TEST REPORT

Reference No	WTS20X08051759W-3
FCC ID	2AOT9-NBDVR622GW
Applicant	Portable Multimedia Limited
Address	Unit 2, Caerphilly Business Park, Van Road, Caerphilly. CF83 3ED. United Kingdom
Product Name :	Dash Cam
Test Model	NBDVR622GW
Standards	FCC Part 15.407
Date of Receipt sample :	Aug.03, 2020
Date of Test	Aug.03, 2020 to Aug.19, 2020
Date of Issue	Aug.25, 2020
Test Result	Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Testing Group (Shenzhen) Co., Ltd.

Address: 1/F., Room 101, Building 1, Hongwei Industrial Park, Liuxian 2nd Road, Block 70 Bao'an District, Shenzhen, Guangdong, China

> Tel.: +86-755-33663308 Fax.: +86-755-33663309

Tested by:

___/ Mike Shi / Project Engineer

Reviewed By:

Chen

Approved & Authorized By:

Lion Cai / RF Manager

Silin Chen / Manager

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 Test Standards	
1.3 Test Methodology 1.4 Table for parameters of Test Software setting	
1.5 EUT OPERATING DURING TEST	
1.6 TEST FACILITY	
1.7 EUT SETUP AND TEST MODE	
1.8 Measurement Uncertainty	8
1.9 Test Equipment List and Details	9
2. SUMMARY OF TEST RESULTS	11
3. RF EXPOSURE	12
3.1 Standard Applicable	
3.2 Test Result	
4. ANTENNA REQUIREMENT	
4.1 Standard Applicable	
4.2 Evaluation Information	
5. AUTOMATICALLY DISCONTINUE TRANSMISSION	14
5.1 Standard Applicable	
5.2 SUMMARY OF TEST RESULTS	14
6. CONDUCTED EMISSIONS	
6.1 Test Procedure	
6.2 BASIC TEST SETUP BLOCK DIAGRAM	
6.3 TEST RECEIVER SETUP	
6.4 Summary of Test Results/Plots	
7. POWER SPECTRAL DENSITY	
7.1 STANDARD APPLICABLE	
7.2 TEST PROCEDURE 7.3 SUMMARY OF TEST RESULTS/PLOTS	
8. EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH	
8.1 Standard Applicable	
8.1 STANDARD APPLICABLE 8.2 Test Procedure	
8.3 SUMMARY OF TEST RESULTS/PLOTS	
9. MAXIMUM CONDUCTED OUTPUT POWER	
9.1 Standard Applicable	
9.2 Test Procedure	
9.3 SUMMARY OF TEST RESULTS/PLOTS	
10. RADIATED SPURIOUS EMISSIONS	
10.1 Standard Applicable	
10.2 Test Procedure	
10.3 Test Receiver Setup 10.4 Corrected Amplitude & Margin Calculation	
10.4 CORRECTED AMPLITUDE & MARGIN CALCULATION	
11. FREQUENCY STABILITY	
11.1 Standard Applicable	
11.2 Test Procedure	
11.3 SUMMARY OF TEST RESULTS/PLOTS	46

Report version

Version No.	Date of issue	Description
Rev.00	v.00 Aug.25, 2020 Original	
/	/	/

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information	Portable Multimedia Limited
Applicant:	Unit 2, Caerphilly Business Park, Van Road, Caerphilly.
Address of applicant:	CF83 3ED. United Kingdom
Manufacturer: Address of manufacturer:	Shenzhen Samoon Technology Co.,Ltd Floor5-6&9, Building 7, Zhongyuntai Ind. Park, Yingrenshi Road Crossing, Shiyan Town, Bao'an District, Shenzhen, Guangdong,China. Post code: 518108.

General Description of EUT				
Product Name:	Dash Cam			
Trade Name	/			
Model No.:	NBDVR622GW			
	FE-NBDVR622GW, NBDVR622GW-WHT,			
	FE-NBDVR622GW-WHT, VYDVR622GW,			
Adding Model(s):	FE-VYDVR622GW, NBDVR623GW, FE-NBDVR623GW,			
	NBDVR624GW, FE-NBDVR624GW, NBDVR622GWL,			
	FE-NBDVR622GWL			
Rated Voltage:	DC3.7V			
Battery Capacity:	370mAh			
Adapter Model:	/			
Software Version:	R8.8			
Hardware Version:	A5			
Notes The test data is eath and d	From a nucleustion gample, provided by the manufacturer The appearance of other			

Note: The test data is gathered from a production sample, provided by the manufacturer. The appearance of others models listed in the report is different from main-test model NBDVR622GW but the circuit and the electronic construction do not change, declared by the manufacturer.

Technical Characteristics of EUT				
Support Standarday	802.11a, 802.11n(HT20), 802.11n-HT40, 802.11ac-VHT20,			
Support Standards:	802.11ac-VHT40,802.11ac-VHT80			
Frequency Range:	5150-5250MHz,			
RF Output Power:	10.96dBm (Conducted)			
Type of Modulation:	BPSK, QPSK,16QAM,64QAM, 256QAM			
Data Rate:	6-54Mbps, up to 200Mbps			
Type of Antenna:	Integral Antenna			
Antenna Gain:	4.09dBi			

1.2 Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.407</u>: General technical requirements. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices. <u>KDB789033 D02 v02r01</u>: GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII) DEVICES PART 15, SUBPARTE.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, KDB789033 D02 v02r01 The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions.

1.4 Table for parameters of Test Software setting

Enter ap6212(4).7z into the calculator to enter the engineer command, you can start to test. During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

		Test Frequency (MHz)											
Mode	NCB: 20MHz												
	5180	5200	5240	5260	5300	5320	5500	5580	5700	5720	5745	5785	5825
802.11a	Def	Def	Def	,	/	,	,	,	,	1	,	,	/
6Mbps	ault	ault	ault	/	/	/	/	/	/	/	/	/	/
802.11n-HT20	Def	Def	Def	,	,	,	,	,	,		,	,	,
MCS0	ault	ault	ault	/	/	/	/	/	/	/	/	/	/
Mada	NCB: 40MHz												
Mode	5190	523	30	5270	5310	551	.0	5550	5670	57	10	5755	5795
802.11n-HT40	Defau	ı De	fau	1	/	/		1	1		,	/	1
MCS0	lt	11	-	/	/	/		/	/	/		/	/
Ma la		NCB: 80MHz											
Mode		5210		5290)	5530		5610)	569	0	57	75
802.11ac-VH80									I				
MCS0/Nss2		Default		/		/		/		/		/	

1.5 EUT Operating during test

EUT was programmed to be in continuously transmitting mode. During the test, EUT operation to normal function and programs under Android were executed.

1.6 Test Facility

Address of the test laboratory

Laboratory: Waltek Testing Group (Shenzhen) Co., Ltd. Address: 1/F., Room 101, Building 1, Hongwei Industrial Park, Liuxian 2nd Road, Block 70 Bao'an District, Shenzhen, Guangdong, China

FCC – Registration No.: 125990

Waltek Testing Group (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintain ed in our files. The Designation Number is CN5010, and Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Waltek Testing Group (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

1.7 EUT Setup and Test Mode

Г

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, with a duty cycle equal to 100%, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List						
Test Mode	Description	Remark				
TM1	802.11a	5180MHz,5200MHz,5240MHz				
TM2	802.11n-HT20	5180MHz,5200MHz,5240MHz				
TM3	TM3 802.11n-HT40 5190MHz,5230MHz					
TM4 802.11ac-VH80 5210MHz						
Note: 802.11ac-VHT20, 802.11ac-VHT40 covered by 802.11n-HT20 an802.11n-HT40.						

Test Conditions				
Temperature: 22~25 °C				
Relative Humidity:	50~55 %.			
ATM Pressure:	1019 mbar			

EUT Cable List and Details							
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite				
USB cable	0.8	Unshielded	Without Core				
Step-down cable	5.8	Unshielded	With Core				
Car charger cable	3.0	Unshielded	With Core				
Camera cable	6.8	Unshielded	Without Core				

Accessories Cable List and Details						
Cable Description Length (m) Shielded/Unshielded With / Without Ferrite						
/	/	/	/			

Auxiliary Equipment List and Details						
Description	Manufacturer	Model	Serial Number			
Notebook	Lenovo	E445	0C62707			
TF card	Kingston	16G	/			

1.8 Measurement Uncertainty

Measurement uncertainty								
Parameter	Conditions	Uncertainty						
RF Output Power	Conducted	± 0.42 dB						
Occupied Bandwidth	Conducted	$\pm 1.5\%$						
Power Spectral Density	Conducted	± 1.8 dB						
Conducted Spurious Emission	Conducted	±2.17dB						
Conducted Emissions	Conducted	9-150kHz ±3.74dB						
Conducted Emissions	Collddeted	0.15-30MHz ±3.34dB						
		30-200MHz ±4.52dB						
Transmitter Spurious Emissions	Radiated	0.2-1GHz ±5.56dB						
Transmitter Spurious Emissions	Kaulateu	1-6GHz ±3.84dB						
		6-18GHz ±3.92dB						

No.	Description	Manufacturer	Model	Serial No.	Cal Date	Due Date	
OF 1070	Spectrum	A 1	E 4 407D	N (N / 41 / 40 / 00	2020 04 20	2021.04.27	
SEMT-1072	Analyzer	Agilent	E4407B	MY41440400	2020-04-28	2021-04-27	
SEMT-1031	Spectrum	Rohde &	FSP30	836079/035	2020-04-28	2021-04-27	
SEM11-1051	Analyzer	Schwarz	F3F30	830079/033	2020-04-28	2021-04-27	
SEMT-1007	EMI Test	Rohde &	ESVB	825471/005	2020-04-28	2021-04-27	
SEW11-1007	Receiver	Schwarz		823471/003	2020-04-28	2021-04-27	
SEMT-1008	Amplifier	Agilent	8447F	3113A06717	2020-04-28	2021-04-27	
SEMT-1043	Amplifier	C&D	PAP-1G18	2002	2020-04-28	2021-04-27	
SEMT-1011	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2019-05-05	2021-05-04	
SEMT-1042	Horn Antenna	ETS	3117	00086197	2019-05-05	2021-05-04	
SEMT-1121	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170582	2019-05-05	2021-05-04	
SEMT-1069	Loop Antenna	Schwarz beck	FMZB 1516	9773	2019-05-05	2021-05-04	
SEMT-1001	EMI Test	Rohde &	ESPI	101611	2020-04-28	2021-04-27	
SEM11-1001	Receiver	Schwarz	ESPI	101011	2020-04-28	2021-04-27	
SEMT-1003	L.I.S.N	Schwarz beck	NSLK8126	8126-224	2020-04-28	2021-04-27	
SEMT-1002	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100911	2020-04-28	2021-04-27	
SEMT-1168	Pre-amplifier	Direction Systems Inc.	PAP-0126	14141-12838	2020-04-28	2021-04-27	
SEMT-1169	Pre-amplifier	Direction Systems Inc.	PAP-2640	14145-14153	2020-04-28	2021-04-27	
SEMT-1163	Spectrum Analyzer	Rohde & Schwarz	FSP40	100612	2020-04-28	2021-04-27	
SEMT-1170	DRG Horn Antenna	A.H. SYSTEMS	SAS-574	571	2019-05-05	2021-05-04	
SEMT-1166	Power Limiter	Agilent	N9356B	MY45450376	2020-04-28	2021-04-27	
SEMT-1048	RF Limiter	ATTEN	AT-BSF-2400~2500	/	2020-04-28	2021-04-27	
SEMT-1076	RF Switcher	Top Precision	RCS03-A2	/	2020-04-28	2021-04-27	
SEMT-C001	Cable	Zheng DI	LL142-07-07-10M(A)	/	2020-03-17	2021-03-16	
SEMT-C002	Cable	Zheng DI	ZT40-2.92J-2.92J-6M	/	2020-03-17	2021-03-16	
SEMT-C003	Cable	Zheng DI	ZT40-2.92J-2.92J-2.5M	/	2020-03-17	2021-03-16	
SEMT-C004	Cable	Zheng DI	2M0RFC	/	2020-03-17	2021-03-16	
SEMT-C005	Cable	Zheng DI	1M0RFC	/	2020-03-17	2021-03-16	
SEMT-C006	Cable	Zheng DI	1M0RFC	/	2020-03-17	2021-03-16	

1.9 Test Equipment List and Details

Reference No.: WTS20X08051759W-3 Page 10 of 46

Software List								
Description	Manufacturer	Model	Version					
EMI Test Software	Farad	EZ-EMC	DA 02A1					
(Radiated Emission)*	rarau	EZ-EIVIC	RA-03A1					
EMI Test Software	Found	EZ EMC	DA 02A1					
(Conducted Emission)*	Farad	EZ-EMC	RA-03A1					

*Remark: indicates software version used in the compliance certification testing

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§15.203; §15.405	Antenna Requirement	Compliant
15.407 (c)	Automatically Discontinue Transmission	Compliant
§15.207; §15.407(b)(6)	Conducted Emission	N/A
§15.407(a)(1),(2)	Power Spectral Density	Compliant
S15 407(-)	Emission Bandwidth and Occupied	Compliant
§15.407(e)	Bandwidth	Compliant
§15.407(a)(1),(2)	Maximum Conducted Output Power	Compliant
§15.407(b)(1),(2),(3),(4)	Undesirable emission	Compliant
§15.205; §15.407(b)(1),(2),(3)	Radiated Emission	Compliant
§15.407(g)	Frequency Stability	Compliant
§15.407(h)	Dynamic Frequency Selection (DFS)	Compliant

N/A: Not applicable

Page 12 of 46

3. RF Exposure

3.1 Standard Applicable

According to §1.1307 and §2.1091, the mobile transmitter must comply the RF exposure requirements.

3.2 Test Result

This product complied with the requirement of the RF exposure, please see the MPE Report.

4. Antenna Requirement

4.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

4.2 Evaluation Information

This product has an integral antenna, fulfill the requirement of this section.

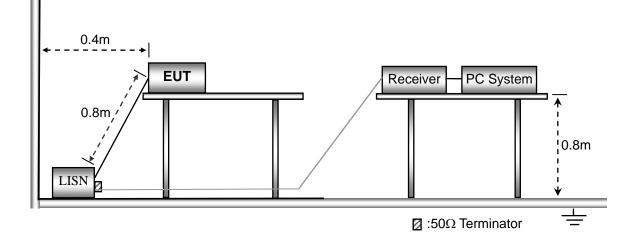
5. Automatically Discontinue Transmission

5.1 Standard Applicable

According to FCC Part 15.407(c), the device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

5.2 Summary of Test Results

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.


6. Conducted Emissions

6.1 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

6.2 Basic Test Setup Block Diagram

6.3 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	. 150 kHz
Stop Frequency	30 MHz
Sweep Speed	Auto
IF Bandwidth	10 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode	Normal

6.4 Summary of Test Results/Plots

Not applicable

7. Power Spectral Density

7.1 Standard Applicable

Section 15.407(a) Power limits:

(1) For the band 5.15-5.25 GHz.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

7.2 Test Procedure

According to 789033 D02 v02r01 General UNII Test Procedures New Rules v02, the following is the measurement procedure.

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500

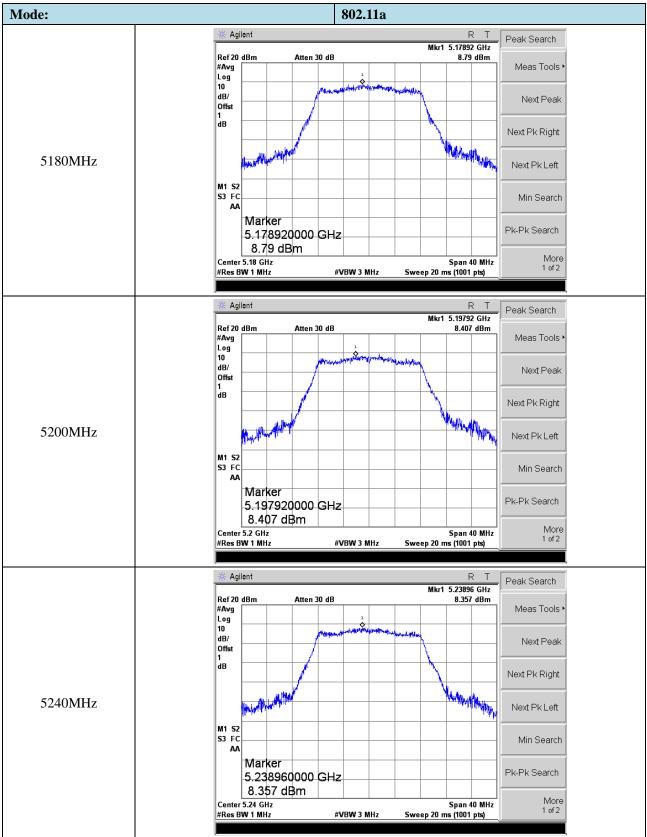
kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500kHz bandwidth, the following adjustments to the procedures apply:

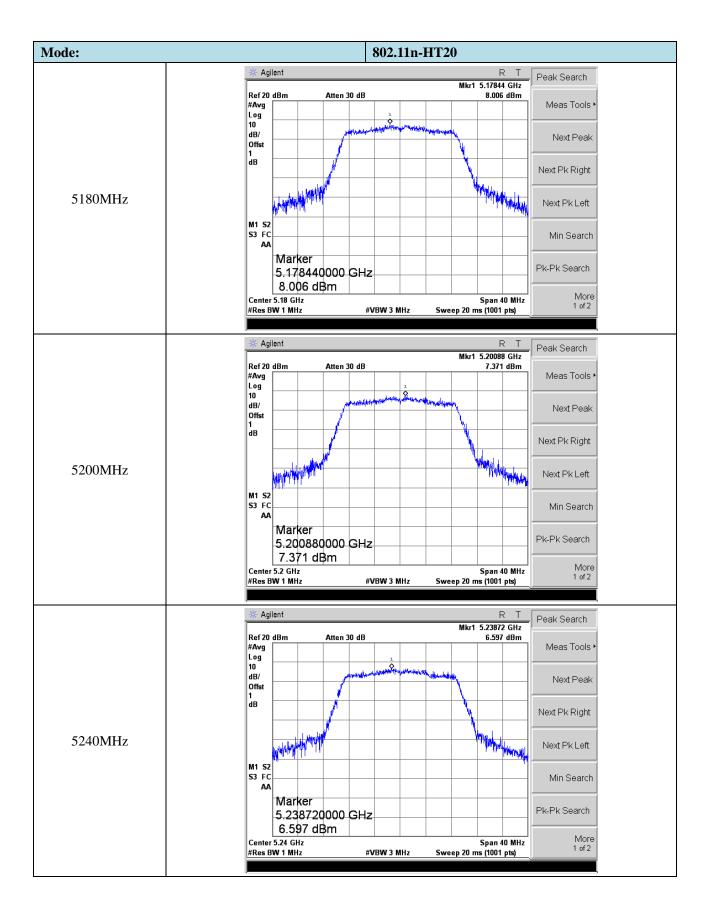
a) Set RBW $\geq 1/T$, where T is defined in section II.B.1.a).

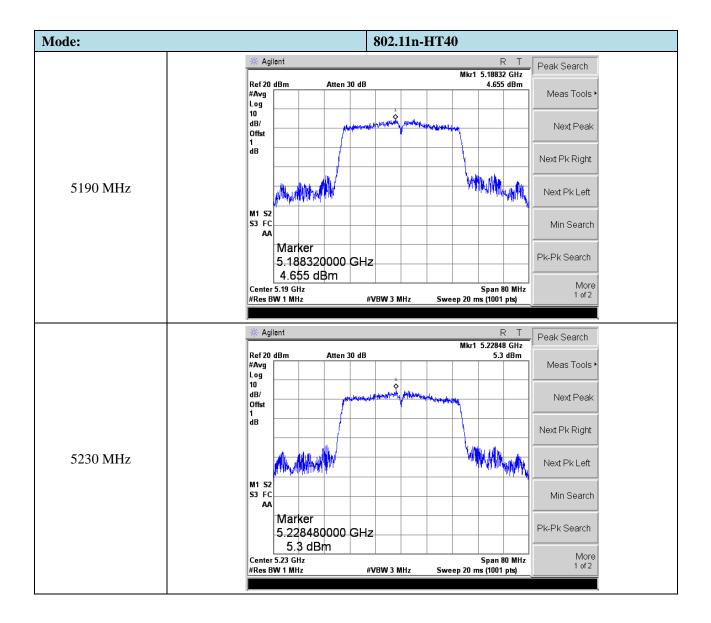
b) Set VBW \geq 3 RBW.

c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

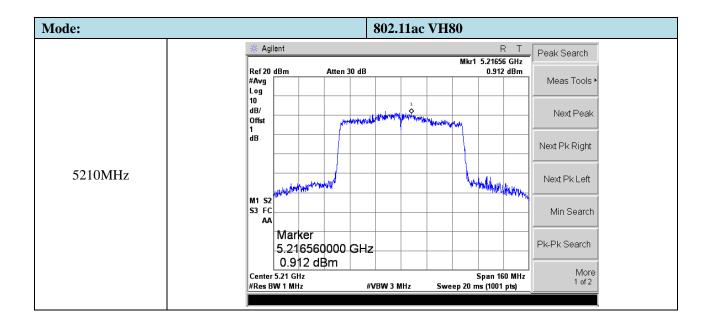
d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.


e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.


Note: As a practical matter, it is recommended to use reduced RBW of 100 kHz for the sections 5.c) and 5.d) above, since RBW=100 kHZ is available on nearly all spectrum analyzers.


7.3 Summary of Test Results/Plots

U-NII-1:5150-5250MHz			
Operating mode	Test Channel	Power Spectral Density	Limit
		dBm/MHz	(dBm/MHz)
	5180	8.79	11
802.11a	5200	8.41	11
	5240	8.36	11
	5180	8.01	11
802.11n-HT20	5200	7.37	11
	5240	6.60	11
202 11a UT40	5190	4.66	11
802.11n-HT40	5230	5.30	11
802.11ac-HT80	5210	0.91	11


➢ 5150-5250MHz

Reference No.: WTS20X08051759W-3

8. Emission Bandwidth and Occupied Bandwidth

8.1 Standard Applicable

According to 15.407(a) and (e):

(1) For the band 5.15-5.25 GHz.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

8.2 Test Procedure

According to 789033 D02 v02r0r section C&D, the following is the measurement procedure.

- 1. Emission Bandwidth (EBW)
- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.

d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

2. Minimum Emission Bandwidth for the band 5.725-5.85 GHz

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

a) Set RBW = 100 kHz.

b) Set the video bandwidth (VBW) \geq 3 \times RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

D. 99 Percent Occupied Bandwidth

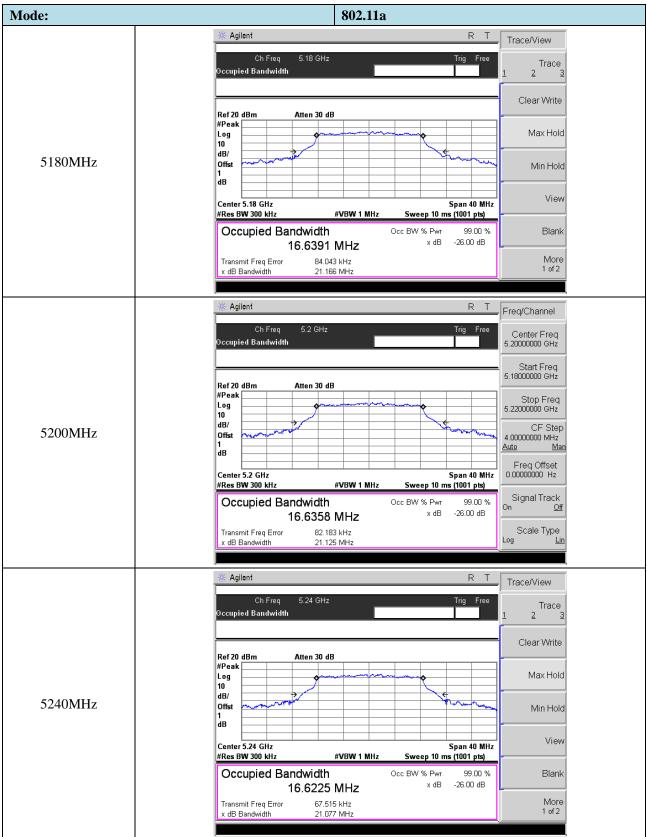
The 99-percent occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 % of the total mean power of the given emission. Measurement of the 99-percent occupied bandwidth is required only as a condition for using the optional band-edge measurement techniques described in section II.G.3.d). Measurements of 99-percent occupied bandwidth may also optionally be used in lieu of the EBW to 789033 D02 v02r01 General UNII Test Procedures New Rules v01 define the minimum frequency range over which the spectrum is integrated when measuring maximum conducted output power as described in section II.E. However, the EBW must be measured to determine bandwidth dependent limits on maximum conducted output power in accordance with 15.407(a).

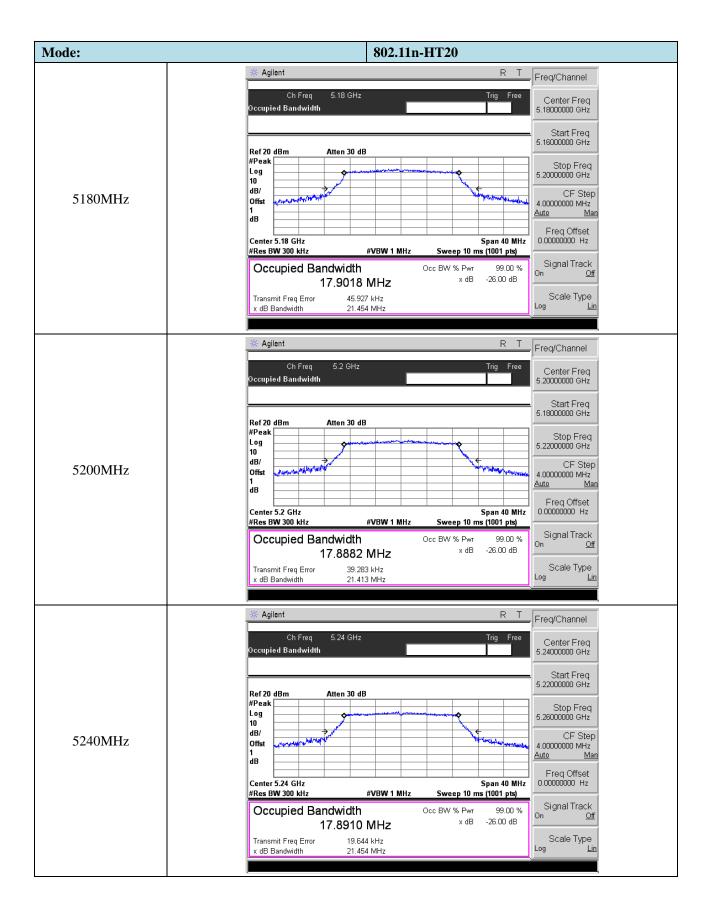
The following procedure shall be used for measuring (99 %) power bandwidth:

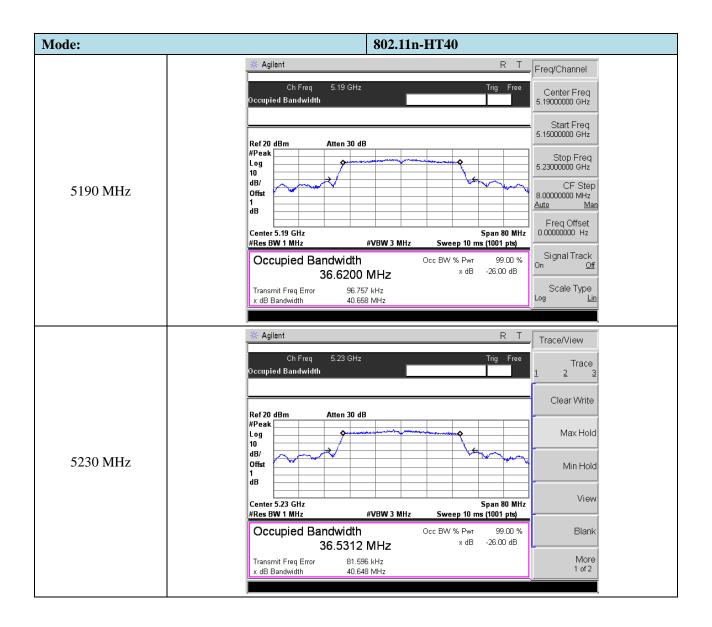
1. Set center frequency to the nominal EUT channel center frequency.

- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW \geq 3 * RBW

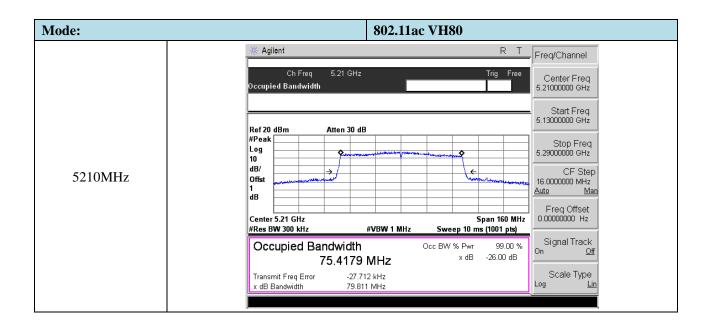
5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.


6. Use the 99 % power bandwidth function of the instrument (if available).


7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.


8.3 Summary of Test Results/Plots

U-NII-1:5150-5250M	U-NII-1:5150-5250MHz									
Test Mode	Test Channel	26 dB Bandwidth	99% Bandwidth	Limit						
Test Mode	MHz	MHz	MHz	MHz						
	5180	21.166	16.6391	Pass						
802.11a	5200	21.125	16.6358	Pass						
	5240	21.077	16.6225	Pass						
	5180	21.454	17.9018	Pass						
802.11n-HT20	5200	21.413	17.8882	Pass						
	5240	21.454	17.8910	Pass						
802.11n-HT40	5190	40.658	36.6200	Pass						
о <u>0</u> 2.110-Н140	5230	40.648	36.5312	Pass						
802.11ac-HT80	5210	79.811	75.4179	Pass						


➢ 5150-5250MHz

Reference No.: WTS20X08051759W-3

9. Maximum Conducted Output Power

9.1 Standard Applicable

Section 15.407(a) Power limits:

(1) For the band 5.15-5.25 GHz.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

9.2 Test Procedure

According to KDB789033 D02 v02r01 section E, the following is the measurement procedure.

(i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.

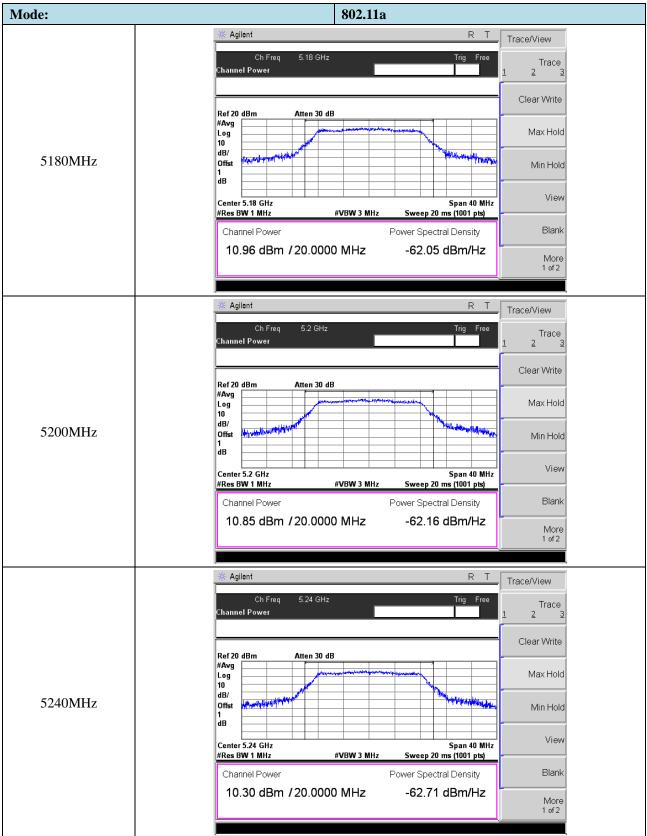
- (ii) Set RBW = 1 MHz.
- (iii) Set VBW \geq 3 MHz.
- (iv) Number of points in sweep \geq 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that Waltek Testing Group (Shenzhen) Co., Ltd. http://www.semtest.com.cn

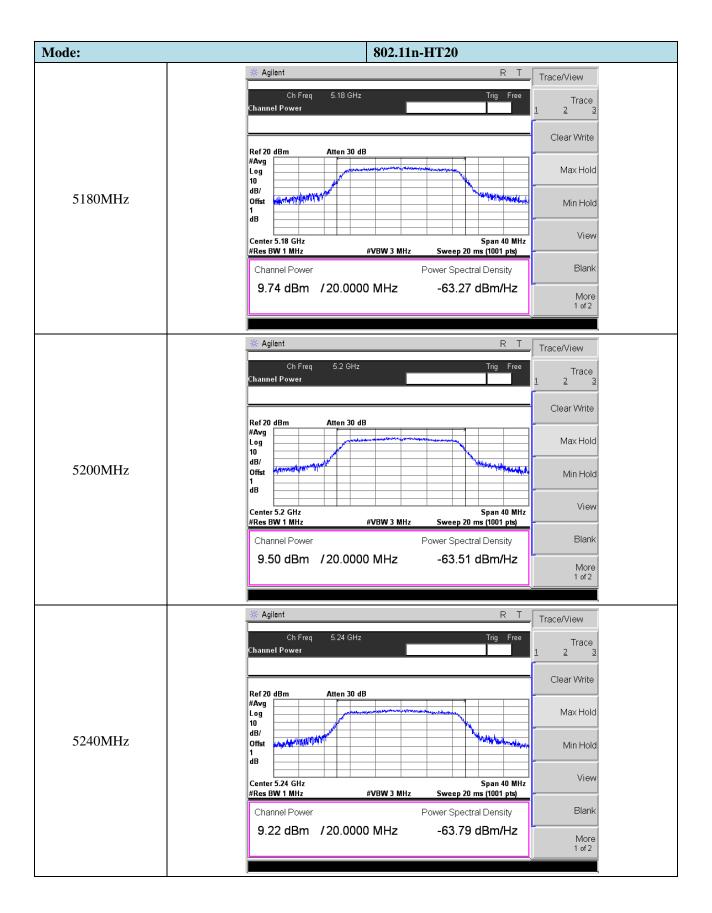
narrowband signals are not lost between frequency bins.)

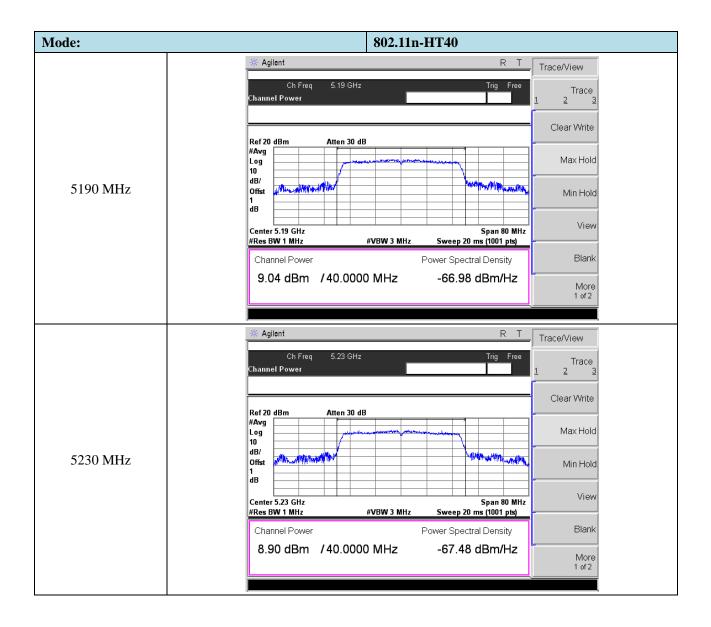
(v) Sweep time = auto.

(vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

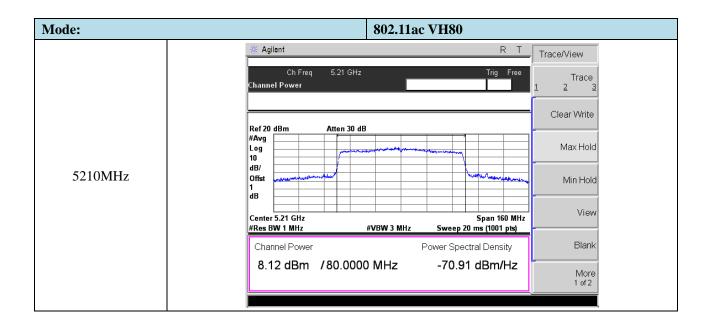
(vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \ge 98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".


(viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.


(ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum.


9.3 Summary of Test Results/Plots

U-NII-1:5150-5250MHz									
Test mode	Frequency	Output Power	Output Power	Limit					
Test mode	MHz	dBm	mW	mW					
	5180	10.96	12.47	250					
802.11a	5200	10.85	12.16	250					
	5240	10.30	10.72	250					
	5180	9.74	9.42	250					
802.11n-HT20	5200	9.50	8.91	250					
	5240	9.22	8.36	250					
802.11n-HT40	5190	9.04	8.02	250					
002.11II-H140	5230	8.90	7.76	250					
802.11ac VH80	5210	8.12	6.49	250					


➢ 5150-5250MHz

Reference No.: WTS20X08051759W-3

10. Radiated Spurious Emissions

10.1 Standard Applicable

According to §15.407(b), undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:

(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.

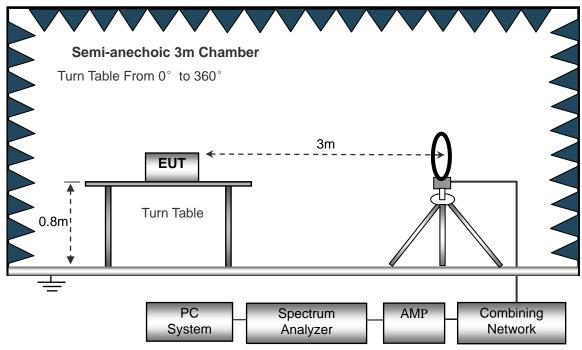
According to §15.407(b)(6), Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

According to \$15.407(b)(7), The provisions of \$15.205 apply to intentional radiators operating under this section. 789033 D02 v02r01 General UNII Test Procedures New Rules v01

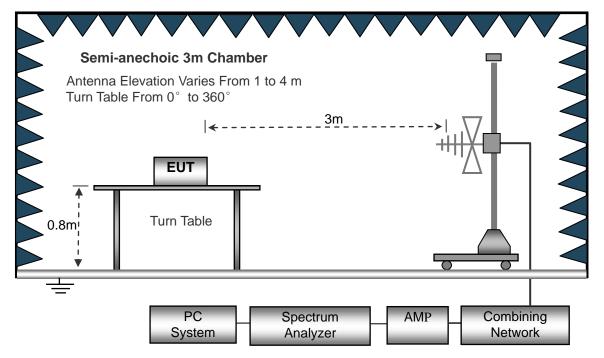
If radiated measurements are performed, field strength is then converted to EIRP as follows:

 $EIRP = ((E*d)^2) / 30$

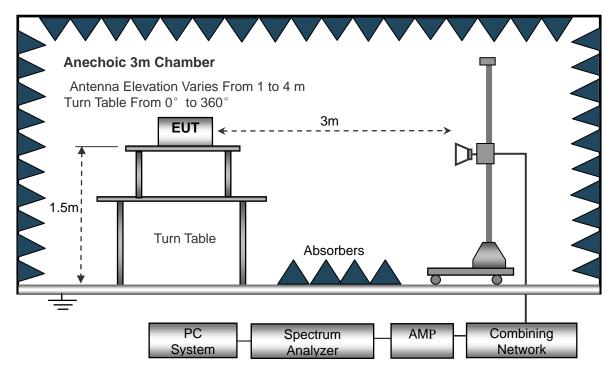
where:


- E is the field strength in V/m;
- d is the measurement distance in meters;
- EIRP is the equivalent isotropically radiated power in watts.

10.2 Test Procedure


The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.407(b)(6) and FCC Part 15.209 Limit..

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.


The test setup for emission measurement below 30MHz..

The test setup for emission measurement from 30 MHz to 1 GHz..

The test setup for emission measurement above 1 GHz..

10.3 Test Receiver Setup

During the radiated emission test for above 1GHz, the test receiver was set with the following configurations:

For peak detector: RBW = 1000kHz, VBW = 3000kHz, Sweep Time = Auto

For average detector:

RBW = 1000kHz, VBW = 10Hz, Sweep Time = Auto

10.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

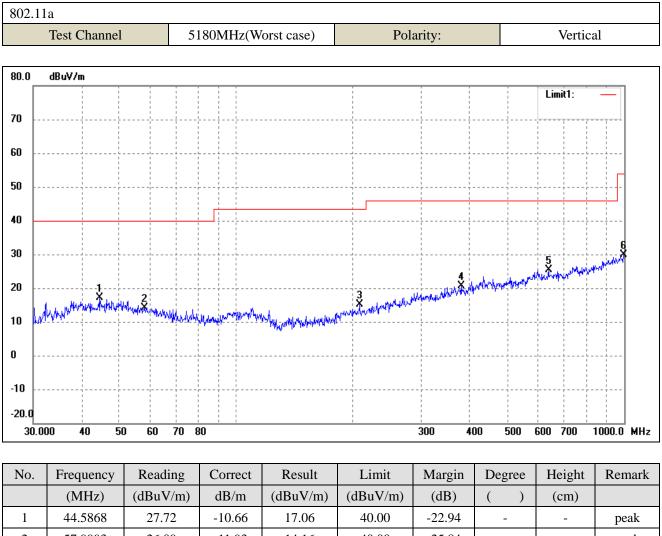
Corr. Ampl. = Indicated Reading + Ant. Factor + Cable Loss - Ampl. Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - FCC Part 15 Limit

10.5 Summary of Test Results/Plots

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.


> Spurious Emission From 30 MHz to 1 GHz

➢ 5150-5250MHz

	D.000 40	5	0 0	60 [°]	, 70	80			1		300	400	500	600	700	1000	10
20.0																	
10				 													
0	epril - C PLC			51.00.01	iden for a final of the	K-4W4	Mb x 7	a a sa an ann ann ann ann ann ann ann an	ta- :			·					
	Williamster	Annaha	www.wh	Marthu	ورباريه		2 X	White 3	Lorgely	mynument	NY AL MARINA			-			
0		۱۰۰۰+		 							4		Hernight	W erfier	whicher	hum.	
10								WHIMM MICHANNAUHUM									-6 -8
10					 										1 1 1 1		
10				 	 									 	 		
														-			Н
0				 													
0				 	 										1	I I I	
90.U				1	1									Lim	it1:	· · ·	-
30.0	dBuV/m																
	Test Cha	nnel			5	180	MH	z(Worst case)		Polar	rity:			Η	orizo	ontal	
				_													

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	44.5868	27.28	-10.66	16.62	40.00	-23.38	-	-	peak
2	99.1797	26.63	-12.54	14.09	43.50	-29.41	-	-	peak
3	171.3926	27.01	-13.62	13.39	43.50	-30.11	-	-	peak
4	354.1831	26.20	-6.05	20.15	46.00	-25.85	-	-	peak
5	543.2742	27.80	-3.98	23.82	46.00	-22.18	-	-	peak
6	989.5355	26.52	2.94	29.46	54.00	-24.54	-	-	peak
1	44.5868	27.28	-10.66	16.62	40.00	-23.38	-	-	peak

Reference No.: WTS20X08051759W-3

-	11.5000	27.72	10.00	17.00	10.00				Pean
2	57.9993	26.09	-11.93	14.16	40.00	-25.84	-	-	peak
3	207.8501	26.25	-11.13	15.12	43.50	-28.38	-	-	peak
4	379.9141	26.23	-5.68	20.55	46.00	-25.45	-	-	peak
5	638.3686	27.71	-2.44	25.27	46.00	-20.73	-	-	peak
6	996.4996	26.86	3.04	29.90	54.00	-24.10	-	-	peak

Remark: '-'Means' the test Degree and Height are not recorded by the test software and only show the worst case in the test report.

> Spurious Emission above 1GHz

802.	11a- Restricted Banded	lge		
	Test Channel	band 5.15-5.25GHz	Polarity:	Vertical(worst case)
117.0	D dBuV/m			
				Limit1: —
107				
97				
87				
07				
77				
67				
57				
				2
47 >	emphase where the second production of the	anontones between an and the second	weekpersonalistically a second weekperson and the second	waray washing the and a strain ship with the ship with the state of th
37				
51				
27				
17.0				
45	00.0000 4565.00 4630.0	0 4695.00 4760.00 4825.	00 4890.00 4955.00	5020.00 5085.00 5150.00 MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	4500.000	51.02	-4.71	46.31	74.00	-27.69	-	-	peak
2	5150.000	52.54	-4.32	48.22	74.00	-25.78	-	-	peak

Reference No.:	WTS20X08051759W-3	Page 41 of 46

802.	11a- Restricted	Bandedge							
	Test Channel	. 1	band 5.15-5	5.25GHz	Pol	arity:	Ve	ertical(wor	st case)
117.0	dBu¥/m								
								Limit1:	_
107		 							
97	 								
87									
77									
67									
57									
47									
37									9
27									
17.0	0.0000 4565.00	4630.00 4	COE 00 47	60.00 4825.	00 4000 00	4955.00	5000.00	E00E 00 E	150.00 MIL-
450	0.0000 4363.00	4030.00 4	695.00 47	60.00 4825.	00 4890.00	4900.00	5020.00	5085.00 5	150.00 MHz
No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
110.	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	rtemark

1	4500.000	40.78	-4.71	36.07	54.00	-17.93	-	-	AVG
	5150.000	41.07	-4.32	36.75	54.00	-17.25	-	-	AVG
					•			•	

Note: The Restricted Bandedge was tested in Horizontal /Vertical and the worst case position data was reported.

Remark: '-'Means' the test Degree and Height is not recorded by the test software and only show the worst case in the test report.

► For the frequency band 5.15-5.25GHz (802.11a)

Harmonics And Spurious Emissions

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector		
(MHz)	(dBuV/m)	dB	(dBuV/m)	(dBuV/m)	(dB)	H/V			
	Low Channel (5180MHz)								
10360	57.46	7.11	64.57	74.00	-9.43	Н	РК		
15540	39.19	8.22	47.41	54.00	-6.59	Н	AV		
10360	58.69	7.11	65.80	74.00	-8.20	V	РК		
15540	39.61	8.22	47.83	54.00	-6.17	V	AV		
			Middle Chann	el (5200MHz)					
10400	57.84	7.22	65.06	74.00	-8.94	Н	РК		
15600	33.37	8.67	42.04	54.00	-11.96	Н	AV		
10400	57.75	7.22	64.97	74.00	-9.03	V	РК		
15600	36.73	8.67	45.40	54.00	-8.60	V	AV		
			High Channe	el (5240MHz)					
10480	55.00	7.69	62.69	74.00	-11.31	Н	РК		
15720	39.85	8.93	48.78	54.00	-5.22	Н	AV		
10480	59.20	7.69	66.89	74.00	-7.11	V	РК		
15720	37.93	8.93	46.86	54.00	-7.14	V	AV		

➢ Out of Band edge for 5150-5250MHz

Test CII	Test Segment	Result	Limit					
Test CH.	MHz	dBm/MHz	dBm/MHz					
Lowest	Below 5150	-34.29	-27					
Highest	Above 5350	-41.09	-27					
Note: the data just list the worst cases								

Reference No.: WTS20X08051759W-3 Page 43 of 46

- For the frequency band 5.15-5.25GHz (802.11n HT20)
- Harmonics And Spurious Emissions

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector		
(MHz)	(dBuV/m)	dB	(dBuV/m)	(dBuV/m)	(dB)	H/V			
	Low Channel (5180MHz)								
10360	57.00	7.11	64.11	74.00	-9.89	Н	РК		
15540	36.78	8.22	45.00	54.00	-9.00	Н	AV		
10360	59.78	7.11	66.89	74.00	-7.11	V	РК		
15540	38.58	8.22	46.80	54.00	-7.20	V	AV		
			Middle Chann	nel (5200MHz)					
10400	58.10	7.22	65.32	74.00	-8.68	Н	РК		
15600	35.73	8.67	44.40	54.00	-9.60	Н	AV		
10400	57.13	7.22	64.35	74.00	-9.65	V	РК		
15600	36.72	8.67	45.39	54.00	-8.61	V	AV		
			High Channe	el (5240MHz)					
10480	58.27	7.69	65.96	74.00	-8.04	Н	РК		
15720	36.72	8.93	45.65	54.00	-8.35	Н	AV		
10480	57.94	7.69	65.63	74.00	-8.37	V	РК		
15720	36.01	8.93	44.94	54.00	-9.06	V	AV		

➢ Out of Band edge 5150-5250MHz

Test CII	Test Segment	Result	Limit					
Test CH.	MHz	dBm/MHz	dBm/MHz					
Lowest	Below 5150	-34.64	-27					
Highest	Above 5350	-38.48	-27					
Note: the data just list the worst cases								

Note: the data just list the worst cases

Note: this EUT was tested in the low, high channel and the worst case position data was reported.

- ► For the frequency band 5.15-5.25GHz, (802.11n HT40)
- Harmonics And Spurious Emissions

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector	
(MHz)	(dBuV/m)	dB	(dBuV/m)	(dBuV/m)	(dB)	H/V		
	Low Channel (5190MHz)							
10380	57.86	7.25	65.11	74.00	-8.89	Н	РК	
15570	38.61	8.33	46.94	54.00	-7.06	Н	AV	
10380	60.57	7.25	67.82	74.00	-6.18	V	РК	
15570	39.55	8.33	47.88	54.00	-6.12	V	AV	
			High Channe	l (5230MHz)				
10460	57.13	7.54	64.67	74.00	-9.33	Н	РК	
15690	39.11	8.86	47.97	54.00	-6.03	Н	AV	
10460	59.03	7.54	66.57	74.00	-7.43	V	РК	
15690	37.80	8.86	46.66	54.00	-7.34	V	AV	

➢ Out of Band edge for 5150-5250MHz

Tert CII	Test Segment	Result	Limit
Test CH.	MHz	dBm/MHz	dBm/MHz
Lowest	Below 5150	-39.42	-27
Highest	Above 5350	-42.75	-27
Note: the data just	list the worst cases		

Reference No.: WTS20X08051759W-3 Page 45 of 46

- ▶ For the frequency band 5.15-5.25GHz, (802.11ac VH80)
- Harmonics And Spurious Emissions

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector	
(MHz)	(dBuV/m)	dB	(dBuV/m)	(dBuV/m)	(dB)	H/V		
	5210MHz							
10420	59.45	7.33	66.78	74.00	-7.22	Н	РК	
15630	35.98	8.75	44.73	54.00	-9.27	Н	AV	
10420	57.81	7.33	65.14	74.00	-8.86	V	РК	
15630	37.63	8.75	46.38	54.00	-7.62	V	AV	

➢ Out of Band edge for 5150-5250MHz

Test CII	Test Segment	Result	Limit
Test CH.	MHz	dBm/MHz	dBm/MHz
Lowest	Below 5150	-33.42	-27
Highest	Above 5350	-31.16	-27
Note: the data just	list the worst cases		

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

11. Frequency Stability

11.1 Standard Applicable

According to §15.407(g), manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

11.2 Test Procedure

According to §2.1055, the following test procedure was performed.

The Frequency Stability is measured directly with a Frequency Domain Analyzer. Frequency Deviation in ppm is calculated from the measured peak to peak value.

The Carrier Frequency Stability over Power Supply Voltage and over Temperature is measured with a Frequency Domain Analyzer in histogram mode.

11.3 Summary of Test Results/Plots

U-NII-1:5150-5250MHz worst case at 802.11a middle channel				
Voltage(%)	Power(VDC)	TEMP(℃)	Freq.Dev(Hz)	Deviation
100%		-30	65001	12.50
100%		-20	65004	12.50
100%		-10	65001	12.50
100%		0	65000	12.50
100%	3.7V	+10	65002	12.50
100%		+20	64996	12.50
100%		+30	64997	12.50
100%		+40	65003	12.50
100%		+50	64998	12.50
Low Battery power	3.4	+20	64998	12.50
High Battery power	4.1	+20	64996	12.50

***** END OF REPORT *****