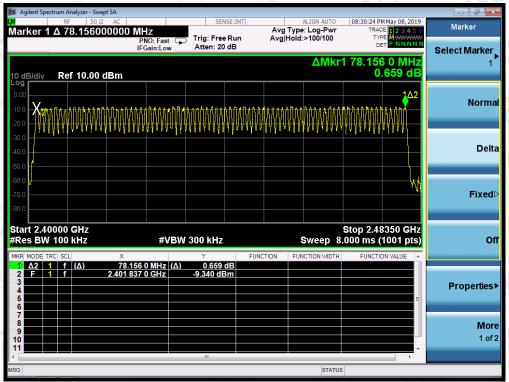
11. NUMBER OF HOPPING FREQUENCY

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- 2. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3. VBW > RBW. Sweep: Auto. Detector function: Peak. Trace: Max hold.
- 4. Allow the trace to stabilize.

11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2


11.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

11.4. LIMITS AND MEASUREMENT RESULT

Į.	TOTAL NO. OF	LIMIT (NO. OF CH)	MEASUREMENT (NO. OF CH)	RESULT
010	HOPPING CHANNEL	>=15	79	PASS

TEST PLOT FOR NO. OF TOTAL CHANNELS

Note: The GFSK modulation is the worst case and recorded in the report.

The results spowfill this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

C Cog

Report No.: AGC01278190422FE03

Page 45 of 70

12. TIME OF OCCUPANCY (DWELL TIME)

12.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span: Zero span, centered on a hopping channel.
- 2. RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- 4. Detector function: Peak. Trace: Max hold.
- 5. Use the marker-delta function to determine the transmit time per hop.
- 6. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) \times (period specified in the requirements / analyzer sweep time)

7. The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements.

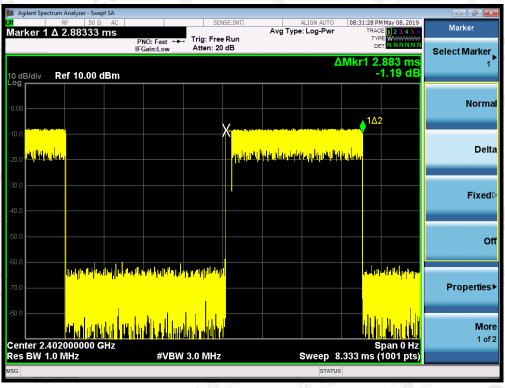
12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

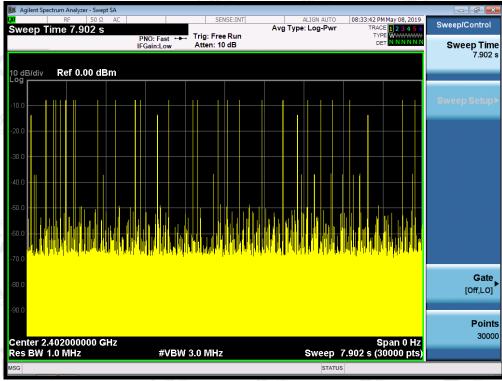
Same as described in section 8.2

12.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

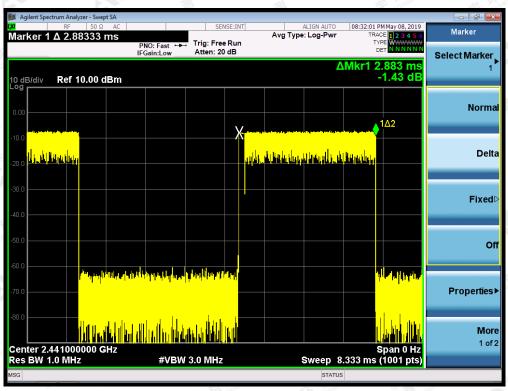
12.4. LIMITS AND MEASUREMENT RESULT

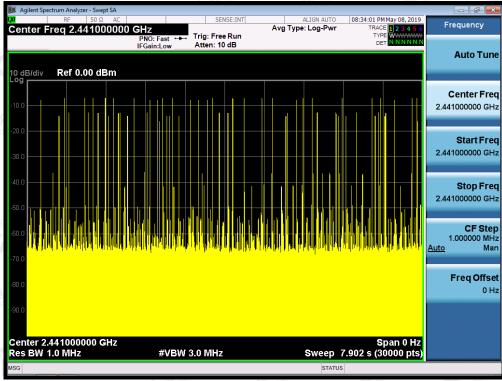

Channel	Time of Pulse for DH5 (ms)	Number of hops in the period specified in the requirements	Sweep Time (ms)	Limit (ms)
Low	2.883	25*4	172.980	400
Middle	2.883	28*4	219.108	400
High	2.883	28*4	253.704	400


Note: The $\pi/4$ -DQPSK modulation is the worst case and recorded in the report.

The results spowning this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gott.com.

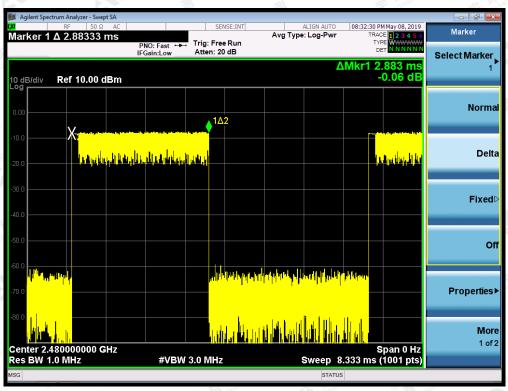
TEST PLOT OF LOW CHANNEL

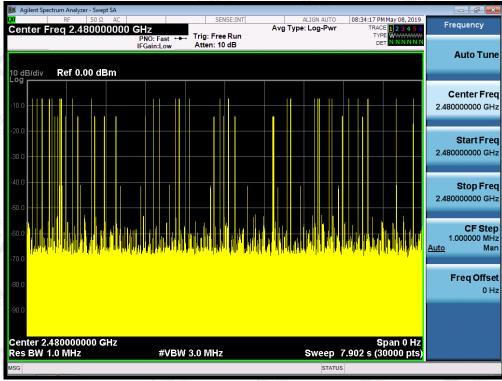




The results shows the sample (s) tested unless otherwise stated and the sample (s) are retained for 30 days only. The document is issued by (CC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.agc att.com.

TEST PLOT OF MIDDLE CHANNEL





The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

TEST PLOT OF HIGH CHANNEL

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.