

CERTIFICATION TEST REPORT

Report Number.: 11988952-E2V3

Applicant: RACHIO, INC.

1321 15 STREET

DENVER, CO 80202, U.S.A.

FCC ID : 2AOTB-ZULWC IC ID : 23555-ZULWC

EUT Description: RACHIO 3 SPRINKLER CONTROLLER

Test Standard(s): FCC 47 CFR PART 15 SUBPART E (EXCEPT DFS)

INDUSTRY CANADA RSS - 247 ISSUE 2 INDUSTRY CANADA RSS - GEN ISSUE 4

Date Of Issue: April 12, 2018

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 771-1000

FAX: (510) 661-0888

REPORT NO: 11988952-E2V3 FCC ID: 2AOTB-ZULWC

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	03/14/18	Initial Issue	Frank Ibrahim
V2	04/04/18	Update Sections 5.3, 5.5, 8.2.3, 8.3.3, 8.4.3, 8.5.3, 8.6.3, 8.7.3, 8.8.3, 8.9.3, 8.10.3, 8.11.3, 8.12.3, 8.13.3, 8.13.4	David Garcia
V3	04/12/18	Revised Maximum Output Power Section.	Frank Ibrahim

DATE: April 12, 2018

IC ID: 23555-ZULWC

TABLE OF CONTENTS

2. TEST METHODOLOGY	1. A	TTESTATION OF TEST RESULTS	6
4. CALIBRATION AND UNCERTAINTY 8 4.1. MEASURING INSTRUMENT CALIBRATION 6 4.2. SAMPLE CALCULATION 6 4.3. MEASUREMENT UNCERTAINTY 6 5. EQUIPMENT UNDER TEST 9 5.1. DESCRIPTION OF EUT 9 5.2. DESCRIPTION OF DIFFERENCES BETWEEN 16 ZONE AND 8 ZONE DEVICES 9 5.3. MAXIMUM OUTPUT POWER 10 5.4. DESCIPTION OF CHANGE 12 5.5. DESCRIPTION OF AVAILABLE ANTENNAS 12 5.6. SOFTWARE AND FIRMWARE 12 5.7. WORST-CASE CONFIGURATION AND MODE 12 5.8. DESCRIPTION OF TEST SETUP 13 6. TEST AND MEASUREMENT EQUIPMENT 16 7. MEASUREMENT METHODS 18 8. ANTENNA PORT TEST RESULTS 19 8.1. ON TIME AND DUTY CYCLE 15 8.2. 11a MODE IN THE 5.2GHZ BAND 22 8.2.1 26 dB BANDWIDTH 22 8.2.3 OUTPUT POWER 26 8.3 11n HT20 MODE IN THE 5.2GHZ BAND 36 8.3.1 26 dB BANDWIDTH 36 8.3.2 99% BANDWIDTH 36 8.4.8 802.11n HT40 MODE IN THE 5.2 GHZ BAND 36 8.4.1 26 dB BANDWIDTH 3	2. T	EST METHODOLOGY	7
4.1. MEASURING INSTRUMENT CALIBRATION	3. F	ACILITIES AND ACCREDITATION	7
4.2. SAMPLE CALCULATION. 8 4.3. MEASUREMENT UNCERTAINTY 8 5. EQUIPMENT UNDER TEST. 9 5.1. DESCRIPTION OF EUT. 9 5.2. DESCRIPTION OF DIFFERENCES BETWEEN 16 ZONE AND 8 ZONE DEVICES 9 5.3. MAXIMUM OUTPUT POWER 10 5.4. DESCIPTION OF CHANGE 12 5.5. DESCRIPTION OF AVAILABLE ANTENNAS. 12 5.6. SOFTWARE AND FIRMWARE 12 5.7. WORST-CASE CONFIGURATION AND MODE 12 5.8. DESCRIPTION OF TEST SETUP 13 6. TEST AND MEASUREMENT EQUIPMENT 16 7. MEASUREMENT METHODS 18 8. ANTENNA PORT TEST RESULTS 19 8.1. ON TIME AND DUTY CYCLE 15 8.2. 11a MODE IN THE 5.2GHz BAND 22 8.2.1. 26 dB BANDWIDTH 24 8.2.3. OUTPUT POWER 26 8.3. 1. 1n HT20 MODE IN THE 5.2GHz BAND 36 8.3.1. 26 dB BANDWIDTH 33 8.3.3. OUTPUT POWER 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND 35 8.4.1 26 dB BANDWIDTH 39 8.4.2 99% BANDWIDTH 39 8.4.3. OUTPUT POWER 43	4. C	ALIBRATION AND UNCERTAINTY	8
4.3. MEASUREMENT UNCERTAINTY 8 5. EQUIPMENT UNDER TEST	4.1.	MEASURING INSTRUMENT CALIBRATION	ε
5. EQUIPMENT UNDER TEST	4.2.	SAMPLE CALCULATION	8
5.1. DESCRIPTION OF EUT. 9 5.2. DESCRIPTION OF DIFFERENCES BETWEEN 16 ZONE AND 8 ZONE DEVICES 9 5.3. MAXIMUM OUTPUT POWER. 10 5.4. DESCIPTION OF CHANGE 12 5.5. DESCRIPTION OF AVAILABLE ANTENNAS. 12 5.6. SOFTWARE AND FIRMWARE 12 5.7. WORST-CASE CONFIGURATION AND MODE. 12 5.8. DESCRIPTION OF TEST SETUP. 13 6. TEST AND MEASUREMENT EQUIPMENT. 16 7. MEASUREMENT METHODS. 18 8. ANTENNA PORT TEST RESULTS. 19 8.1. ON TIME AND DUTY CYCLE. 19 8.2. 11a MODE IN THE 5.2GHz BAND. 22 8.2.1. 26 dB BANDWIDTH. 22 8.2.3. OUTPUT POWER. 26 8.3. 11n HT20 MODE IN THE 5.2GHz BAND. 36 8.3.1. 26 dB BANDWIDTH. 30 8.3.2. 99% BANDWIDTH. 33 8.3.3. OUTPUT POWER 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND. 36 8.4.1. 26 dB BANDWIDTH. 39 8.4.2. 99% BANDWIDTH. 39 8.4.1. 26 dB BANDWIDTH. 39 8.4.2. 99% BANDWIDTH. 39 8.4.3. OUTPUT POWER 43	4.3.	MEASUREMENT UNCERTAINTY	8
5.2. DESCRIPTION OF DIFFERENCES BETWEEN 16 ZONE AND 8 ZONE DEVICES 9 5.3. MAXIMUM OUTPUT POWER 10 5.4. DESCIPTION OF CHANGE 12 5.5. DESCRIPTION OF AVAILABLE ANTENNAS 12 5.6. SOFTWARE AND FIRMWARE 12 5.7. WORST-CASE CONFIGURATION AND MODE 12 5.8. DESCRIPTION OF TEST SETUP 13 6. TEST AND MEASUREMENT EQUIPMENT 16 7. MEASUREMENT METHODS 18 8. ANTENNA PORT TEST RESULTS 19 8.1. ON TIME AND DUTY CYCLE 19 8.2. 11a MODE IN THE 5.2GHz BAND 22 8.2.1. 26 dB BANDWIDTH 22 8.2.2. 99% BANDWIDTH 24 8.2.3. OUTPUT POWER 26 8.3. 11n HT20 MODE IN THE 5.2GHz BAND 30 8.3.1. 26 dB BANDWIDTH 30 8.3.2. 99% BANDWIDTH 30 8.3.3. OUTPUT POWER 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND 35 8.4.1. 26 dB BANDWIDTH 39 8.4.2. 99% BANDWIDTH 41 8.4.3. OUTPUT POWER 43	5. E	QUIPMENT UNDER TEST	9
5.3. MAXIMUM OUTPUT POWER 10 5.4. DESCIPTION OF CHANGE 12 5.5. DESCRIPTION OF AVAILABLE ANTENNAS 12 5.6. SOFTWARE AND FIRMWARE 12 5.7. WORST-CASE CONFIGURATION AND MODE 12 5.8. DESCRIPTION OF TEST SETUP 13 6. TEST AND MEASUREMENT EQUIPMENT 16 7. MEASUREMENT METHODS 18 8. ANTENNA PORT TEST RESULTS 19 8.1. ON TIME AND DUTY CYCLE 15 8.2. 11a MODE IN THE 5.2GHZ BAND 22 8.2.1. 26 dB BANDWIDTH 22 8.2.2. 99% BANDWIDTH 24 8.2.3. OUTPUT POWER 26 8.3. 11n HT20 MODE IN THE 5.2GHZ BAND 30 8.3.1. 26 dB BANDWIDTH 30 8.3.2. 99% BANDWIDTH 30 8.3.3. OUTPUT POWER 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHZ BAND 36 8.4.1. 26 dB BANDWIDTH 33 8.4.1. 26 dB BANDWIDTH 35 8.4.1. 26 dB BANDWIDTH 36 8.4.2. 99% BANDWIDTH 41 8.4.3. OUTPUT POWER 43	5.1.	DESCRIPTION OF EUT	g
5.4. DESCIPTION OF CHANGE 12 5.5. DESCRIPTION OF AVAILABLE ANTENNAS 12 5.6. SOFTWARE AND FIRMWARE 12 5.7. WORST-CASE CONFIGURATION AND MODE 12 5.8. DESCRIPTION OF TEST SETUP 13 6. TEST AND MEASUREMENT EQUIPMENT 16 7. MEASUREMENT METHODS 18 8. ANTENNA PORT TEST RESULTS 19 8.1. ON TIME AND DUTY CYCLE 19 8.2. 11a MODE IN THE 5.2GHZ BAND 22 8.2.1. 26 dB BANDWIDTH 24 8.2.2. 99% BANDWIDTH 24 8.2.3. OUTPUT POWER 26 8.3. 11n HT20 MODE IN THE 5.2GHZ BAND 30 8.3.2. 99% BANDWIDTH 33 8.3.3. OUTPUT POWER 33 8.4. 802.11n HT40 MODE IN THE 5.2 GHZ BAND 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHZ BAND 35 8.4.1. 26 dB BANDWIDTH 36 8.4.2. 99% BANDWIDTH 39 8.4.2. 99% BANDWIDTH 41 8.4.3. OUTPUT POWER 43	5.2.	DESCRIPTION OF DIFFERENCES BETWEEN 16 ZONE AND 8 ZONE DEVICES	S
5.5. DESCRIPTION OF AVAILABLE ANTENNAS 12 5.6. SOFTWARE AND FIRMWARE 12 5.7. WORST-CASE CONFIGURATION AND MODE 12 5.8. DESCRIPTION OF TEST SETUP 13 6. TEST AND MEASUREMENT EQUIPMENT 16 7. MEASUREMENT METHODS 18 8. ANTENNA PORT TEST RESULTS 19 8.1. ON TIME AND DUTY CYCLE 19 8.2. 11a MODE IN THE 5.2GHz BAND 22 8.2.1. 26 dB BANDWIDTH 22 8.2.2. 99% BANDWIDTH 24 8.2.3. OUTPUT POWER 26 8.3. 11n HT20 MODE IN THE 5.2GHz BAND 30 8.3.1. 26 dB BANDWIDTH 30 8.3.2. 99% BANDWIDTH 30 8.3.3. OUTPUT POWER 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND 35 8.4.1. 26 dB BANDWIDTH 39 8.4.1. 26 dB BANDWIDTH 39 8.4.2. 99% BANDWIDTH 39 8.4.2. 99% BANDWIDTH 41 8.4.3. OUTPUT POWER 43	5.3.	MAXIMUM OUTPUT POWER	10
5.6. SOFTWARE AND FIRMWARE 12 5.7. WORST-CASE CONFIGURATION AND MODE 12 5.8. DESCRIPTION OF TEST SETUP 13 6. TEST AND MEASUREMENT EQUIPMENT 16 7. MEASUREMENT METHODS 18 8. ANTENNA PORT TEST RESULTS 19 8.1. ON TIME AND DUTY CYCLE 19 8.2. 11a MODE IN THE 5.2GHz BAND 22 8.2.1. 26 dB BANDWIDTH 22 8.2.2. 99% BANDWIDTH 24 8.2.3. OUTPUT POWER 26 8.3. 11n HT20 MODE IN THE 5.2GHz BAND 30 8.3.1. 26 dB BANDWIDTH 30 8.3.3. OUTPUT POWER 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND 36 8.4.1. 26 dB BANDWIDTH 39 8.4.2. 99% BANDWIDTH 39 8.4.2. 99% BANDWIDTH 39 8.4.2. 99% BANDWIDTH 41 8.4.3. OUTPUT POWER 43	5.4.	DESCIPTION OF CHANGE	12
5.7. WORST-CASE CONFIGURATION AND MODE 12 5.8. DESCRIPTION OF TEST SETUP 13 6. TEST AND MEASUREMENT EQUIPMENT 16 7. MEASUREMENT METHODS 18 8. ANTENNA PORT TEST RESULTS 19 8.1. ON TIME AND DUTY CYCLE 19 8.2. 11a MODE IN THE 5.2GHz BAND 22 8.2.1. 26 dB BANDWIDTH 22 8.2.2. 99% BANDWIDTH 24 8.2.3. OUTPUT POWER 26 8.3. 11n HT20 MODE IN THE 5.2GHz BAND 30 8.3.2. 99% BANDWIDTH 30 8.3.3. OUTPUT POWER 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND 36 8.4.1. 26 dB BANDWIDTH 39 8.4.2. 99% BANDWIDTH 39 8.4.3. OUTPUT POWER 41 8.4.3. OUTPUT POWER 43	5.5.	DESCRIPTION OF AVAILABLE ANTENNAS	12
5.8. DESCRIPTION OF TEST SETUP 13 6. TEST AND MEASUREMENT EQUIPMENT 16 7. MEASUREMENT METHODS 18 8. ANTENNA PORT TEST RESULTS 19 8.1. ON TIME AND DUTY CYCLE 19 8.2. 11a MODE IN THE 5.2GHz BAND 22 8.2.1. 26 dB BANDWIDTH 22 8.2.2. 99% BANDWIDTH 24 8.2.3. OUTPUT POWER 26 8.3. 11n HT20 MODE IN THE 5.2GHz BAND 30 8.3.1. 26 dB BANDWIDTH 30 8.3.2. 99% BANDWIDTH 33 8.3.3. OUTPUT POWER 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND 39 8.4.1. 26 dB BANDWIDTH 39 8.4.2. 99% BANDWIDTH 41 8.4.3. OUTPUT POWER 43	5.6.	SOFTWARE AND FIRMWARE	12
6. TEST AND MEASUREMENT EQUIPMENT 16 7. MEASUREMENT METHODS 18 8. ANTENNA PORT TEST RESULTS 19 8.1. ON TIME AND DUTY CYCLE 19 8.2. 11a MODE IN THE 5.2GHz BAND 22 8.2.1. 26 dB BANDWIDTH 22 8.2.2. 99% BANDWIDTH 24 8.2.3. OUTPUT POWER 26 8.3. 11n HT20 MODE IN THE 5.2GHz BAND 30 8.3.1. 26 dB BANDWIDTH 30 8.3.2. 99% BANDWIDTH 33 8.3.3. OUTPUT POWER 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND 39 8.4.1. 26 dB BANDWIDTH 39 8.4.2. 99% BANDWIDTH 39 8.4.3. OUTPUT POWER 43	5.7.	WORST-CASE CONFIGURATION AND MODE	12
7. MEASUREMENT METHODS 18 8. ANTENNA PORT TEST RESULTS 19 8.1. ON TIME AND DUTY CYCLE 19 8.2. 11a MODE IN THE 5.2GHz BAND 22 8.2.1. 26 dB BANDWIDTH 22 8.2.2. 99% BANDWIDTH 24 8.2.3. OUTPUT POWER 26 8.3. 11n HT20 MODE IN THE 5.2GHz BAND 30 8.3.1. 26 dB BANDWIDTH 30 8.3.2. 99% BANDWIDTH 33 8.3.3. OUTPUT POWER 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND 36 8.4.1. 26 dB BANDWIDTH 39 8.4.2. 99% BANDWIDTH 39 8.4.3. OUTPUT POWER 43	5.8.	DESCRIPTION OF TEST SETUP	13
8. ANTENNA PORT TEST RESULTS	6. T	EST AND MEASUREMENT EQUIPMENT	16
8.1. ON TIME AND DUTY CYCLE. 19 8.2. 11a MODE IN THE 5.2GHz BAND 22 8.2.1. 26 dB BANDWIDTH 22 8.2.2. 99% BANDWIDTH 24 8.2.3. OUTPUT POWER 26 8.3. 11n HT20 MODE IN THE 5.2GHz BAND 30 8.3.1. 26 dB BANDWIDTH 30 8.3.2. 99% BANDWIDTH 33 8.3.3. OUTPUT POWER 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND 39 8.4.1. 26 dB BANDWIDTH 39 8.4.2. 99% BANDWIDTH 41 8.4.3. OUTPUT POWER 43	7. N	IEASUREMENT METHODS	18
8.2. 11a MODE IN THE 5.2GHz BAND 22 8.2.1. 26 dB BANDWIDTH 22 8.2.2. 99% BANDWIDTH 24 8.2.3. OUTPUT POWER 26 8.3. 11n HT20 MODE IN THE 5.2GHz BAND 30 8.3.1. 26 dB BANDWIDTH 30 8.3.2. 99% BANDWIDTH 33 8.3.3. OUTPUT POWER 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND 39 8.4.1. 26 dB BANDWIDTH 39 8.4.2. 99% BANDWIDTH 41 8.4.3. OUTPUT POWER 43	8. A	NTENNA PORT TEST RESULTS	19
8.2.1. 26 dB BANDWIDTH 22 8.2.2. 99% BANDWIDTH 24 8.2.3. OUTPUT POWER 26 8.3. 11n HT20 MODE IN THE 5.2GHz BAND 30 8.3.1. 26 dB BANDWIDTH 30 8.3.2. 99% BANDWIDTH 33 8.3.3. OUTPUT POWER 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND 39 8.4.1. 26 dB BANDWIDTH 39 8.4.2. 99% BANDWIDTH 41 8.4.3. OUTPUT POWER 43	8.1.	ON TIME AND DUTY CYCLE	19
8.2.2. 99% BANDWIDTH. 24 8.2.3. OUTPUT POWER. 26 8.3. 11n HT20 MODE IN THE 5.2GHz BAND. 30 8.3.1. 26 dB BANDWIDTH. 30 8.3.2. 99% BANDWIDTH. 33 8.3.3. OUTPUT POWER. 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND. 39 8.4.1. 26 dB BANDWIDTH. 39 8.4.2. 99% BANDWIDTH. 41 8.4.3. OUTPUT POWER. 43	8.2.	. 11a MODE IN THE 5.2GHz BAND	22
8.2.3. OUTPUT POWER 26 8.3. 11n HT20 MODE IN THE 5.2GHz BAND 30 8.3.1. 26 dB BANDWIDTH 33 8.3.2. 99% BANDWIDTH 33 8.3.3. OUTPUT POWER 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND 39 8.4.1. 26 dB BANDWIDTH 39 8.4.2. 99% BANDWIDTH 41 8.4.3. OUTPUT POWER 43			
8.3.1. 26 dB BANDWIDTH 30 8.3.2. 99% BANDWIDTH 33 8.3.3. OUTPUT POWER 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND 39 8.4.1. 26 dB BANDWIDTH 39 8.4.2. 99% BANDWIDTH 41 8.4.3. OUTPUT POWER 43			
8.3.1. 26 dB BANDWIDTH 30 8.3.2. 99% BANDWIDTH 33 8.3.3. OUTPUT POWER 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND 39 8.4.1. 26 dB BANDWIDTH 39 8.4.2. 99% BANDWIDTH 41 8.4.3. OUTPUT POWER 43	8.3.		
8.3.3. OUTPUT POWER 35 8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND 39 8.4.1. 26 dB BANDWIDTH 39 8.4.2. 99% BANDWIDTH 41 8.4.3. OUTPUT POWER 43	8	.3.1. 26 dB BANDWIDTH	30
8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND. 39 8.4.1. 26 dB BANDWIDTH. 39 8.4.2. 99% BANDWIDTH. 41 8.4.3. OUTPUT POWER. 43	_		
8.4.1. 26 dB BANDWIDTH 39 8.4.2. 99% BANDWIDTH 41 8.4.3. OUTPUT POWER 43			
8.4.2. 99% BANDWIDTH	_		
	8	.4.2. 99% BANDWIDTH	41
	8		43

DATE: April 12, 2018

IC ID: 23555-ZULWC

8.5. 802.11a MODE IN THE 5.3 GHz BAND	
8.5.1. 26 dB BANDWIDTH	
8.5.2. 99% BANDWIDTH	
8.5.3. OUTPUT POWER	53
8.6. 802.11n HT20 MODE IN THE 5.3 GHz BAND	57
8.6.1. 26 dB BANDWIDTH	57
8.6.2. 99% BANDWIDTH	60
8.6.3. OUTPUT POWER	63
8.7. 802.11n HT40 MODE IN THE 5.3 GHz BAND	67
8.7.1. 26 dB BANDWIDTH	
8.7.2. 99% BANDWIDTH	69
8.7.3. OUTPUT POWER	71
8.8. 11a MODE IN THE 5.6GHz BAND	75
8.8.1. 26 dB BANDWIDTH	
8.8.2. 99% BANDWIDTH	
8.8.3. OUTPUT POWER	80
8.9. 11n HT20 MODE IN THE 5.6GHz BAND	8/
8.9.1. 26 dB BANDWIDTH	
8.9.2. 99% BANDWIDTH	
8.9.3. OUTPUT POWER AND PSD	
8.10. 802.11n HT40 MODE IN THE 5.6 GHz BAND	
8.10.1. 26 dB BANDWIDTH	
8.10.2. 99% BANDWIDTH	
8.10.3. OUTPUT POWER AND PSD	
8.11. 11a MODE IN THE 5.8GHz BAND	
8.11.1. 6 dB BANDWIDTH	
8.11.2. 99% BANDWIDTH	
8.11.3. OUTPUT POWER	
8.12. 11n HT20 MODE IN THE 5.8GHz BAND 8.12.1. 6 dB BANDWIDTH	
8.12.2. 99% BANDWIDTH	
8.12.3. OUTPUT POWER	
8.13.	
8.13.1. 6 dB BANDWIDTH 8.13.2. 99% BANDWIDTH	
8.13.3. OUTPUT POWER	
8.13.4. Maximum Power Spectral Density (PSD)	
orror in animalin remail appositati periotity (i. e.b.) illinimini	
9. RADIATED TEST RESULTS	139
9.1. RADIATED EMISSIONS 1-18 GHz	
9.1.1. 11a MODE IN THE 5.2GHz BAND	
9.1.2. 11n HT20 MODE IN THE 5.2GHz BAND	
9.1.3. 11n HT40 MODE IN THE 5.2GHz BAND	
9.1.4. 11a MODE IN THE 5.3GHz BAND	
9.1.5. 11n HT20 MODE IN THE 5.3GHz BAND	
9.1.6. 11n HT40 MODE IN THE 5.3GHz BAND	
9.1.7. 11a MODE IN THE 5.6GHz BAND	184

Page 4 of 265

SETUP PHOTOS	260
AC POWER LINE CONDUCTED EMISSIONS	257
5.4. TX SPURIOUS EMISSIONS TEST 26GHz – 40GHz	255
S.3. TX SPURIOUS EMISSIONS TEST 18GHz –26GHz	
S.2. TX SPURIOUS EMISSIONS TEST 1GHz – 18GHz	
S.1. TX SPURIOUS EMISSIONS TEST 30MHz – 1000MHz	249
CO-LOCATION TEST RESULTS	249
WORST-CASE RADIATED EMISSIONS 26-40 GHz	247
WORST-CASE RADIATED EMISSIONS 18-26 GHz	2 <i>4</i> 5
WORST CASE RADIATED EMISSIONS 30-1000 MHz	243
I.10. 11a MODE IN THE 5.8GHz BAND	
I.9. 11n HT40 MODE IN THE 5.6GHz BAND	
I.8. 11n HT20 MODE IN THE 5.6GHz BAND	194
	1.9. 11n HT40 MODE IN THE 5.6GHz BAND 1.10. 11a MODE IN THE 5.8GHz BAND 1.11. 11n HT20 MODE IN THE 5.8GHz BAND 1.12. 11n HT40 MODE IN THE 5.8GHz BAND WORST-CASE RADIATED EMISSIONS BELOW 30 MHz WORST CASE RADIATED EMISSIONS 30-1000 MHz WORST-CASE RADIATED EMISSIONS 18-26 GHz WORST-CASE RADIATED EMISSIONS 26-40 GHz CO-LOCATION TEST RESULTS 3.1. TX SPURIOUS EMISSIONS TEST 30MHz – 1000MHz 3.2. TX SPURIOUS EMISSIONS TEST 1GHz – 18GHz 3.3. TX SPURIOUS EMISSIONS TEST 18GHz –26GHz 3.4. TX SPURIOUS EMISSIONS TEST 26GHz – 40GHz AC POWER LINE CONDUCTED EMISSIONS

REPORT NO: 11988952-E2V3 FCC ID: 2AOTB-ZULWC

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: RACHIO, INC.

1321 15 ST

DENVER, CO 80202, U.S.A.

EUT DESCRIPTION: RACHIO 3 SPRINKLER CONTROLLER

MODEL: 16ZULW-C

SERIAL NUMBER: 1109141171

DATE TESTED: AUG 20, 2017 - JAN 24, 2018

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart E Complies ISED RSS-247 Issue 2 Complies ISED RSS-GEN Issue 4 Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Verification Services Inc. By:

Prepared By:

FRANK IBRAHIM **OPERATIONS LEADER**

UL Verification Services Inc.

JOHN LY

EMC TECHNICIAN

UL Verification Services Inc.

Page 6 of 265

DATE: April 12, 2018 IC ID: 23555-ZULWC REPORT NO: 11988952-E2V3 DATE: April 12, 2018 IC ID: 23555-ZULWC FCC ID: 2AOTB-ZULWC

2. TEST METHODOLOGY

FCC: The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 14-30, FCC KDB 662911 D01 v02r01, FCC KDB 905462 D02 v01r02/D03 v01r01/D06 v01, FCC KDB 789033 D02 v01r04, FCC KDB 644545 D03 v01, ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
☐ Chamber A	☐ Chamber D
	☐ Chamber E
☐ Chamber C	☐ Chamber F
	☐ Chamber G
	☐ Chamber H

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. Chambers A through C are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-3, respectively. Chambers D through H are covered under Industry Canada company address code 22541 with site numbers 22541 -1 through 22541-5, respectively.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	3.15 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	5.36 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.32 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.45 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.24 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Rachio 3 Sprinkler Controller.

5.2. DESCRIPTION OF DIFFERENCES BETWEEN 16 ZONE AND 8 ZONE DEVICES

The 8 zone device uses the same circuit board as the 16 zone with some small population differences. The 8 zone has 8 fewer triacs (analog switches) populated as well as supporting resistors/capacitors around the triacs. There are also jumpers populated differently to route connections to different poles on the connector. None of these parts are related to the RF circuitry, power supply or any high frequency operation

5.3. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power for FCC as follows:

FCC:

5.2GHz Band

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
5180 - 5240	802.11a	11.02	12.65
3180 - 3240	802.11n HT20	10.12	10.28
5190 - 5230	802.11n HT40	10.20	10.47

5.3GHz Band

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
5260 - 5320	802.11a	11.56	14.32
3200 - 3320	802.11n HT20	11.59	14.42
5270 - 5310	802.11n HT40	11.61	14.49

5.6GHz Band

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5500 - 5720	802.11a	10.25	10.59
3300 - 3720	802.11n HT20	10.57	11.40
5510 - 5710	802.11n HT40	11.29	13.46

5.8GHz Band

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
5745 5025	802.11a	10.71	11.78
5745 - 5825	802.11n HT20	10.63	11.56
5755 - 5795	802.11n HT40	10.53	11.30

REPORT NO: 11988952-E2V3 DATE: April 12, 2018 IC ID: 23555-ZULWC FCC ID: 2AOTB-ZULWC

The transmitter has a maximum conducted power and EIRP for ISED as follows:

ISED:

5.2GHz Band

Frequency Range (MHz)	Mode	Output EIRP (dBm)	Output EIRP (mW)
5180 - 5240	802.11a	12.62	18.28
3180 - 3240	802.11n HT20	11.72	14.86
5190 - 5230	802.11n HT40	11.80	15.14

5.3GHz Band

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
5260 - 5320	802.11a	11.56	14.32
3200 - 3320	802.11n HT20	11.59	14.42
5270 - 5310	802.11n HT40	11.61	14.49

5.6GHz Band

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
5500 - 5720	802.11a	10.25	10.59
3300 - 3720	802.11n HT20	10.57	11.40
5510 - 5710	802.11n HT40	11.29	13.46

5.8GHz Band

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
5745 - 5825	802.11a	10.71	11.78
3743 - 3623	802.11n HT20	10.63	11.56
5755 - 5795	802.11n HT40	10.53	11.30

5.4. DESCIPTION OF CHANGE

Based on the manufacturer's declaration, the reason for the additional testing as covered by this report is the co-location of an additional radio (LoRa 915 MHz radio) on their device that is not covered under the Murata WiFi module's certification.

5.5. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes two integrated antennas, with the following maximum gains:

	Peak Antenna Gain (dBi)
Frequency (GHz)	Main (Chain 0)
5180-5320	2.0
5500-5700	2.0
5745-5825	2.0

5.6. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was SONY, s_atp_1_00139_B_10_5. The test utility software used during testing was Tera Term Ver 4.79.

5.7. WORST-CASE CONFIGURATION AND MODE

Radiated emission below 1 GHz, radiated emissions from 18 to 40 GHz and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

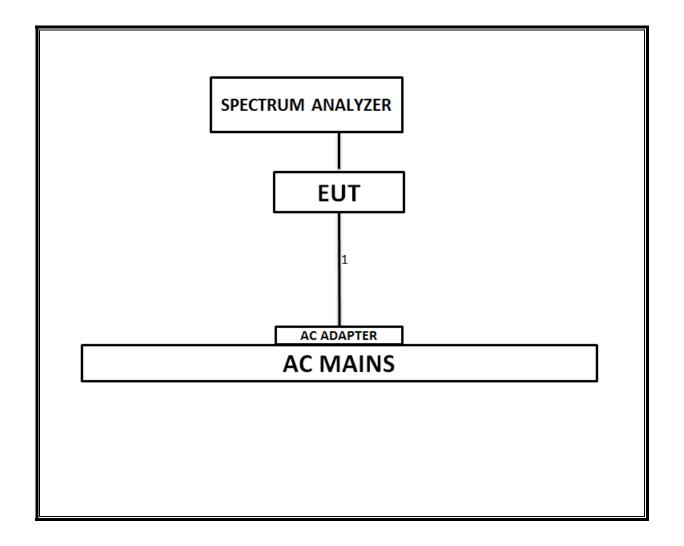
The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that Y orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y orientation.

Worst-case data rates as provided by the client were:

802.11a mode: 6 Mbps 802.11n HT20mode: MCS0 802.11n HT40mode: MCS0

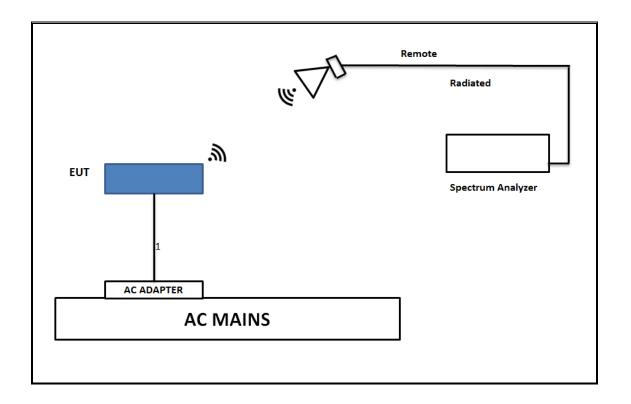
5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT


Support Equipment List					
Description Manufacturer Model Serial Number					
AC Adapter Rachio ILA48-24 1000 N/A					

I/O CABLES

I/O Cable List						
Cable No		# of identical	Connector Type	Cable Type	Cable Length (m)	Remarks
140		ports	Type		Length (III)	


TEST SETUP

CONDUCTED TEST SETUP DIAGRAM

TEST SETUP

RADIATED AND AC LINE CONDUCTED EMISSIONS SETUP DIAGRAM

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List						
Description	Manufacturer	Model	T Number	Cal Due		
Amplifier, 1-18GHz	Miteq	AFS42-00101800-25-S-42	493	06/23/18		
Filter, HPF 6 HPF	Micro-Tronics	HPS17542	483	06/24/18		
Filter, HPF 3GHz	Micro-Tronics	HPM17543	485	06/24/18		
Switch Driver	Keysight	11713A	457	N/A		
Filter, LPF 5GHz	Micro-Tronics	LPS17541	482	06/24/18		
Antenna, Horn 1-18GHz	ETS Lindgren	3117	345	06/14/18		
Antenna, Horn 18-26.5GHz	ARA	MWH-1826/B	449	06/12/18		
Antenna, Horn 26.5- 40GHz	ARA	MWH-2640/B	446	06/12/18		
Antenna, Active Loop 9KHz to 30MHz	Emco	6502	35	03/09/18		
Controller	Sunol Sciences	SC110V	1290	N/A		
Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences	JB1	899	06/15/18		
Amplifier, 10KHz to 1GHz, 32dB	Keysight	8447D	10	02/15/18		
Amplifier, 1 to 8 GHz, 35dB	Miteq	AMF-4D-01000800-30-29P	1156	06/24/18		
Amplifier, 1 to 26.5GHz, 23.5dB	Agilent	8449B	404	07/23/18		
Amplifier, 26 to 40GHz, 34dB	Miteq	TTA2640-35-HG	1864	08/21/18		
Spectrum Analyzer, PXA 3Hz to 44GHz	Keysight	N9030A	907	01/23/18		
Spectrum Analyzer, PXA 3Hz to 44GHz	Keysight	N9030A	1454	01/08/19		
Spectrum Analyzer, PXA 3Hz to 44GHz	Keysight	N9030A	1466	04/11/18		

Test Software List							
Description Manufacturer Model T No. Cal Date Cal Due							
Radiated Software UL UL EMC Ver 9.5, Dec 01, 2016							
Conducted Software	UL	UL EMC	٧	er 9.5, May 26	2015		

Test Software List						
Description Manufacturer Model Version						
Radiated Software	UL	UL EMC	Ver 9.5, Apr 26, 2016			
Conducted Software	UL	UL EMC	Ver 9.5, May 26, 2015			
Antenna Port Software	UL	UL RF	Ver 5.1.1, July 15, 2016			

7. MEASUREMENT METHODS

On Time and Duty Cycle: KDB 789033 D02 v01r04, Section B.

6 dB Emission BW: KDB 789033 D02 v01r04, Section C.2.

26 dB Emission BW: KDB 789033 D02 v01r04, Section C.2.1.

99% Occupied BW: KDB 789033 D02 v01r04, Section D.

Conducted Output Power: KDB 789033 D02 v01r04, Section E.3.b (Method PM-G) and KDB 662911 D01 v02r01.

Power Spectral Density: KDB 789033 D02 v01r04, Section F and KDB 662911 D01 v02r01.

<u>Unwanted emissions in restricted bands</u>: KDB 789033 D02 v01r04, Sections G.3, G.4, G.5, and G.6, and KDB 662911 D01 v02r01.

<u>Unwanted emissions in non-restricted bands</u>: KDB 789033 D02 v01r04, Sections G.3, G.4, and G.5, and KDB 662911 D01 v02r01.

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

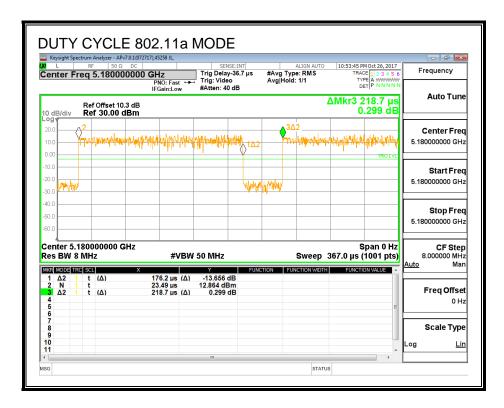
REPORT NO: 11988952-E2V3 DATE: April 12, 2018 IC ID: 23555-ZULWC FCC ID: 2AOTB-ZULWC

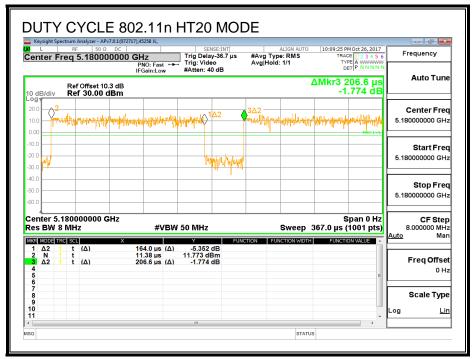
8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

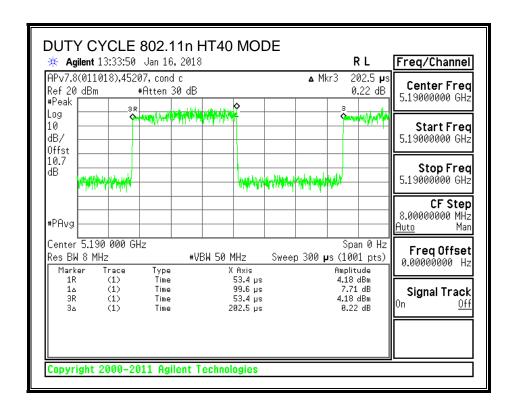
LIMITS

None; for reporting purposes only.


PROCEDURE


KDB 789033 Zero-Span Spectrum Analyzer Method.

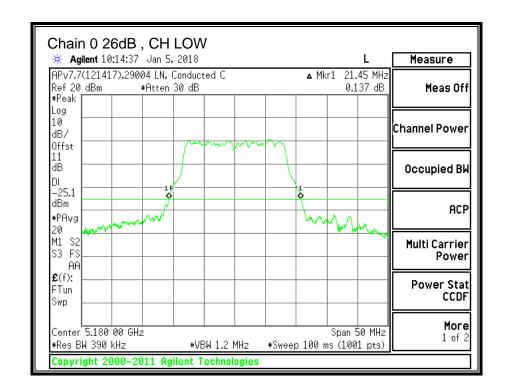
RESULTS

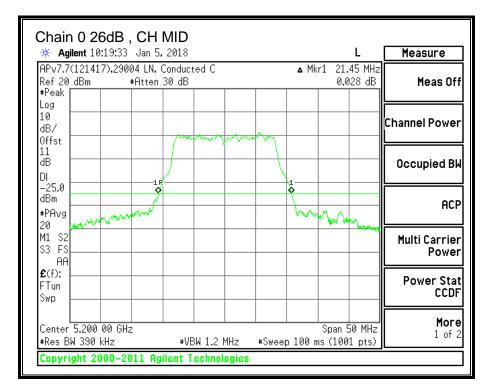

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/T
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
802.11a	0.176	0.219	0.806	80.6%	0.94	5.675
802.11n HT20	0.164	0.207	0.794	79.4%	1.00	6.098
802.11n HT40	0.100	0.203	0.492	49.2%	3.08	10.040

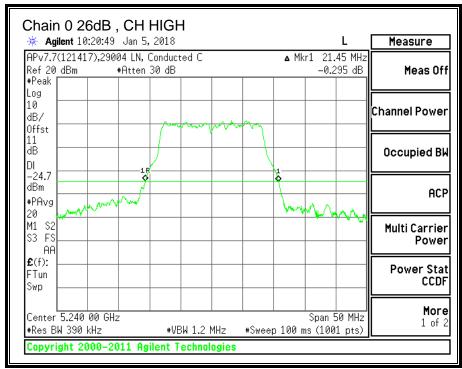
DUTY CYCLE PLOTS

DATE: April 12, 2018 IC ID: 23555-ZULWC

8.2. 11a MODE IN THE 5.2GHz BAND

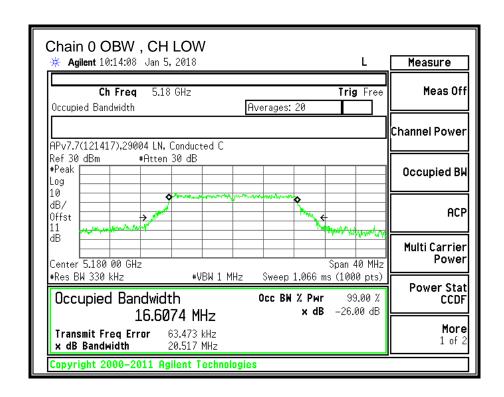

8.2.1. 26 dB BANDWIDTH

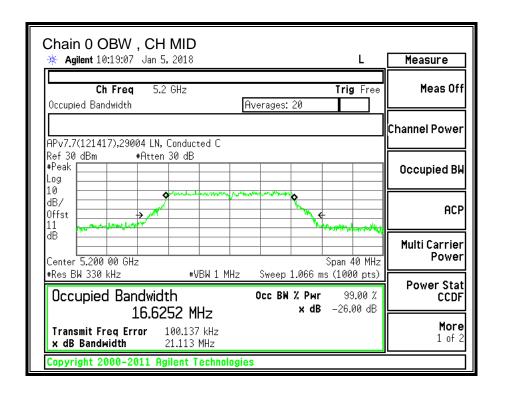

LIMITS

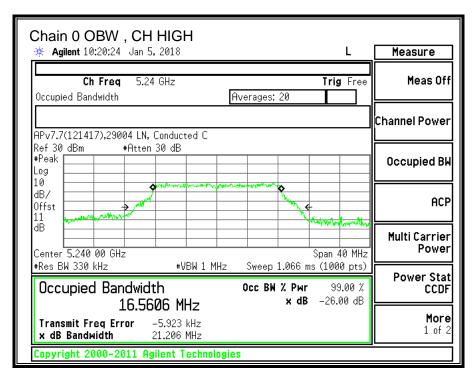

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW (MHz)
Low	5180	21.45
Mid	5200	21.45
High	5240	21.45


8.2.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

RESULTS

Channel	Frequency	99% (MHz)
Low	5180	16.6074
Mid	5200	16.6252
High	5240	16.5606

REPORT NO: 11988952-E2V3 FCC ID: 2AOTB-ZULWC

8.2.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1)

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DATE: April 12, 2018 IC ID: 23555-ZULWC

REPORT NO: 11988952-E2V3 DATE: April 12, 2018 IC ID: 23555-ZULWC FCC ID: 2AOTB-ZULWC

ISED RSS 247 Issue 2, Clause 6.2.1.1

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less stringent. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS (FCC)

Antenna Gain and Limits

Channel	Frequency	Directional	Power
		Gain	Limit
		for Power	
	(MHz)	(dBi)	(dBm)
Low	5180	2.00	24.00
Mid	5200	2.00	24.00
High	5240	2.00	24.00

Duty Cycle CF (dB) 0.94	Included in Calculations of Corr'd Power
-------------------------	--

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	10.08	11.02	24.00	-12.98
Mid	5200	9.98	10.92	24.00	-13.08
High	5240	9.78	10.72	24.00	-13.28

Test Information

Tester: LN 39004 Date: 01/10/18 REPORT NO: 11988952-E2V3 DATE: April 12, 2018 IC ID: 23555-ZULWC FCC ID: 2AOTB-ZULWC

RESULTS (ISED)

Antenna Gain and Limits

Channel	Frequency	Directional	Occupied	EIRP
		Ant Gain	99% BW	Limit
	(MHz)	(dBi)	(MHz)	(dBm)
Low	5180	2.00	16.61	22.20
Mid	5200	2.00	16.63	22.21
High	5240	2.00	16.56	22.19

Duty Cycle CF (dB)	0.94	Included in Calculations of Corr'd Power
--------------------	------	--

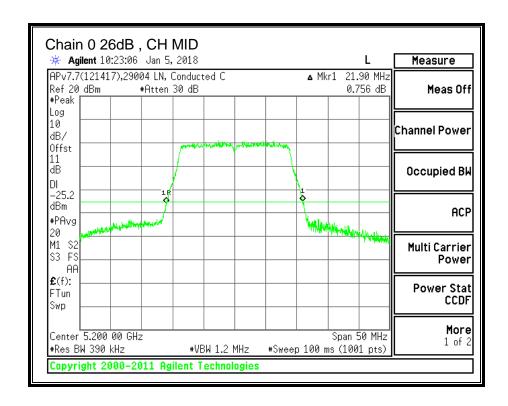
Output Power Results

Channel	Frequency	Chain 0	Total	EIRP	EIRP
		Meas Cond	Corr'd	Limit	Margin
		Power	EIRP		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	10.08	13.02	22.20	-9.18
Mid	5200	9.98	12.92	22.21	-9.29
High	5240	9.78	12.72	22.19	-9.47

Test Information

Tester: LN 39004 Date: 01/10/18

8.3. 11n HT20 MODE IN THE 5.2GHz BAND


8.3.1. 26 dB BANDWIDTH

LIMITS

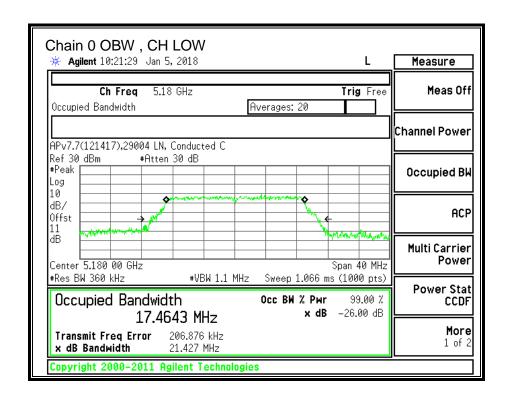
None; for reporting purposes only.

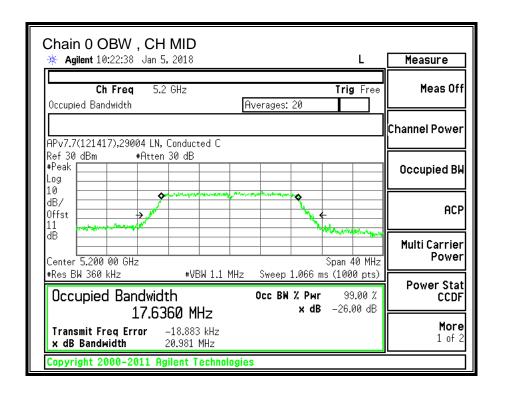
RESULTS

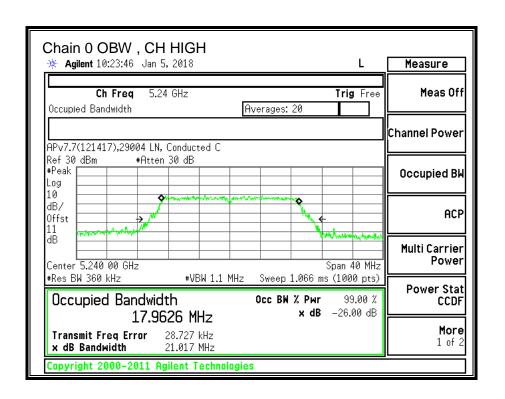
Channel	Frequency	26 dB BW (MHz)
Low	5180	21.75
Mid	5200	21.90
High	5240	21.85

DATE: April 12, 2018 IC ID: 23555-ZULWC

DATE: April 12, 2018 IC ID: 23555-ZULWC


8.3.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

RESULTS

Channel	Frequency	99% (MHz)
Low	5180	17.4643
Mid	5200	17.6360
High	5240	17.9626

REPORT NO: 11988952-E2V3 FCC ID: 2AOTB-ZULWC

8.3.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1)

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DATE: April 12, 2018 IC ID: 23555-ZULWC

ISED RSS 247 Issue 2, Clause 6.2.1.1

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less stringent. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

REPORT NO: 11988952-E2V3 DATE: April 12, 2018 IC ID: 23555-ZULWC FCC ID: 2AOTB-ZULWC

RESULTS (FCC)

Antenna Gain and Limits

Channel	Frequency	Directional	Power
		Gain	Limit
		for Power	
	(MHz)	(dBi)	(dBm)
Low	5180	2.00	24.00
Mid	5200	2.00	24.00
High	5240	2.00	24.00

Duty Cycle CF (dB)	1.00	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	9.05	10.05	24.00	-13.95
Mid	5200	9.12	10.12	24.00	-13.88
High	5240	9.08	10.08	24.00	-13.92

Test Information

Tester: LN 39004 Date: 01/10/18

REPORT NO: 11988952-E2V3 DATE: April 12, 2018 IC ID: 23555-ZULWC FCC ID: 2AOTB-ZULWC

RESULTS (ISED)

Antenna Gain and Limits

Channel	Frequency	Directional	Occupied	EIRP
		Ant Gain	99% BW	Limit
	(MHz)	(dBi)	(MHz)	(dBm)
Low	5180	2.00	17.46	22.42
Mid	5200	2.00	17.64	22.46
High	5240	2.00	17.96	22.54

Duty Cycle CF (dB) 1.00	Included in Calculations of Corr'd Power
-------------------------	--

Output Power Results

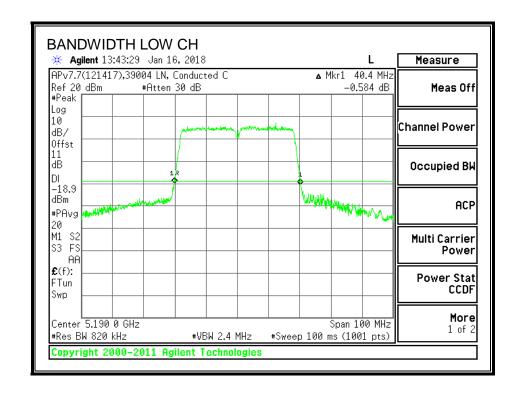
Channel	Frequency	Chain 0	Total	EIRP	EIRP
		Meas Cond	Corr'd	Limit	Margin
		Power	EIRP		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	9.05	12.05	22.42	-10.37
Mid	5200	9.12	12.12	22.46	-10.34
High	5240	9.08	12.08	22.54	-10.46

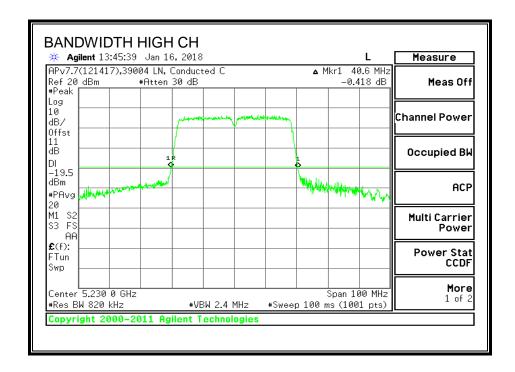
Test Information

Tester: LN 39004 Date: 01/10/18

8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND

8.4.1. 26 dB BANDWIDTH

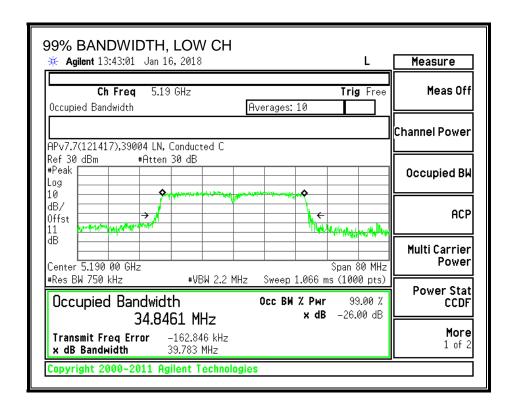

LIMITS

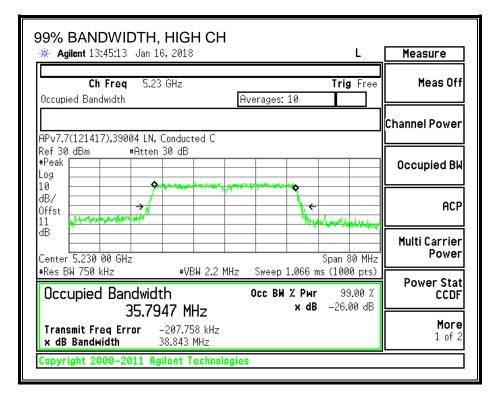

None; for reporting purposes only.

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5190	40.40
High	5230	40.60

DATE: April 12, 2018 REPORT NO: 11988952-E2V3 IC ID: 23555-ZULWC FCC ID: 2AOTB-ZULWC

26 dB BANDWIDTH


8.4.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

Channel Frequency		99% Bandwidth
	(MHz)	(MHz)
Low	5190	34.8461
High	5230	35.7947

99% BANDWIDTH

REPORT NO: 11988952-E2V3 FCC ID: 2AOTB-ZULWC

8.4.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1)

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DATE: April 12, 2018 IC ID: 23555-ZULWC

DATE: April 12, 2018 REPORT NO: 11988952-E2V3 IC ID: 23555-ZULWC FCC ID: 2AOTB-ZULWC

ISED RSS 247 Issue 2, Clause 6.2.1.1

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less stringent. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS (FCC)

Antenna Gain and Limits

Channel	Frequency	Directional	Power
		Gain	Limit
		for Power	
	(MHz)	(dBi)	(dBm)
Low	5190	2.00	24.00
High	5230	2.00	24.00

Duty Cycle CF (dB) 3.08	Included in Calculations of Corr'd Power
-------------------------	--

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	7.12	10.20	24.00	-13.80
High	5230	7.05	10.13	24.00	-13.87

TEST INFORMATION

Date: 1/16/2018 **Tester: 39004**

RESULTS (ISED)

Antenna Gain and Limits

Channel	Frequency	Directional	Occupied	EIRP
		Ant Gain	99% BW	Limit
	(MHz)	(dBi)	(MHz)	(dBm)
Low	5190	2.00	34.85	23.00
High	5230	2.00	35.79	23.00

Duty Cycle CF (dB)	3.08	Included in Calculations of Corr'd Power
--------------------	------	--

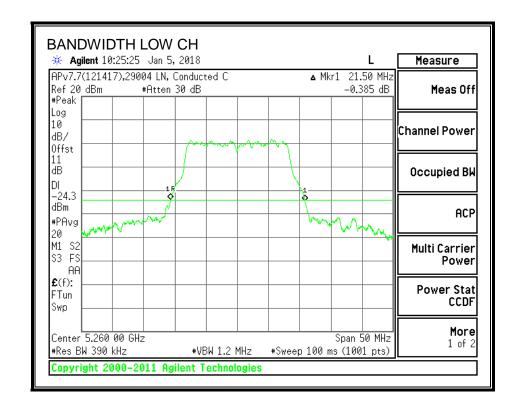
Output Power Results

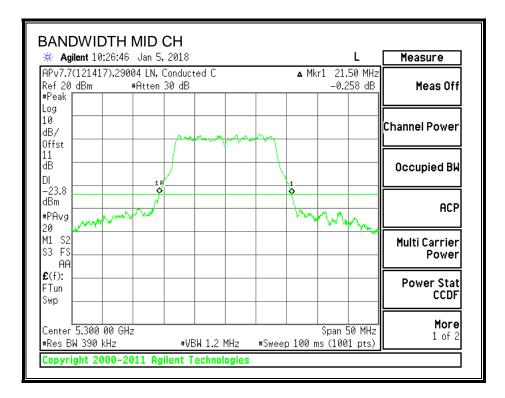
Channel	Frequency	Chain 0	Total	EIRP	EIRP
		Meas Cond	Corr'd	Limit	Margin
		Power	EIRP		
	/B/II I = \	(alD)	(alDiss)	(alD::-a)	(15)
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	7.12	12.20	23.00	-10.80

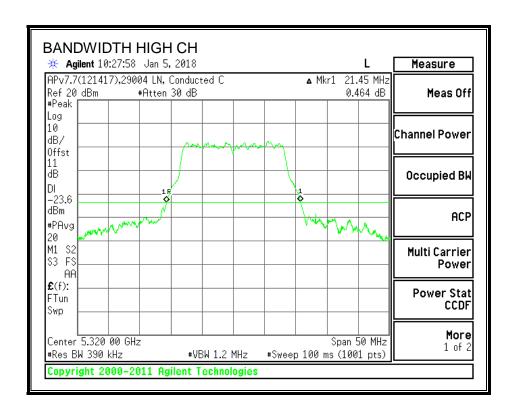
TEST INFORMATION

Date: 1/16/2018 **Tester: 39004**

8.5. 802.11a MODE IN THE 5.3 GHz BAND

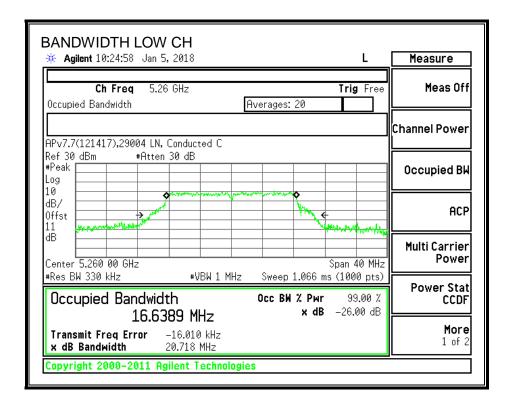

8.5.1. 26 dB BANDWIDTH

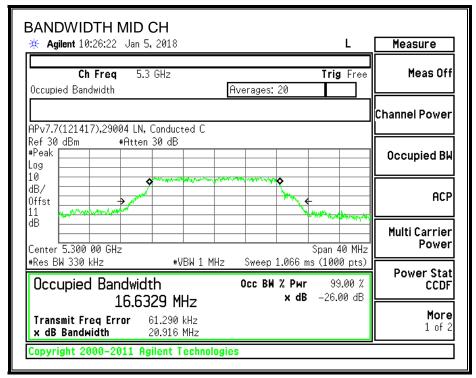

LIMITS


None; for reporting purposes only.

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5260	21.50
Mid	5300	21.50
High	5320	21.45

26 dB BANDWIDTH


8.5.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5260	16.6389
Mid	5300	16.6329
High	5320	16.4269

99% BANDWIDTH

DATE: April 12, 2018 IC ID: 23555-ZULWC

8.5.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

ISED RSS-247 Issue 2 Section 6.2.2.1

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less. Devices shall implement TPC in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

Devices, other than devices installed in vehicles, shall comply with the following:

- a) The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band;
- b) The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain

RESULTS (FCC)

Bandwidth, Antenna Gain and Limits

Channel	Frequency	Min	Directional	Power
		26 dB	Gain	Limit
		BW	for Power	
	(MHz)	(MHz)	(dBi)	(dBm)
Low	5260	21.50	2.00	24.00
Mid	5300	21.50	2.00	24.00
High	5320	21.45	2.00	24.00

Duty Cycle CF (dB) 0.94 Included in Calculations of Corr'd Power
--

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	10.32	11.26	24.00	-12.74
Mid	5300	10.45	11.39	24.00	-12.61
High	5320	10.62	11.56	24.00	-12.44

TEST INFORMATION

Date: 1/5/2018 **Tester: 39004**

REPORT NO: 11988952-E2V3 DATE: April 12, 2018 IC ID: 23555-ZULWC FCC ID: 2AOTB-ZULWC

RESULTS (ISED_CONDUCTED POWER)

Bandwidth and Limits

Channel	Frequency	Min	Power
		99% BW	Limit
	(MHz)	(MHz)	(dBm)
Low	5260	16.64	23.21
Mid	5300	16.63	23.21
High	5320	16.43	23.16

Duty Cycle CF (dB)	0.94	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Total	EIRP	EIRP
		Meas	Corr'd	Limit	Margin
		Power	EIRP		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	10.32	11.26	23.21	-11.95
Mid	5300	10.45	11.39	23.21	-11.82
High	5320	10.62	11.56	23.16	-11.60

TEST INFORMATION

Date: 1/5/2018 Tester: 39004

RESULTS (ISED_EIRP)

Bandwidth, Antenna Gain and Limits

Channel	Frequency	Min	Directional	EIRP
		99% BW	Ant Gain	Limit
	(MHz)	(MHz)	(dBi)	(dBm)
Low	5260	16.64	2.00	29.21
Mid	5300	16.63	2.00	29.21
High	5320	16.43	2.00	29.16

Duty Cycle CF (dB)	0.94	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

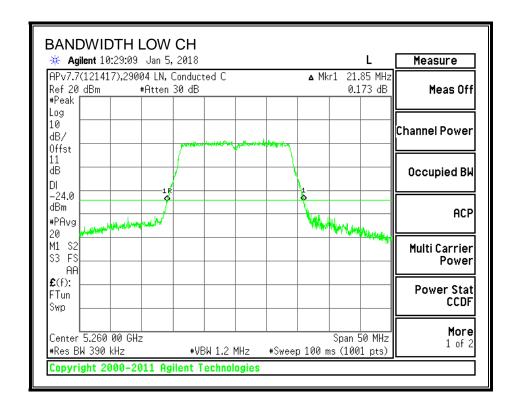
Channel	Frequency	Chain 0	Total	EIRP	EIRP
		Meas	Corr'd	Limit	Margin
		Power	EIRP		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	10.32	13.26	29.21	-15.95
Mid	5300	10.45	13.39	29.21	-15.82
High	5320	10.62	13.56	29.16	-15.60

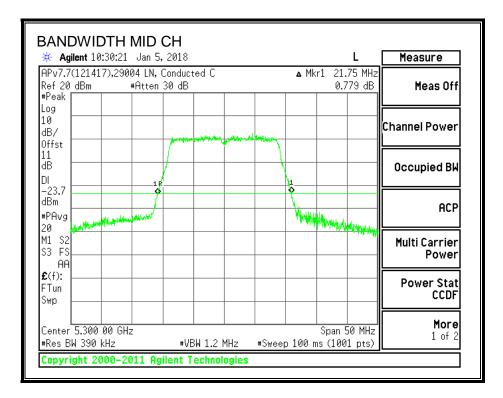
TEST INFORMATION

Date: 1/5/2018 **Tester: 39004**

8.6. 802.11n HT20 MODE IN THE 5.3 GHz BAND

8.6.1. 26 dB BANDWIDTH


LIMITS

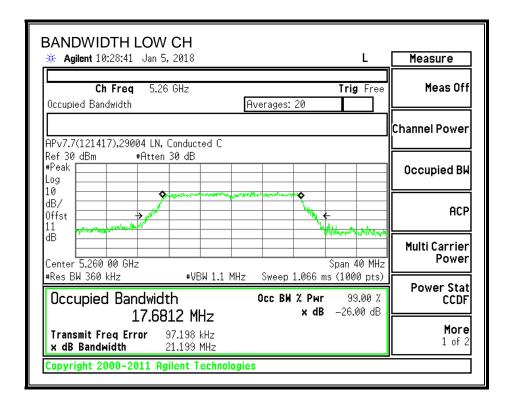

None; for reporting purposes only.

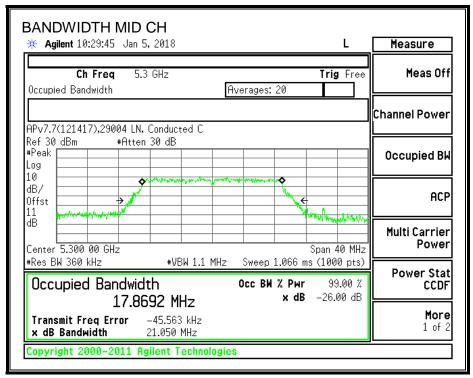
Channel	Frequency	26 dB Bandwidth	
	(MHz)	(MHz)	
Low	5260	21.85	
Mid	5300	21.75	
High	5320	21.90	

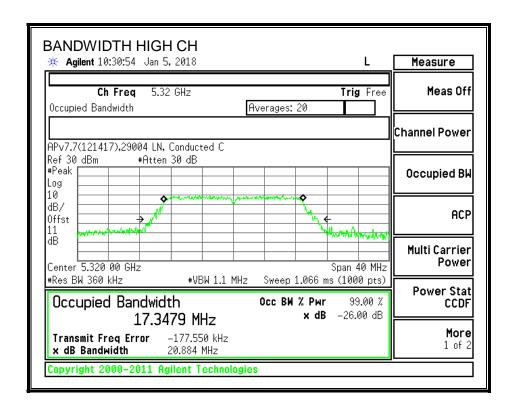
REPORT NO: 11988952-E2V3 DATE: April 12, 2018 IC ID: 23555-ZULWC FCC ID: 2AOTB-ZULWC

26 dB BANDWIDTH

DATE: April 12, 2018 IC ID: 23555-ZULWC


8.6.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

Channel Frequency		99% Bandwidth
	(MHz)	(MHz)
Low	5260	17.6812
Mid	5300	17.8692
High	5320	17.3479

99% BANDWIDTH

8.6.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

ISED RSS-247 Issue 2 Section 6.2.2.1

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less. Devices shall implement TPC in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

Devices, other than devices installed in vehicles, shall comply with the following:

- a) The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band;
- b) The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain

RESULTS (FCC)

Bandwidth, Antenna Gain and Limits

Channel	Frequency	Min	Directional	Power
		26 dB	Gain	Limit
		BW	for Power	
	(MHz)	(MHz)	(dBi)	(dBm)
Low	5260	21.85	2.00	24.00
Mid	5300	21.75	2.00	24.00
High	5320	21.90	2.00	24.00

Duty Cycle CF (dB)	1.00	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	10.41	11.41	24.00	-12.59
Mid	5300	10.57	11.57	24.00	-12.43
High	5320	10.59	11.59	24.00	-12.41

Test Information

Tester: LN 39004 Date: 01/10/18

RESULTS (ISED_CONDUCTED POWER)

Bandwidth and Limits

Channel	Frequency	Min	Power
		99% BW	Limit
	(MHz)	(MHz)	(dBm)
Low	5260	17.68	23.48
Mid	5300	17.87	23.52
High	5320	17.35	23.39

Duty Cycle CF (dB)	1.00	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	10.41	11.41	23.48	-12.07
Mid	5300	10.57	11.57	23.52	-11.95
High	5320	10.59	11.59	23.39	-11.80

Test Information

Tester: LN 39004 Date: 01/10/18

RESULTS (ISED_EIRP)

Bandwidth, Antenna Gain and Limits

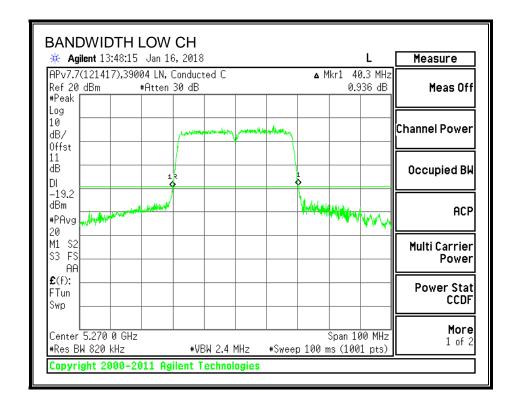
Channel	Frequency	Min	Directional	EIRP
		99% BW	Ant Gain	Limit
	(MHz)	(MHz)	(dBi)	(dBm)
Low	5260	17.6812	2.00	29.48
Mid	5300	17.8692	2.00	29.52
High	5320	17.3479	2.00	29.39

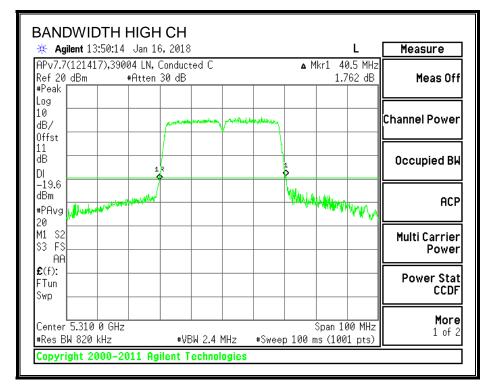
Duty Cycle CF (dB) 1.00	Included in Calculations of Corr'd Power
-------------------------	--

Output Power Results

Channel	Frequency	Chain 0	Total	EIRP	EIRP
		Meas	Corr'd	Limit	Margin
		Power	EIRP		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	10.41	13.41	29.48	-16.07
Mid	5300	10.57	13.57	29.52	-15.95
High	5320	10.59	13.59	29.39	-15.80

8.7. 802.11n HT40 MODE IN THE 5.3 GHz BAND

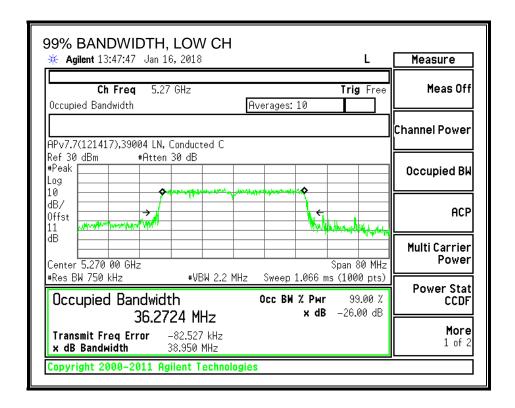

8.7.1. 26 dB BANDWIDTH

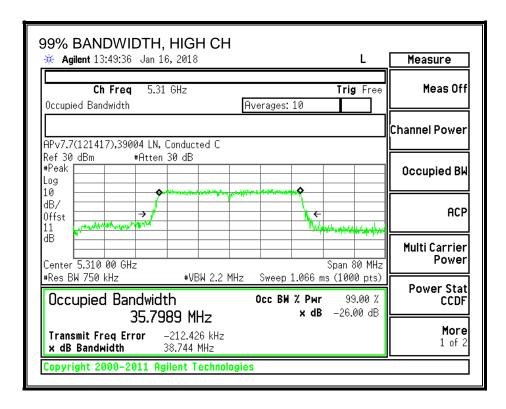

LIMITS

None; for reporting purposes only.

Channel	Frequency	26 dB Bandwidth		
	(MHz)	(MHz)		
Low	5270	40.30		
High	5310	40.50		

26 dB BANDWIDTH


8.7.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

Channel	Frequency	99% Bandwidth	
	(MHz)	(MHz)	
Low	5270	36.2724	
High	5310	35.7989	

99% BANDWIDTH

8.7.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

ISED RSS-247 Issue 2 Section 6.2.2.1

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less. Devices shall implement TPC in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

Devices, other than devices installed in vehicles, shall comply with the following:

- a) The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band;
- b) The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS (FCC)

Bandwidth, Antenna Gain, and Limits

Channel	Frequency	Min	Directional	Power
		26 dB	Gain	Limit
		BW		
	(MHz)	(MHz)	(dBi)	(dBm)
Low	5270	40.30	2.00	24.00
High	5310	40.50	2.00	24.00

Duty Cycle CF (dB)	3.08	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5270	8.53	11.61	24.00	-12.39
High	5310	8.42	11.50	24.00	-12.50

TEST INFORMATION

Date: 1/16/2018 **Tester: 39004**

RESULTS (ISED_CONDUCTED POWER

Bandwidth and Limits

Channel	Frequency Min		Power
		99% BW	Limit
	(MHz)	(MHz)	(dBm)
Low	5270	36.27	24.00
High	5310	35.80	24.00

Duty Cycle CF (dB)	3.08	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5270	8.53	11.61	24.00	-12.39

TEST INFORMATION

RESULTS (ISED_EIRP)

Bandwidth, Antenna Gain and Limits

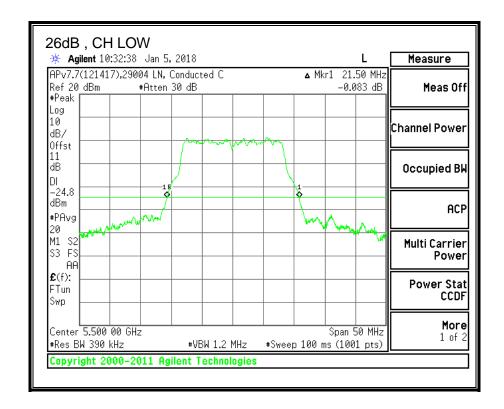
Channel	Frequency	Min	Directional	EIRP
		99% BW	Ant Gain	Limit
	(MHz)	(MHz)	(dBi)	(dBm)
Low	5270	36.27	2.00	30.00
High	5310	35.80	2.00	30.00

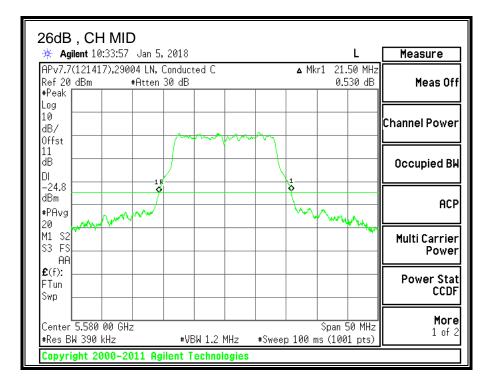
Duty Cycle CF (dB)	3.08	Included in Calculations of Corr'd Power
--------------------	------	--

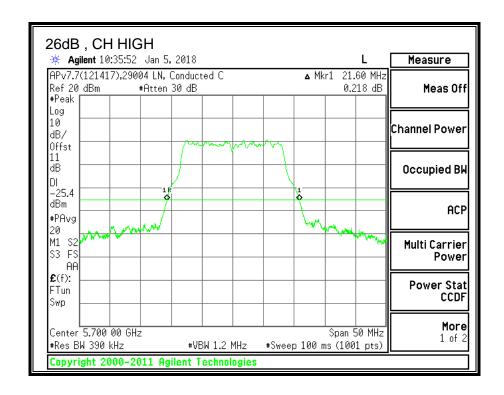
Output Power Results

Channel	Frequency	Chain 0	Total	EIRP	EIRP
		Meas	Corr'd	Limit	Margin
		Power	EIRP		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5270	8.53	13.61	30.00	-16.39
High	5310	8.42	13.50	30.00	-16.50

TEST INFORMATION

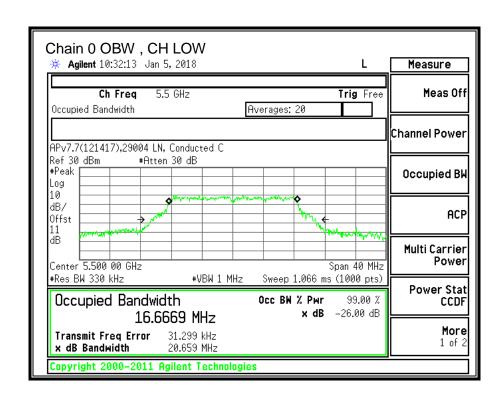

8.8. 11a MODE IN THE 5.6GHz BAND

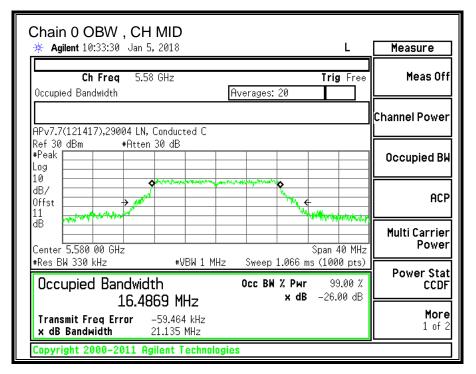

8.8.1. 26 dB BANDWIDTH

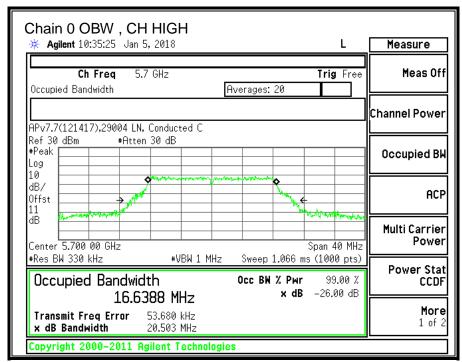

LIMITS

None; for reporting purposes only.

Channel	Frequency	26 dB BW (MHz)
Low	5500	21.50
Mid	5580	21.50
High	5700	21.60




8.8.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

Channel	Frequency	99% (MHz)
Low	5500	16.6669
Mid	5580	16.4869
High	5700	16.6388

8.8.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

For the band 5.47–5.725 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RSS-247 ISSUE 2 SECTION 6.2.3.1

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS (FCC)

Bandwidth, Antenna Gain, and Limits

Channel	Frequency	Min	Directional	Power
		26 dB	Gain	Limit
		BW		
	(MHz)	(MHz)	(dBi)	(dBm)
Low	5500	21.50	2.00	24.00
Mid	5580	21.50	2.00	24.00
High	5700	21.60	2.00	24.00

Duty Cycle CF (dB)	0.94	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power		
		Meas	Corr'd	Limit	Margin		
		Power	Power				
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)		
Low	5500	9.22	10.16	24.00	-13.84		
Mid	5580	9.31	10.25	24.00	-13.75		
High	5700	9.11	10.05	24.00	-13.95		

Test Information

Tester: LN 39004 Date: 01/10/18

RESULTS (ISED_Conducted Power)

Bandwidth and Limits

Channel	Frequency	Min	Power
		99% BW	Limit
	(MHz)	(MHz)	(dBm)
Low	5700	16.67	23.22
Mid	5700	16.49	23.17
High	5700	16.64	23.21

Duty Cycle CF (dB)	0.94	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

Catpat i Circi Researce					
Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	9.22	10.16	23.22	-13.06
Mid	5580	9.31	10.25	23.17	-12.92
High	5700	9.11	10.05	23.21	-13.16

TEST INFORMATION

RESULTS (ISED_EIRP)

Bandwidth, Antenna Gain, and Limits

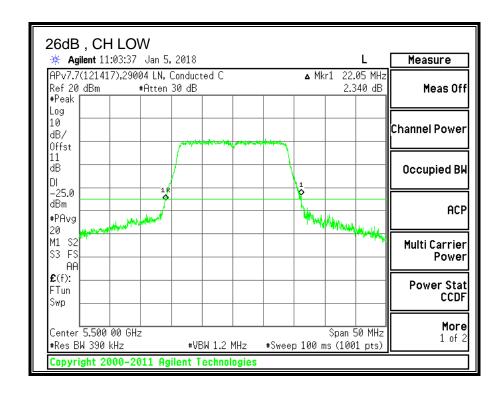
Channel	Frequency	Min	Directional	EIRP
		99% BW	Ant. Gain	Limit
	(MHz)	(MHz)	(dBi)	(dBm)
Low	5500	16.67	2.00	29.22
Mid	5580	16.49	2.00	29.17
High	5700	16.64	2.00	29.21

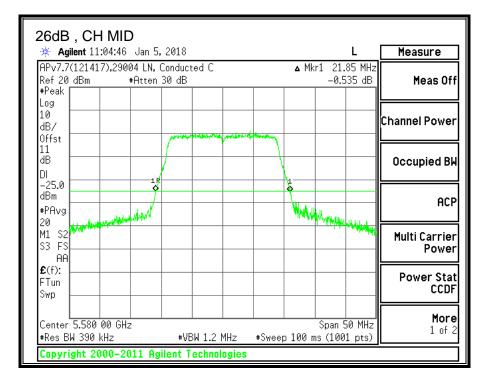
Duty Cycle CF (dB)	0.94	Included in Calculations of Corr'd Power
--------------------	------	--

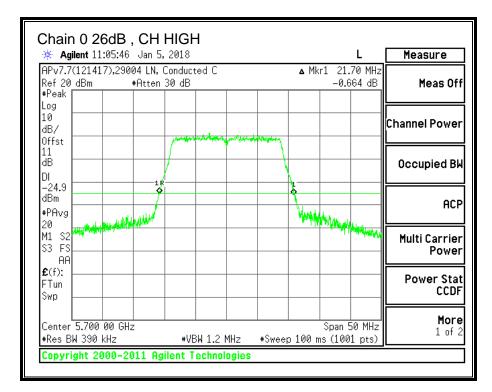
Output Power Results

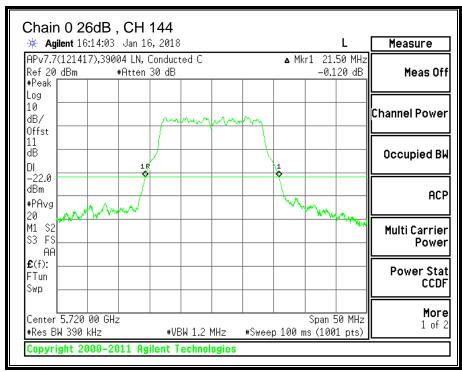
output: ono. Rosaito					
Channel	Frequency	Chain 0	Total	EIRP	EIRP
		Meas	Corr'd	Limit	Margin
		Power	EIRP		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	9.22	12.16	29.22	-17.06
Mid	5580	9.31	12.25	29.17	-16.92
High	5700	9.11	12.05	29.21	-17.16

TEST INFORMATION

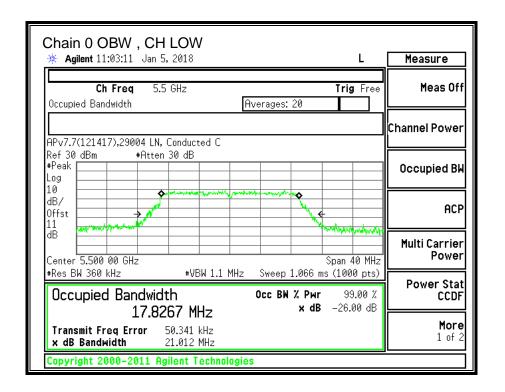

8.9. 11n HT20 MODE IN THE 5.6GHz BAND

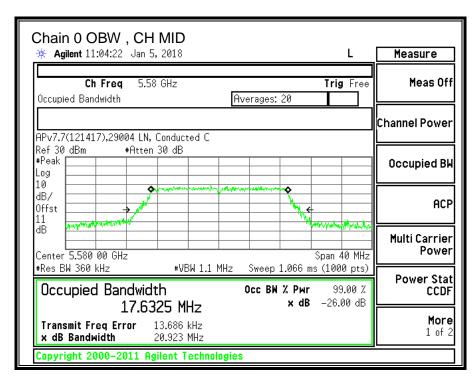

8.9.1. 26 dB BANDWIDTH

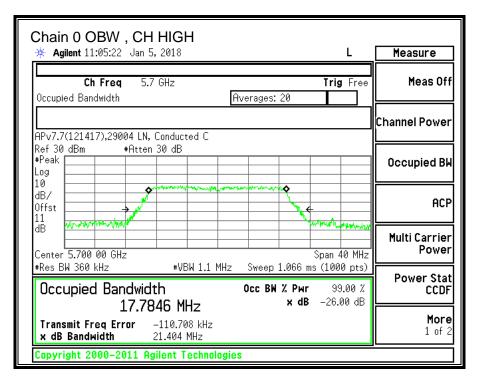

LIMITS

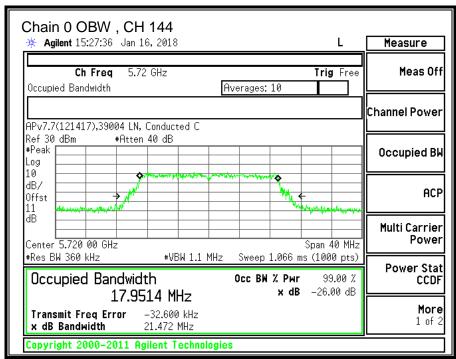

None; for reporting purposes only.

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5500	22.05
Mid	5580	21.85
High	5700	21.70
144	5720	21.50




8.9.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5500	17.8267
Mid	5580	17.6325
High	5700	17.7846
144	5720	17.9514

8.9.3. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (2)

For the band 5.47–5.725 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RSS-247 ISSUE 2 SECTION 6.2.3.1

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS (FCC)

Bandwidth, Antenna Gain, and Limits

Channel	Frequency	Min	Directional	Power	
		26 dB	Gain	Limit	
		BW			
	(MHz)	(MHz)	(dBi)	(dBm)	
Low	5500	22.05	2.00	24.00	
Mid	5580	21.85	2.00	24.00	
High	5700	21.70	2.00	24.00	

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	9.44	10.44	24.00	-13.56
Mid	5580	9.57	10.57	24.00	-13.43
High	5700	9.49	10.49	24.00	-13.51

TEST INFORMATION

Date: 1/16/2018 Tester: 39004

FORM NO: CCSUP4701J

RESULTS (ISED_Conducted Power)

Bandwidth and Limits

Channel	Frequency	Min	Power
		99% BW	Limit
	(MHz)	(MHz)	(dBm)
Low	5500	17.83	23.51
Mid	5580	17.63	23.46
High	5700	17.78	23.50

Duty Cycle CF (dB) 1.00 Included in Calculations of Corr'd F	ower
--	------

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	9.44	10.44	23.51	-13.07
Mid	5580	9.57	10.57	23.46	-12.89
High	5700	9.49	10.49	23.50	-13.01

TEST INFORMATION

RESULTS (ISED_EIRP)

Bandwidth, Antenna Gain, and Limits

Channel	Frequency	Min	Directional	EIRP
		99% BW	Ant. Gain	Limit
	(MHz)	(MHz)	(dBi)	(dBm)
Low	5500	17.83	2.00	29.51
Mid	5580	17.63	2.00	29.46
High	5700	17.78	2.00	29.50

Duty Cycle CF (dB) 1.00	Included in Calculations of Corr'd Power
-------------------------	--

Output Power Results

Channel	Frequency	Chain 0	Total	EIRP	EIRP
		Meas	Corr'd	Limit	Margin
		Power	EIRP		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	8.44	11.44	29.51	-18.07
Mid	5580	8.57	11.57	29.46	-17.89
High	5700	8.49	11.49	29.50	-18.01

TEST INFORMATION

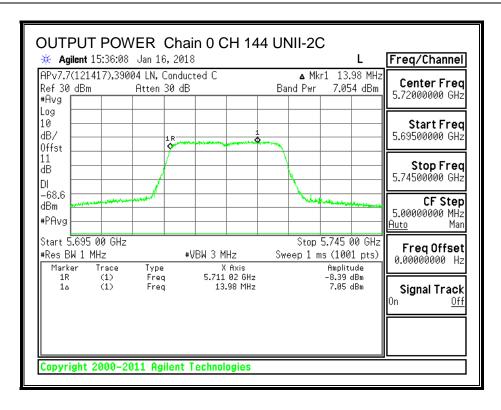
STRADDLE CHANNEL 144 RESULTS (ISED_EIRP)

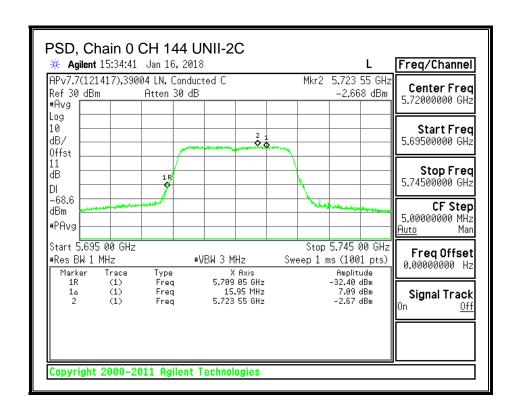
UNII-2C BAND

Bandwidth, Antenna Gain, and Limits

Channel	Frequency	Min	Directional	EIRP
		99% BW	Ant. Gain	Limit
	(MHz)	(MHz)	(dBi)	(dBm)
144	5720	17.95	2.00	29.54

Duty Cycle CF (dB) 1.00	Included in Calculations of Corr'd Power
-------------------------	--


Output Power Results


Channel	Frequency	Chain 0	Total	EIRP	EIRP
		Meas	Corr'd	Limit	Margin
		Power	EIRP		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
144	5720	7.05	10.05	29.54	-19.49

TEST INFORMATION

Date: 1/16/2018 **Tester: 39004**

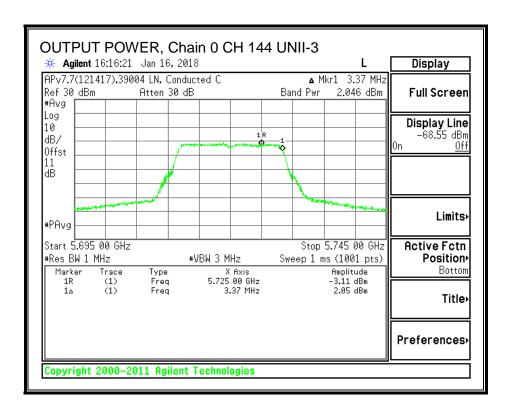
FORM NO: CCSUP4701J

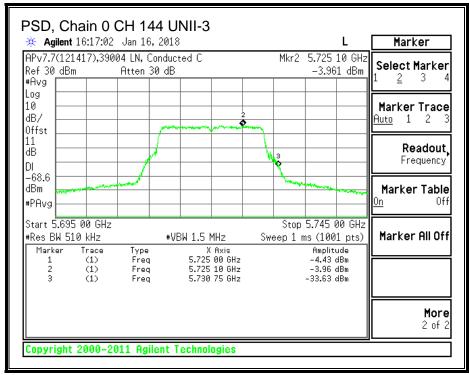
UNII-3 BAND (FCC and ISED)

Antenna Gain and Limit

Channel	Frequency	Directional	Power	PSD
		Gain	Limit	Limit
	(MHz)	(dBi)	(dBm)	(dBm)
144	5720	2.00	30.00	30.00

Duty Cycle CF (dB) 1.00 Included in Calculations of Corr'd Power & PSD	Duty Cycle CF (dB) 1.00 Included	in Calculations of Corr'd Power & PSD
--	----------------------------------	---------------------------------------


Output Power Results

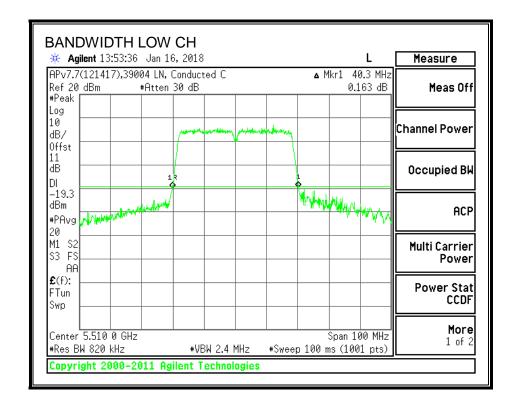

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
144	5720	2.05	3.05	30.00	-26.95

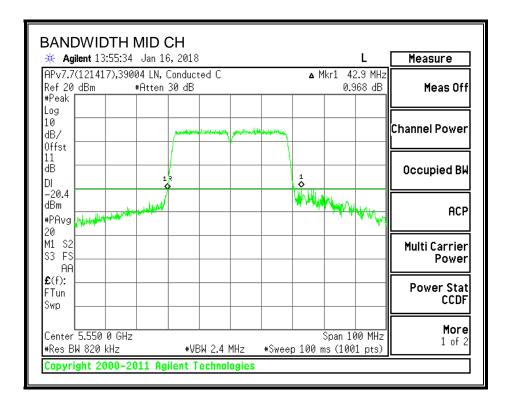
PSD Results

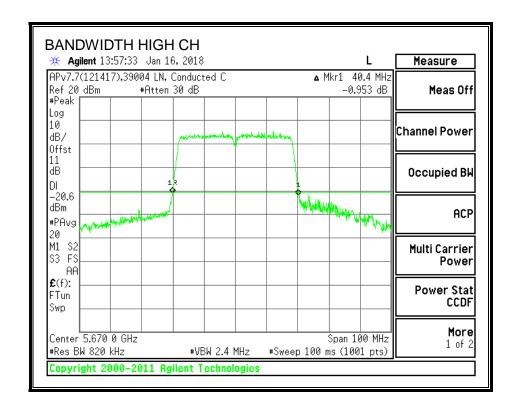
Channel	Frequency	Chain 0	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
144	5720	-3.96	-2.96	30.00	-32.96

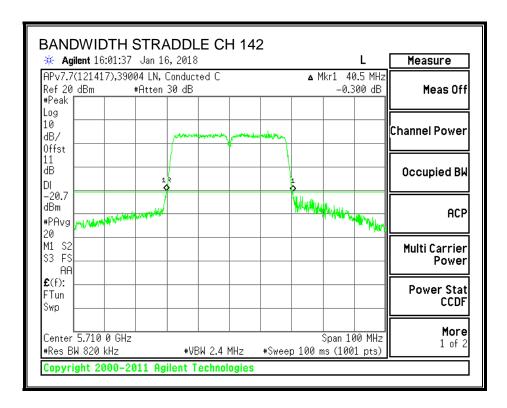
TEST INFORMATION

8.10. 802.11n HT40 MODE IN THE 5.6 GHz BAND


8.10.1. 26 dB BANDWIDTH


LIMITS


None; for reporting purposes only.


Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5510	40.30
Mid	5550	42.90
High	5670	40.40
142	5710	40.50

26 dB BANDWIDTH

