

Page 1 of 60

TEST REPORT

Product Name	:	set top box
Brand Mark	:	N/A
Model No.	:	Claro STB SEI800CCOA
FCC ID	:	2AOVU-SEI800CCOA
Report Number	:	BLA-EMC-202103-A5203
Date of Sample Receipt	:	2021/3/17
Date of Test	:	2021/3/17 to 2021/4/15
Date of Issue	:	2021/4/15
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

SHENZHEN SEI Robotics Co.,Ltd 4thfloor, Productivity Building D, #5 Hi-Tech Middle 2nd Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, P.R.China.

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by:

Approved by:

Sven Emen-4

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Add: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

REPORT REVISE RECORD

Version No.	n No. Date Description	
00	2021/4/15	Original

TABLE OF CONTENTS

1	Г	TEST SUMMARY	5
2	C	GENERAL INFORMATION	6
3	C	GENERAL DESCRIPTION OF E.U.T.	6
4	Т	TEST ENVIRONMENT	7
5		TEST MODE	
		MEASUREMENT UNCERTAINTY	
6			
7		DESCRIPTION OF SUPPORT UNIT	
8			
9	Т	TEST INSTRUMENTS LIST	9
1	C	CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	12
	1.1	LIMITS	12
	1.2	BLOCK DIAGRAM OF TEST SETUP	
	1.3	PROCEDURE	12
	1.4	TEST DATA	14
2	C	CONDUCTED BAND EDGES MEASUREMENT	16
	2.1	LIMITS	16
	2.2		
	2.3	TEST DATA	17
3	F	RADIATED SPURIOUS EMISSIONS	18
	3.1	LIMITS	18
	3.2	BLOCK DIAGRAM OF TEST SETUP	
	3.3	PROCEDURE	19
	3.4	TEST DATA	21
4	F	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	29
	4.1	LIMITS	29
	4.2	BLOCK DIAGRAM OF TEST SETUP	30
	4.3	PROCEDURE	30
	4.4	ТЕЅТ DATA	32
5	C	CONDUCTED SPURIOUS EMISSIONS	36
	5.1	LIMITS	36

	5.2	BLOCK DIAGRAM OF TEST SETUP	. 36
	5.3	ТЕЅТ DATA	. 37
6	Ρ	OWER SPECTRUM DENSITY	. 38
	6.1	LIMITS	. 38
	6.2	BLOCK DIAGRAM OF TEST SETUP	. 38
	6.3	ТЕЅТ DATA	. 38
7	С	ONDUCTED PEAK OUTPUT POWER	. 39
	7.1	LIMITS	39
	7.2	BLOCK DIAGRAM OF TEST SETUP	39
	7.3	ТЕЅТ DATA	40
8	M	IINIMUM 6DB BANDWIDTH	. 41
	8.1	LIMITS	41
	8.2	BLOCK DIAGRAM OF TEST SETUP	. 41
	8.3	ТЕЅТ DATA	. 41
9	A	NTENNA REQUIREMENT	. 42
	9.1	CONCLUSION	42
10) A	PPENDIX	
	DTS	Bandwidth	. 43
	Οςςι	ipied Channel Bandwidth	. 45
	MAX	MUM CONDUCTED OUTPUT POWER	. 47
	MAX	MUM POWER SPECTRAL DENSITY	. 49
	BAND	EDGE MEASUREMENTS (NO-HOPPING MODE IS WORSE CASE)	. 51
	CONE	DUCTED SPURIOUS EMISSION	. 54
Α	PPEN	NDIX A: PHOTOGRAPHS OF TEST SETUP	. 58
Α	PPEN	NDIX B: PHOTOGRAPHS OF EUT	. 60

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	ction 47 CFR Part 15, Subpart C	
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass

GENERAL INFORMATION 2

Applicant	SHENZHEN SEI Robotics Co.,Ltd		
Address	4thfloor, Productivity Building D, #5 Hi-Tech Middle 2nd Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, P.R.China.		
Manufacturer	SHENZHEN SEI Robotics Co.,Ltd		
Address	4thfloor, Productivity Building D, #5 Hi-Tech Middle 2nd Road , Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, P.R.China.		
Factory	SHENZHEN SEI Robotics Co.,Ltd		
Address	4thfloor, Productivity Building D, #5 Hi-Tech Middle 2nd Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, P.R.China.		
Product Name	set top box		
Test Model No.	Claro STB SEI800CCOA		
3 GENERAL DESCRIPTION OF E.U.T.			

3 GENERAL DESCRIPTION OF E.U.T.

6

Hardware Version	SMB.297.02
Software Version	NA
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	PCB Antenna
Antenna Gain:	1.9dBi(Provided by customer)

4 TEST ENVIRONMENT

Environment	Temperature	Voltage	
Normal	+25°C	3.7Vdc	

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION			
ТХ	TX Keep the EUT in transmitting with modulation mode			
Remark:Only the data of the worst mode would be recorded in this report.				

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)	
Radiated Emission(9kHz-30MHz)	±4.34dB	
Radiated Emission(30Mz-1000MHz)	±4.24dB	
Radiated Emission(1GHz-18GHz)	±4.68dB	
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB	

6

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
NA	NA	NA	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 No tests were sub-contracted.

9 TEST INSTRUMENTS LIST

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)					
Equipment	Cal.Date	Cal.Due			
Shield room	SKET	833	N/A	2020/11/25	2023/11/24
Receiver	R&S	ESPI3	101082	2020/10/12	2021/10/11
LISN	R&S	ENV216	3560.6550.15	2020/10/12	2021/10/11
LISN	AT	AT166-2	AKK1806000003	2020/10/12	2021/10/11
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A

Test Equipment Of Conducted Band Edges Measurement									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Spectrum	R&S	R&S FSP40		2020/10/12	2021/10/11				
Spectrum	Spectrum Agilent N9020A		MY49100060	2020/10/12	2021/10/11				
Signal Generator	Signal Generator Agilent N5182A		MY49060650	2020/10/12	2021/10/11				
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11				

Test Equipment Of Radiated Spurious Emissions									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Chamber	namber SKET 966		N/A	2020/11/10	2023/11/9				
Spectrum	Spectrum R&S FSP40		100817	2020/10/12	2021/10/11				
Receiver	Receiver R&S ESR7 10		101199	2020/10/12	2021/10/11				
broadband Antenna	Schwarzbeck	eck VULB9168 00836 P:00227		2020/9/26	2022/9/25				
Horn Antenna	Horn Antenna Schwarzbeck 9120D		01892 P:00331	2020/9/26	2022/9/25				

Amplifier	SKET	PA-000318G-45	N/A	2020/10/16	2021/10/15
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2020/9/26	2022/9/25
Controller	SKET	SKET N/A		N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable	baxial Cable BlueAsia BLA-XC-03		N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A
	•	· · · · · ·			

Test Equipment Of Radiated Emissions which fall in the restricted bands								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Chamber	SKET	966	N/A	2020/11/10	2023/11/9			
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11			
Receiver	R&S	ESR7	101199	2020/10/12	2021/10/11			
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2020/9/26	2022/9/25			
Horn Antenna	ntenna Schwarzbeck 9120D 01892 P:00331			2020/9/26	2022/9/25			
Amplifier	SKET	PA-000318G-45	N/A	2020/10/16	2021/10/15			
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A			
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2020/9/26	2022/9/25			
Controller	SKET	N/A	N/A	N/A	N/A			
Coaxial Cable	Coaxial Cable BlueAsia BLA-XC-		N/A N/A		N/A			
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A			
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A			

Test Equipment Of Conducted Spurious Emissions								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11			

Report No.: BLA-EMC-202103-A5203 Page 11 of60

Spectrum	Agilent N9020A		MY49100060	2020/10/12	2021/10/11	
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11	
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11	

Test Equipment Of Power Spectrum Density									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11				
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11				
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11				
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11				

Test Equipment Of Conducted Peak Output Power									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Spectrum	R&S	R&S FSP40		2020/10/12	2021/10/11				
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11				
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11				
Signal Generator	Agilent	Agilent E8257D MY44320		2020/10/12	2021/10/11				

Test Equipment Of Minimum 6dB Bandwidth									
Equipment	Manufacturer	Model	S/N	S/N Cal.Date					
Spectrum	Spectrum R&S FSP40		100817	2020/10/12	2021/10/11				
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11				
Signal Generator	Signal Generator Agilent		MY49060650	2020/10/12	2021/10/11				
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11				

1 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)

Test Standard	47 CFR Part 15, Subpart C 15.247						
Test Method	ANSI C63.10 (2013) Section 6.2						
Test Mode (Pre-Scan)	ТХ						
Test Mode (Final Test)	ТХ						
Tester	Sven						
Temperature	25 ℃						
Humidity	52%						

1.1 LIMITS

Quasi-peak	Average	
66 to 56*	56 to 46*	
56	46	
60	50	
	66 to 56* 56	

1.2 BLOCK DIAGRAM OF TEST SETUP

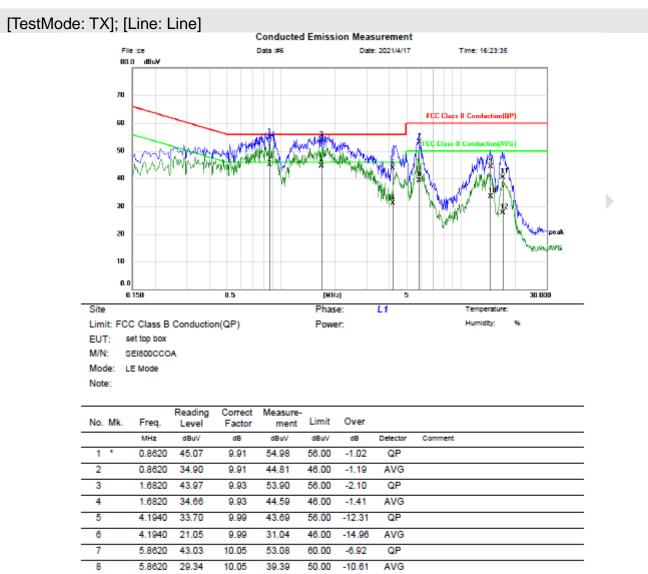
1.3 PROCEDURE

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50?H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as

the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

1.4 TEST DATA

Test Result:

14.6460

14.6460

17.0980

17.0980

9

10

11

12

33.90

23.11

30.09

17.25

10.34

10.34

10.38

10.38

44.24

33.45

40.47

27.63

60.00

50.00

60.00

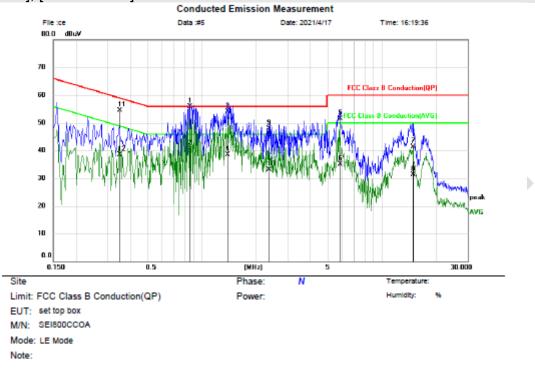
50.00 -22.37

-15.76

-16.55

-19.53

QP


AVG

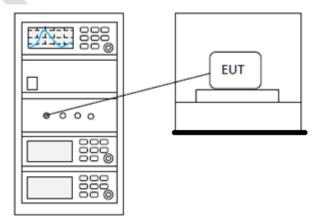
QP

AVG

[TestMode:TX]; [Line:Neutral]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.8580	46.01	9.83	55.84	56.00	-0.16	QP	
2		0.8580	30.78	9.83	40.61	46.00	-5.39	AVG	
3		1.3860	44.18	9.85	54.03	56.00	-1.97	QP	
4		1.3860	28.66	9.85	38.51	46.00	-7.49	AVG	
5		5.8740	41.60	9.98	51.58	60.00	-8.42	QP	
6		5.8740	25.04	9.98	35.02	50.00	-14.98	AVG	
7		14.9340	30.92	10.32	41.24	60.00	-18.76	QP	
8		14.9340	20.97	10.32	31.29	50.00	-18.71	AVG	
9		2.3580	38.08	9.87	47.95	56.00	-8.05	QP	
10		2.3580	23.26	9.87	33.13	46.00	-12.87	AVG	
11		0.3500	44.74	9.77	54.51	58.96	-4.45	QP	
12		0.3500	28.67	9.77	38.44	48.96	-10.52	AVG	

Test Result:


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Sven
Temperature	25 ℃
Humidity	52%

2 CONDUCTED BAND EDGES MEASUREMENT

2.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

2.2 BLOCK DIAGRAM OF TEST SETUP

BlueAsia of Technical Services(Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

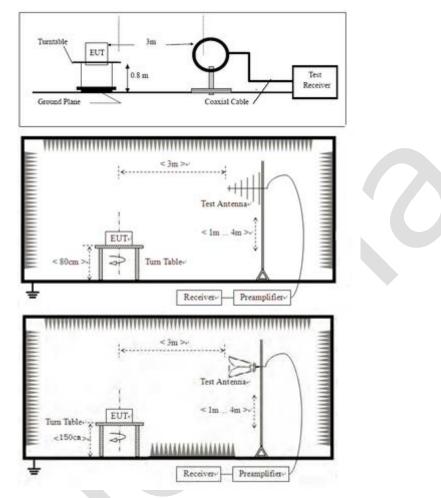
Report No.: BLA-EMC-202103-A5203 Page 17 of60

2.3 TEST DATA

Pass: Please Refer To Appendix: For Details

RADIATED SPURIOUS EMISSIONS 3

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Sven
Temperature	25°C
Humidity	52%


3.1 LIMITS

3.1 LIMITS								
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)						
0.009-0.490	2400/F(kHz)	300						
0.490-1.705	24000/F(kHz)	30						
1.705-30.0	30	30						
30-88	100	3						
88-216	150	3						
216-960	200	3						
Above 960	500	3						

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

3.2 BLOCK DIAGRAM OF TEST SETUP

3.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

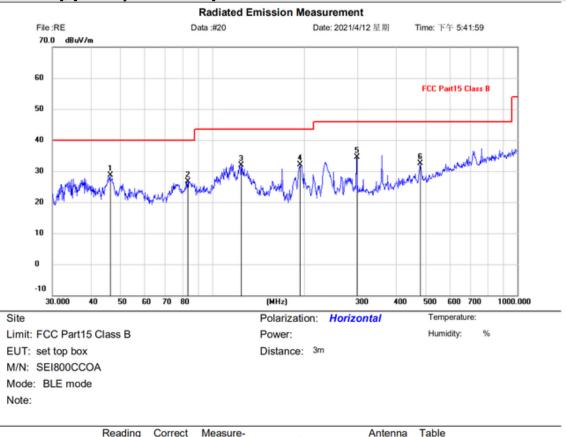
j. Repeat above procedures until all frequencies measured was complete.

Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor


3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.

4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

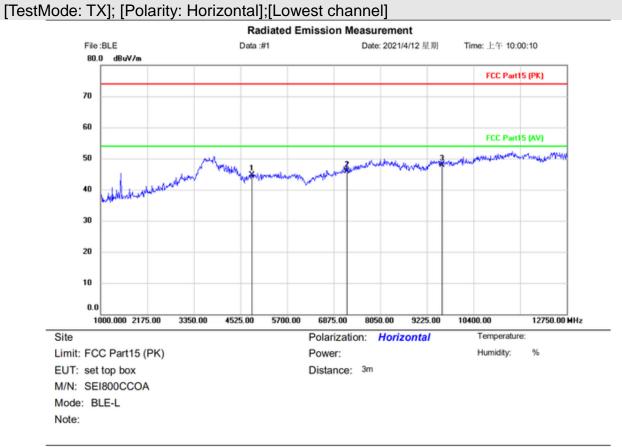
3.4 TEST DATA



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		Height	Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	46.3402	4.40	24.40	28.80	40.00	-11.20	QP			
2		83.2298	7.53	19.14	26.67	40.00	-13.33	QP			
3		124.5690	9.20	22.71	31.91	43.50	-11.59	QP			
4		194.4534	11.84	20.25	32.09	43.50	-11.41	QP			
5		297.2241	10.83	23.72	34.55	46.00	-11.45	QP			
6		480.5276	3.82	28.75	32.57	46.00	-13.43	QP			

*:Maximum data x:Over limit !:over margin

(Reference Only



Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
*	37.6798	9.31	23.65	32.96	40.00	-7.04	QP			
	74.3955	12.64	20.19	32.83	40.00	-7.17	QP			
	115.3205	13.70	22.10	35.80	43.50	-7.70	QP			
	169.5990	10.91	22.02	32.93	43.50	-10.57	QP			
	297.2241	10.02	23.72	33.74	46.00	-12.26	QP			
	638.3686	4.63	32.21	36.84	46.00	-9.16	QP			
	*	MHz * 37.6798	Mk. Freq. Level MHz dBuV * 37.6798 9.31 74.3955 12.64 115.3205 13.70 169.5990 10.91 297.2241 10.02	Mk. Freq. Level Factor MHz dBuV dB * 37.6798 9.31 23.65 74.3955 12.64 20.19 115.3205 13.70 22.10 169.5990 10.91 22.02 297.2241 10.02 23.72	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m * 37.6798 9.31 23.65 32.96 74.3955 12.64 20.19 32.83 115.3205 13.70 22.10 35.80 169.5990 10.91 22.02 32.93 297.2241 10.02 23.72 33.74	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m * 37.6798 9.31 23.65 32.96 40.00 74.3955 12.64 20.19 32.83 40.00 115.3205 13.70 22.10 35.80 43.50 169.5990 10.91 22.02 32.93 43.50 297.2241 10.02 23.72 33.74 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB * 37.6798 9.31 23.65 32.96 40.00 -7.04 74.3955 12.64 20.19 32.83 40.00 -7.17 115.3205 13.70 22.10 35.80 43.50 -7.70 169.5990 10.91 22.02 32.93 43.50 -10.57 297.2241 10.02 23.72 33.74 46.00 -12.26	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector * 37.6798 9.31 23.65 32.96 40.00 -7.04 QP 74.3955 12.64 20.19 32.83 40.00 -7.17 QP 115.3205 13.70 22.10 35.80 43.50 -7.70 QP 169.5990 10.91 22.02 32.93 43.50 -10.57 QP 297.2241 10.02 23.72 33.74 46.00 -12.26 QP	Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm * 37.6798 9.31 23.65 32.96 40.00 -7.04 QP 74.3955 12.64 20.19 32.83 40.00 -7.17 QP 115.3205 13.70 22.10 35.80 43.50 -7.70 QP 169.5990 10.91 22.02 32.93 43.60 -10.57 QP 297.2241 10.02 23.72 33.74 46.00 -12.26 QP	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree * 37.6798 9.31 23.65 32.96 40.00 -7.04 QP - 74.3955 12.64 20.19 32.83 40.00 -7.17 QP - - 115.3205 13.70 22.10 35.80 43.50 -7.70 QP - 169.5990 10.91 22.02 32.93 43.50 -10.57 QP - 297.2241 10.02 23.72 33.74 46.00 -12.26 QP -

*:Maximum data x:Over limit !:over margin

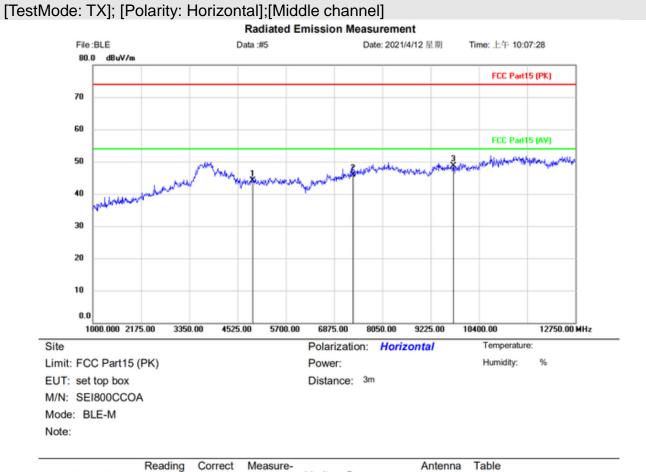
(Reference Only



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4804.000	40.90	3.71	44.61	74.00	-29.39	peak			
2		7206.000	39.93	5.96	45.89	74.00	-28.11	peak			
3	*	9608.000	38.63	9.29	47.92	74.00	-26.08	peak			

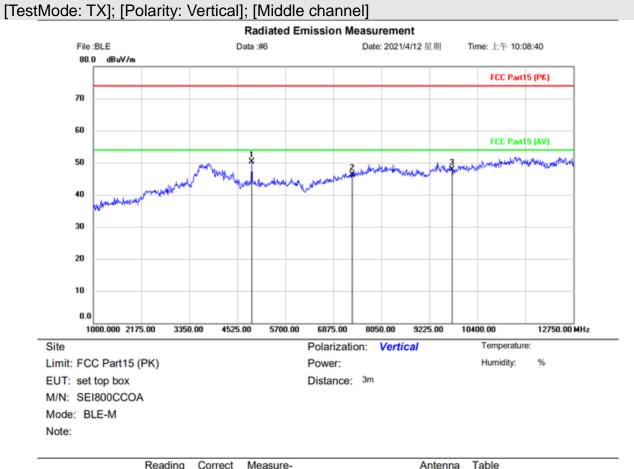
*:Maximum data x:Over limit !:over margin

(Reference Only



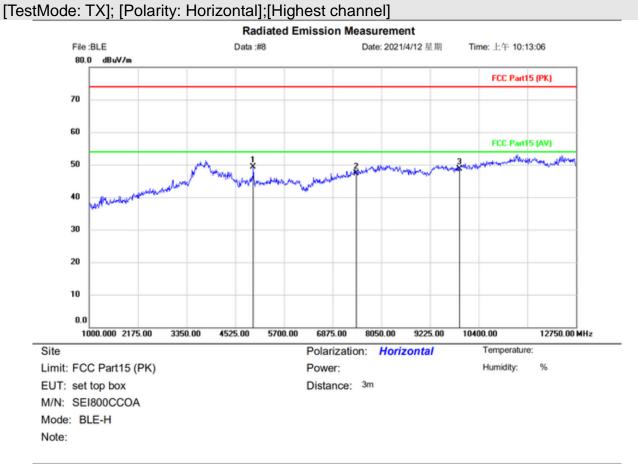
No.	Mk.	Freq.	Level	Factor	Measure- ment	Limit	Over		Antenna Height	l able Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4884.000	41.59	3.34	44.93	74.00	-29.07	peak			
2		7326.000	39.43	6.44	45.87	74.00	-28.13	peak			
3	*	9768.000	38.62	9.63	48.25	74.00	-25.75	peak			

*:Maximum data x:Over limit !:over margin



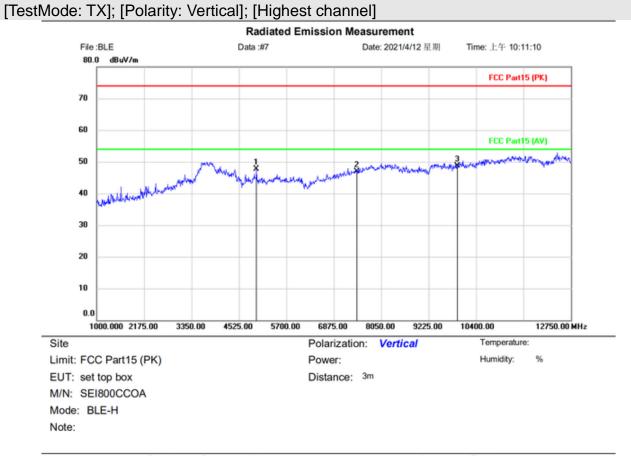
No). N	Λk.	Freq.	Level	Factor	ment	Limit	Over		Height	Degree	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4	884.000	40.83	3.34	44.17	74.00	-29.83	peak			
2	2	7	324.000	39.46	6.44	45.90	74.00	-28.10	peak			
3	3 *	' 9	768.000	39.05	9.63	48.68	74.00	-25.32	peak			

*:Maximum data x:Over limit !:over margin



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		Height	Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	4877.500	46.91	3.37	50.28	74.00	-23.72	peak			
2		7324.000	39.81	6.44	46.25	74.00	-27.75	peak			
3		9768.000	38.20	9.63	47.83	74.00	-26.17	peak			

*:Maximum data x:Over limit !:over margin



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	4959.750	45.53	3.75	49.28	74.00	-24.72	peak			
2		7440.000	40.41	6.86	47.27	74.00	-26.73	peak			
3		9920.000	38.45	10.16	48.61	74.00	-25.39	peak			

*:Maximum data x:Over limit !:over margin

(Reference Only

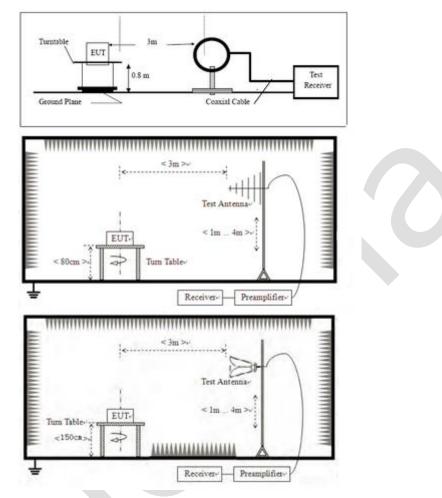
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4959.750	43.92	3.75	47.67	74.00	-26.33	peak			
2		7440.000	40.12	6.86	46.98	74.00	-27.02	peak			
3	*	9920.000	38.45	10.16	48.61	74.00	-25.39	peak			

*:Maximum data x:Over limit !:over margin

(Reference Only

RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Sven
Temperature	25°C
Humidity	52%


4.1 LIMITS

4.1 LIMITS								
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)						
0.009-0.490	2400/F(kHz)	300						
0.490-1.705	24000/F(kHz)	30						
1.705-30.0	30	30						
30-88	100	3						
88-216	150	3						
216-960	200	3						
Above 960	500	3						

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

4.2 BLOCK DIAGRAM OF TEST SETUP

4.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

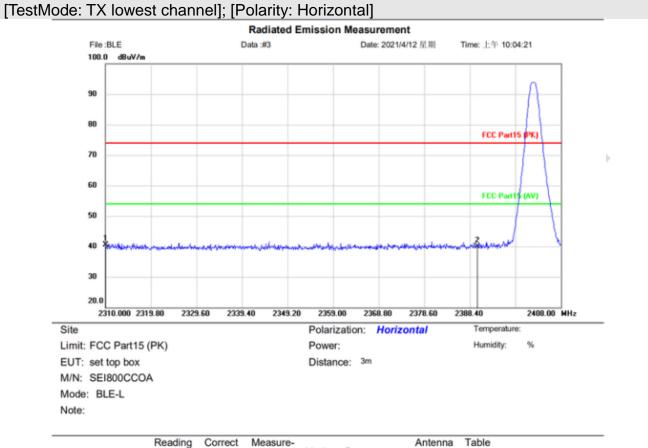
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

TEST DATA 4.4

				i diotori					o.g.n	209.00		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1	*	2310.000	45.10	-4.61	40.49	74.00	-33.51	peak				
2		2390.000	44.10	-4.27	39.83	74.00	-34.17	peak				

Limit

Over

Height Degree

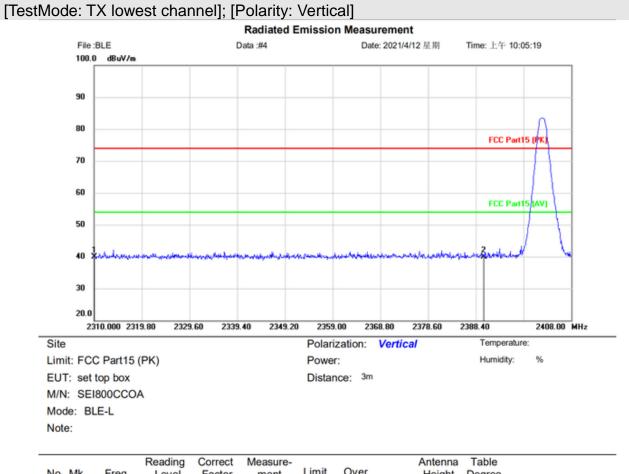
(Reference Only

Measure-

ment

*:Maximum data x:Over limit !:over margin

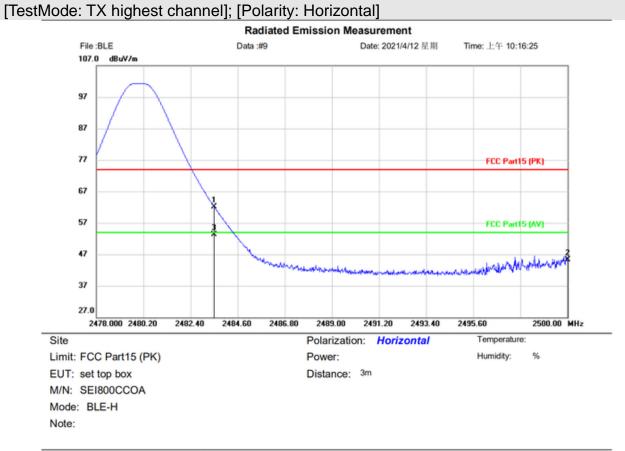
Test Result: Pass


No. Mk.

Freq.

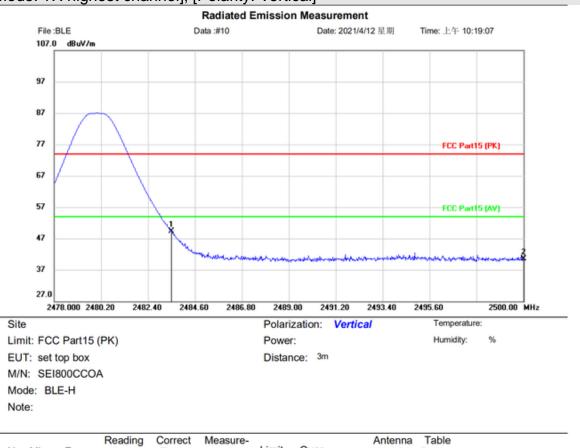
Level

Factor



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	44.45	-4.61	39.84	74.00	-34.16	peak			
2	*	2390.000	44.14	-4.27	39.87	74.00	-34.13	peak			

*:Maximum data x:Over limit !:over margin



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.500	66.04	-3.84	62.20	74.00	-11.80	peak			
2		2500.000	49.00	-3.78	45.22	74.00	-28.78	peak			
3	*	2483.500	57.12	-3.84	53.28	54.00	-0.72	AVG			

*:Maximum data x:Over limit !:over margin

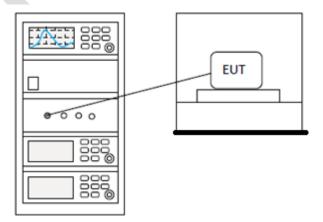
(Reference Only

[TestMode: TX highest channel]; [Polarity: Vertical]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	2483.500	53.14	-3.84	49.30	74.00	-24.70	peak			
2		2500.000	44.19	-3.78	40.41	74.00	-33.59	peak			

*:Maximum data x:Over limit !:over margin

(Reference Only


5 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247							
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11							
Test Mode (Pre-Scan)	ТХ							
Test Mode (Final Test)	ТХ							
Tester	Sven							
Temperature	25 ℃							
Humidity	52%							

5.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

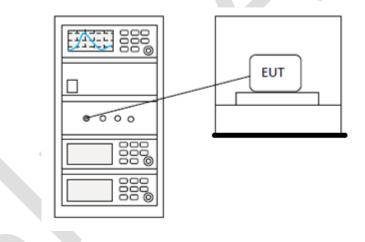
5.2 BLOCK DIAGRAM OF TEST SETUP

BlueAsia of Technical Services(Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Report No.: BLA-EMC-202103-A5203 Page 37 of60

5.3 TEST DATA

Pass: Please Refer To Appendix: For Details


6 POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.10.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Sven
Temperature	25 ℃
Humidity	52%

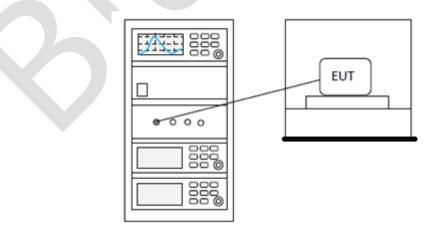
6.1 LIMITS

Limit: | ≤8dBm in any 3 kHz band during any time interval of continuous transmission

6.2 BLOCK DIAGRAM OF TEST SETUP

6.3 TEST DATA

Pass: Please Refer To Appendix: For Details


7 **CONDUCTED PEAK OUTPUT POWER**

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Sven
Temperature	25 ℃
Humidity	52%
7.1 LIMITS	

7.1 LIMITS

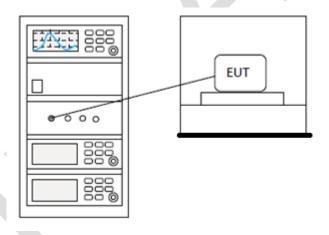
7.1 LIMITS	
Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for \geq 50 hopping channels
902-928	0.25 for $25 \le$ hopping channels < 50
	1 for digital modulation
	1 for \geq 75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital
5725-5850	modulation

BLOCK DIAGRAM OF TEST SETUP 7.2

Report No.: BLA-EMC-202103-A5203 Page 40 of60

7.3 TEST DATA

Pass: Please Refer To Appendix: For Details


8 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.8.1
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Sven
Temperature	25 ℃
Humidity	52%

8.1 LIMITS

Limit: \geq 500 kHz

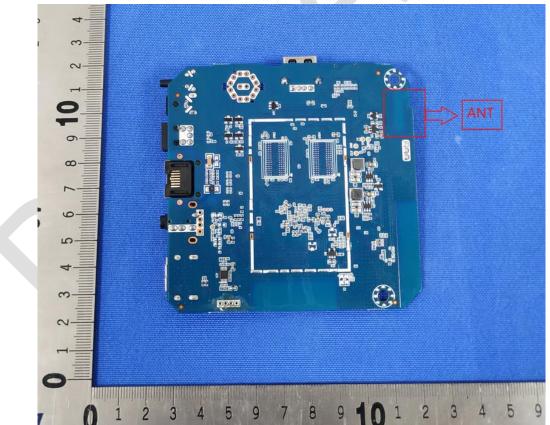
8.2 BLOCK DIAGRAM OF TEST SETUP

8.3 TEST DATA

Pass: Please Refer To Appendix: For Details

9 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	N/A			

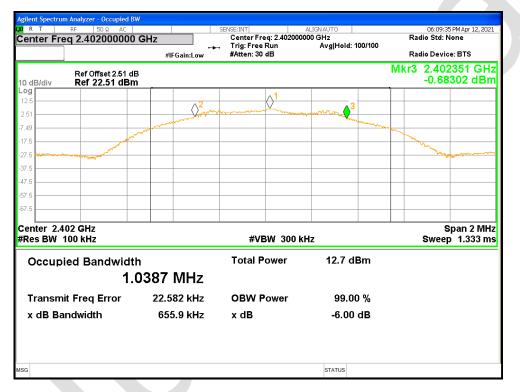

9.1 CONCLUSION

Standard Requirement:

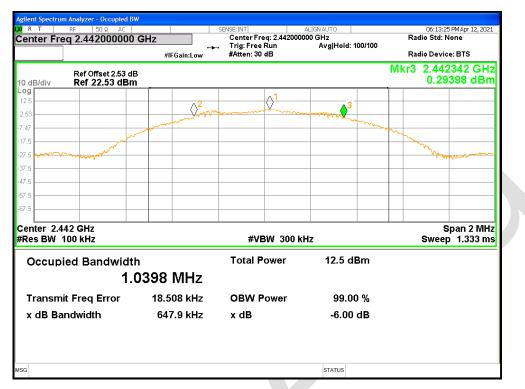
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.9dBi.



10 APPENDIX


DTS BANDWIDTH

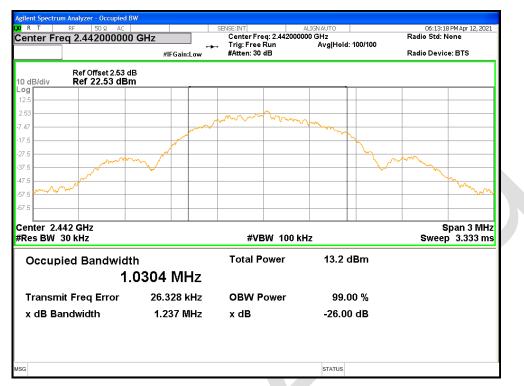
TestMode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.656	2401.696	2402.348	>=0.5	PASS
BLE	Ant1	2442	0.648	2441.696	2442.348	>=0.5	PASS
		2480	0.637	2479.696	2480.352	>=0.5	PASS

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

OCCUPIED CHANNEL BANDWIDTH


TestMode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.0293	2401.537	2402.550		PASS
BLE	Ant1	2442	1.0304	2441.538	2442.549		PASS
		2480	1.0192	2479.537	2480.551		PASS

OBW NVNT BLE 1M 2402MHz Ant1

OBW NVNT BLE 1M 2442MHz Ant1

OBW NVNT BLE 1M 2480MHz Ant1

MAXIMUM CONDUCTED OUTPUT POWER

TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
	Ant1	2402	6.95	<=30	PASS
BLE		2442	6.64	<=30	PASS
		2480	6.35	<=30	PASS

Power NVNT BLE 1M 2402MHz Ant1

Power NVNT BLE 1M 2442MHz Ant1

Power NVNT BLE 1M 2480MHz Ant1

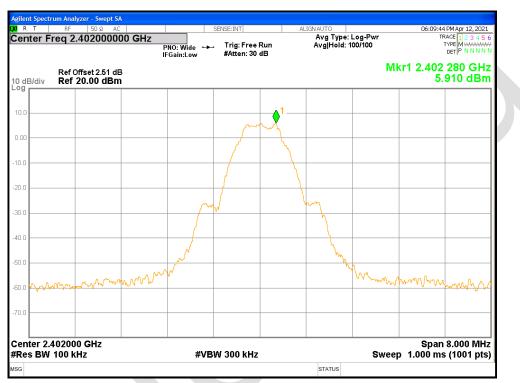
MAXIMUM POWER SPECTRAL DENSITY

TestMode	Antenna	Channel	Result[dBm/3-100kHz]	Limit[dBm/3kHz]	Verdict
	Ant1	2402	6.64	<=8	PASS
BLE		2442	6.44	<=8	PASS
		2480	6.27	<=8	PASS

PSD NVNT BLE 1M 2402MHz Ant1

PSD NVNT BLE 1M 2442MHz Ant1

PSD NVNT BLE 1M 2480MHz Ant1



BAND EDGE MEASUREMENTS(No-Hopping mode is worse case)

	TestMode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
ſ	BLE	Apt1	Low	2402	5.81	-56.1	<=-15.86	PASS
		Ant1	High	2480	6.48	-55.42	<=-15.06	PASS

Band Edge NVNT BLE 1M 2402MHz Ant1 Ref

ctrum Analyzer 47 PM Apr 12, 2021 TRACE 1 2 3 4 5 (TYPE MWWWW DET P N N N N 1 R 1 Center Freq 2.356000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 PNO: Fast ↔→ IFGain:Low Trig: Free Run #Atten: 30 dB Mkr1 2.402 0 GHz Ref Offset 2.51 dB Ref 20.00 dBm 5.814 dBm 10 dB/div Log 10.0 20. 30.0 -40.0 \bigcirc^2 50. A $\langle \rangle$ Stop 2.40600 GHz Sweep 9.600 ms (1001 pts) Start 2.30600 GHz #Res BW 100 kHz #VBW 300 kHz MKR MODE TRC SCL FUNCTION VALUE FUNCTION FUNCTION WIDTH 2.402 0 GHz 2.400 0 GHz 2.390 0 GHz 2.325 2 GHz 5.814 dBm -55.338 dBm -58.388 dBm -55.262 dBm N N N 2 3 4 5 6 7 8 9 10 f f STATUS

Band Edge NVNT BLE 1M 2402MHz Ant1 Emission

Band Edge NVNT BLE 1M 2480MHz Ant1 Ref

		yzer - Swept SA										
R T enter Fi	_R ⊧ req 2.	50 Ω AC .52600000	0 GHz	PNO: Fast • IFGain:Low		Free Run n: 30 dB	AL		e: Log-Pwr I: 100/100			08 PM Apr 12, 202 TRACE 1 2 3 4 5 TYPE MWWWM DET P N N N
dB/div		offset 2.58 dB 20.00 dBm								N		480 0 GH 5.482 dBr
o k	1											
o A					_							
												-23.74 dE
			3									
, <mark>~</mark> √	Vision	montenender	montinen	Marin Curren	munan	human	-	montentry	whenter	eleven Ma	Munanthy	manutanter
art 2.47 es BW				#\	/BW 300	kHz			S	weep		2.57600 GH is (1001 pt:
MODE TF		>		Y		FUNCTION	FUNC	TION WIDTH		FUN	ICTION VALUE	
N 1 N 1 N 1	f f f		2.480 0 GHz 2.483 5 GHz 2.500 0 GHz 2.489 8 GHz	z -57.7 z -57.9	82 dBm 84 dBm 40 dBm 97 dBm							
1												
												>


Band Edge NVNT BLE 1M 2480MHz Ant1 Emission

CONDUCTED SPURIOUS EMISSION

TestMode	Antenna	Channel	FreqRange [MHz]	RefLevel [dBm]	Result[dBm]	Limit[dBm]	Verdict
			Reference	4.39	4.39		PASS
		2402	30~1000	30~1000	-68.261	<=-25.872	PASS
			1000~26500	1000~26500	-54.248	<=-25.872	PASS
			Reference	5.69	5.69		PASS
BLE	Ant1	2442	30~1000	30~1000	-68.27	<=-25.365	PASS
			1000~26500	1000~26500	-53.922	<=-25.365	PASS
			Reference	4.67	4.67		PASS
		2480	30~1000	30~1000	-67.867	<=-25.052	PASS
			1000~26500	1000~26500	-53.485	<=-25.052	PASS

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Ref

RT	RF	er - Swept SA 50 Ω AC			SENSE:INT		ALIGNAUTO		06:10:	21 PM Apr 12, 2021
nter F	req 13.	26500000	PI	NO: Fast 🔸 Gain:Low	Trig: Fre #Atten: 3		Avg Type Avg Hold:			TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N
dB/div		set 2.51 dB 0.00 dBm								2.412 GHz .390 dBm
	<mark>1</mark>									
										-23.18 dBr
		3								
) — I		¥	<u> </u>							
						and the second	we when we have	John Mark Mark Mark	shall show your	1 marth Abour
)	mahan	when have	monter	manulation	and the second	and the second				
) <u> </u>										
rt 30 I es BW	MHz 100 kH	z		#VB	W 300 KH	Iz		Swe	Sto ep 2.530	p 26.50 GHz s (1001 pts)
MODE T	RC SCL	Х	2.412 GHz	Y 4.390		UNCTION F	UNCTION WIDTH	FL	JNCTION VALUE	^
N	f		4.795 GHz	-36.199	dBm					
N N	1 f 1 f		4.795 GHz 7.203 GHz	-36.199 -38.843	dBm					
N	1 f		9.427 GHz	-56.351	dBm					
										>

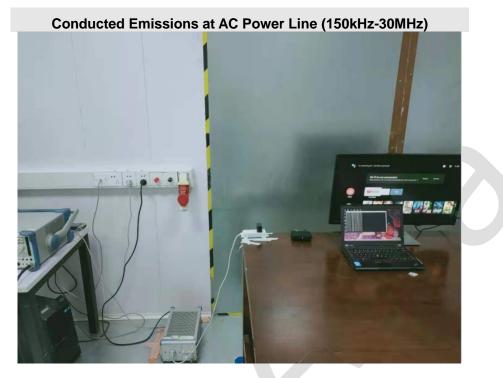
Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Emission

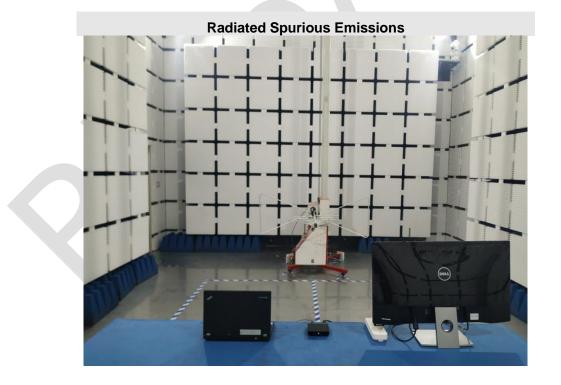
Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Ref

T	RF	- Swept SA 50 Ω AC		9	ENSE:INT		ALIGN AUTO		06:14:0	5 PM Apr 12, 2021
nter F		6500000	PN	0: Fast ↔ ain:Low	Trig: Free #Atten: 30		Avg Ty	pe: Log-Pwr Id: 10/10		RACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N
B/div		et 2.53 dB .00 dBm								.439 GHz .692 dBm
Bluiv	A1									
	\									
										-23.43 dBm
			0^2							
		Y	Y							
							Name - And Marson	Anna and an and an	un man	A when a
Marine	manham	manner	www.	mander	group and a state of the state	al a la	Novan			
rt 30 M s BW	/IHz 100 kHz			#VBI	N 300 kH:	z		Sw	Stop eep 2.530	o 26.50 GHz s (1001 pts)
MODE TR		×		Y		NCTION	UNCTION WIDTH		FUNCTION VALUE	^
N 1	f f		2.439 GHz 7.336 GHz	5.692 -34.620						
N 1 N 1	f		4.874 GHz 7.336 GHz	-35.563 -34.620						
N 1	f		9.930 GHz	-56.054						
										~

Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Emission

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Ref


RT	um Analyzer - Sw RF 50 Ω		CI	ENSE:INT	AI	IGNAUTO		06:15:4	3 PM Apr 12, 2021
		000000 GHz	PNO: Fast +++ IFGain:Low	Trig: Free Ru #Atten: 30 dB		Avg Type: Avg Hold: 1			RACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N
dB/div	Ref Offset 2.0 Ref 20.00								.492 GHz 667 dBm
9 1.0	<mark>\</mark> 1								
	Y								
									-23.72 dBm
			4						-23.72 0011
		Ĭ Y	·						
						1	-	wind and a strategy	Amarenan
	Northanser	and a star stranger also	and a second and a second and a	warman	- Salayong March 1994	and the contraction of the			
art 30 N	ALI-3							Stor	26.50 GHz
	100 kHz		#VBV	V 300 kHz			Swe		s (1001 pts)
MODE TR	RC SCL	x	Y	FUNCTIO	IN FUNC	TION WIDTH	FL	UNCTION VALUE	^
N 1 N 1	f	2.492 GH 4.953 GH							
N 1	f	4.953 GH	z -32.323 c	IBm					
N 1	f	7.442 GH 10.089 GH							
									~
						STATUS			


S

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Emission

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

Report No.: BLA-EMC-202103-A5203 Page 59 of60

Report No.: BLA-EMC-202103-A5203 Page 60 of60

APPENDIX B: PHOTOGRAPHS OF EUT

Reference to the test report No. BLA-EMC-202103-A5201

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.