

FCC Measurement/Technical Report on

Bosch Track & Trace Connect Gateway Connect S 2

FCC ID: 2AOSY-CONNECT02 IC: 25406-CONNECT02

Test Report Reference: MDE_BOSCH_1912_FCC_02

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

 7layers GmbH

 Borsigstraße 11

 40880 Ratingen, Germany

 T +49 (0) 2102 749 0

 F +49 (0) 2102 749 350

Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

Table	of	Contents

1	Applied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	5
2	Revision History / Signatures	5
3	Administrative Data	6
3.1	Testing Laboratory	6
3.2	Project Data	6
3.3	Applicant Data	6
3.4	Manufacturer Data	6
4	Test object Data	7
4.1	General EUT Description	7
4.2	EUT Main components	7
4.3	Ancillary Equipment	8
4.4	Auxiliary Equipment	8
4.5	EUT Setups	8
4.6	Operating Modes / Test Channels	8
4.7 E	Product labelling	8
5	Test Results	9
5.1 5.2	Conducted Emissions at AC mains Radiated Emissions	9 12
6	Test Equipment	17
7		19
7 .1	Antenna Factors, Cable Loss and Sample Calculations LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	19
7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	20
7.3	Antenna R&S HL562 (30 MHz $-$ 1 GHz)	20
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	22
7.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	23
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	24
8	Setup Drawings	25
9	Photo Report	25
10	Measurement Uncertainties	26

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-19 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart B – Unintentional Radiators

§ 15.107 Conducted limits

§ 15.109 Radiated emission limits; general requirements

Applicable ISED Standards

ICES-Gen, Issue 1

ICES-003, Issue 6

Note: ANSI C63.4–2014 is applied.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for Information Technology Equipment (ITE) from FCC and IC

Measurement	FCC reference	IC reference
Conducted Emissions (AC Power Line)	§15.107	ICES-003 Issue 6: 6.1
Radiated Spurious Emissions	§15.109	ICES-003 Issue 6: 6.2

Remarks:

- FCC Part 15 subpart B, ICES 003 and CISPR 22 contain different definitions of Class A and Class B limits, i.e. which class is applicable to which kind of EUT.
 ICES 003 and CISPR 22 distinguish between the location where the EUT is intended to operate whilst FCC refers to the method of commercial distribution (distributive trades).
- 2. The correct assignment of the appropriate class to the concrete EUT is not scope of this test report!
- 3. A radio apparatus that is specifically subject to an Industry Canada Radio Standard Specification (RSS) and which contains an ITE is not subject to ICES-003 provided the ITE is used only to enable operation of the radio apparatus and the ITE does not control additional functions or capabilities.
- 4. ISM (Industrial, Scientific or Medical) radio frequency generators, though they may contain ITE, are excluded from the definition of ITE and are not subject to ICES-003. They are instead subject to the Interference-Causing Equipment Standard ICES-001, which specifically addresses ISM radio frequency generators.

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15 Subpart B	§ 15.107 Clas	s A / Class	В	
Conducted Emissions at AC mains				
The measurement was performed accordi	ng to ANSI C63.4		Final Re	esult
OP-Mode	Setup	Date	FCC	IC
AC mains connection, Test setup	·			
via ancillary equipment, AC connected Remark: with ancillary AC/DC adapter	S06_BB04	2020-09-10	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart B Radiated Emissions The measurement was performed accordi OP-Mode	§ 15.109 Clas ng to ANSI C63.4 Setup	-	Final Re FCC	esult IC
AC mains connection, Measurement range, Test setup				
via ancillary equipment, 1 GHz - 18 GHz, AC connected Remark: with ancillary AC/DC adapter	S06_BB04	2020-09-10	Passed	Passed
Remark, with antinary AC/DC adapter		2020-09-06	Passed	Passed

2 REVISION HISTORY / SIGNATURES

Report version control			
Version	Release date	Change Description	Version validity
initial	2020-10-05		valid

COMMENT: -

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

(responsible for accreditation scope) Dipl.-Ing. Marco Kullik

(responsible for testing and report) Dipl.-Ing. Andreas Petz

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

Company Name:	7layers GmbH
Address:	Borsigstr. 11 40880 Ratingen Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no:	DAkkS D-PL-12140-01-01 -02 -03
FCC Designation Number:	DE0015
FCC Test Firm Registration:	929146
ISED CAB Identifier	DE0007; ISED#: 3699A
Responsible for accreditation scope:	DiplIng. Marco Kullik
Report Template Version:	2020-06-15
3.2 PROJECT DATA	
Responsible for testing and report:	DiplIng. Andreas Petz
Employees who performed the tests:	documented internally at 7Layers
Date of Report:	2020-10-05
Testing Period:	
resting renou.	2020-09-06 to 2020-09-10
	2020-09-06 to 2020-09-10

Company Name:	Robert Bosch Manufacturing Solutions GmbH

Address:

Wernerstr. 51 70469 Stuttgart Germany

Contact Person:

Mr. Ludger Bredenstein

3.4 MANUFACTURER DATA

Company Name:	please see Applicant Data
Address:	
Contact Person:	

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	The Bosch Track & Trace Connect Gateway is the connectivity unit between asset tagging and monitoring solutions like Sense S, Sense T and Sense H1 and the Bosch Internet Cloud. The connectivity gateways Connect collects data generated by asset tags and sensors, enriches information with position data and uploads this data to the Bosch backend.
Product name	Bosch Track & Trace Connect Gateway
Туре	Connect S 2
Declared EUT data by	the supplier
Power Supply Type	DC (AC via ancillary AC/DC adapter)
Nominal Voltage / Frequency	12 V DC
Test Voltage / Frequency	120 V / 60 Hz
Highest internal frequency	2480 MHz
General Description	The EUT has an integral rechargeable battery that can be charged using an ancillary AC/DC adapter.
Ports	Enclosure, Charging
Special software used for testing	yes: EUT is set into BT test mode transmitting on 2440 MHz

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
Sample #bb04	DE1397000bb04	BLE Test Mode, transmitting
		on 2440 MHz (CH19), integral
		antenna
Sample Parameter	Valu	le
Serial No.	800440547311000400000004920	
HW Version	2.x	
SW Version	V01.x	
Comment	-	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model)	Description
AC / DC Switching Adaptor	MEAN WELL ENTERPRISES CO. LTD, GS12E24-P1I	100-240 V AC / 24 V, 500 mA DC
Sample Name	Sample Code	Description
AC/DC #01	DE1397000ACDC01	-
Sample Parameter	Value	-
Serial No.	-	
HW Version	N/A	
SW Version	N/A	
Comment	-	

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
-	-	-

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale					
S06_BB04	Sample #bb04, AC/DC #01	representative setup to connect the EUT to AC Mains					

4.6 OPERATING MODES / TEST CHANNELS

The battery will be charged while the EUT transmits continuously on 2440 MHz.

4.7 PRODUCT LABELLING

Please refer to the documentation of the applicant.

5 TEST RESULTS

5.1 CONDUCTED EMISSIONS AT AC MAINS

Standard FCC Part 15 Subpart B

The test was performed according to: ANSI C63.4

5.1.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C 63.4 The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from 50μ H || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software EMC-32 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT. EMI receiver settings:

- Detector: Peak Maxhold & Average
- Frequency range: 150 kHz 30 MHz
- Frequency steps: 2.5 kHz
- IF–Bandwidth: 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)
- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:

- Detector: Quasi-Peak
- IF Bandwidth: 9 kHz
- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

5.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart B, §15.107

Class B:

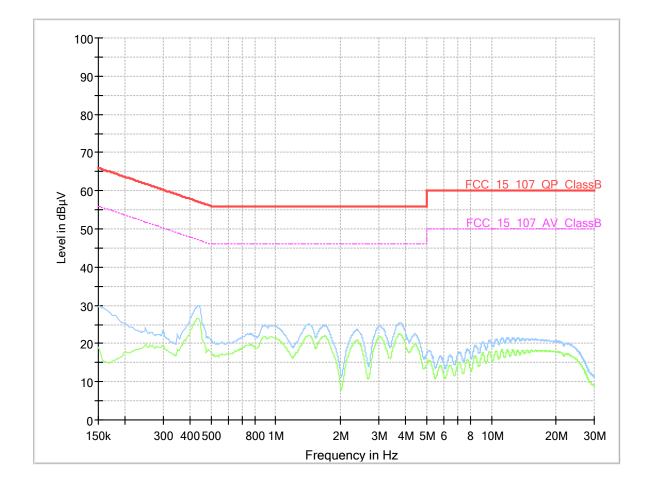
Frequency (MHz)	QP Limits (dBµV)	AV Limits (dBµV)
0.15 – 0.5	66 - 56	56 - 46
0.5 - 5	56	46
5 - 30	60	50

Class A:

01400711				
Frequency (MHz)	QP Limits (dBµV)	AV Limits (dBµV)		
0.15 – 0.5	79	66		
0.5 - 30	73	60		

5.1.3 TEST PROTOCOL

Temperature: Air Pressure: Humidity: AC/DC adapter	101	25 °C 1017 hPa 35 %					
Power line	PE	Frequency [MHz]	Level [dBµV]	Detector	Limit [dBµV]	Margin [dB]	
-	-	-	-	-	-	-	


Remark: Please see next sub-clause for the measurement plot.

5.1.4 MEASUREMENT PLOT

AC mains connection = via ancillary equipment, Test setup = AC connected (S06_BB04)

Common Information	
Test Description:	Conducted Emissions
Test Standard:	FCC §15.107, ANSI C63.4
EUT / Setup Code:	DE1397000bb04
Operating Conditions:	BTLE local TX on 2440 MHz
Operator Name:	URO
Comment:	ACDC Adapter @ 120 VAC / 60 Hz
Legend:	Trace: blue = QP, green = CISPR AV; Star: red or blue = critical frequency; Rhombus: blue = final QP, green = final CISPR AV
Tested Port / used LISN:	AC mains => ESH3-Z5
Termination of other ports:	N/A

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Line	PE	Corr. (dB)

5.1.5 TEST EQUIPMENT USED

- Conducted Emissions FCC

5.2 RADIATED EMISSIONS

Standard FCC Part 15 Subpart B

The test was performed according to: ANSI C63.4

5.2.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table 1.0 x 2.0 m² in the semi-anechoic chamber. The influence of the EUT support table that is used was evaluated. For the measurement above 1 GHz an absorber field with 30 cm pyramidical absorber is placed between EUT table and antenna (required to fulfil the CISPR 16.1.4 S-VSWR criteria).

The measurement procedure is implemented into the EMI test software EMC32 from R&S.

1. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 4 m
- Height variation step size: 1.5 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: 360°
- Height variation range: 1 4 m
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: Quasi-Peak
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

2. Measurement above 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Average (up to 7 GHz FFT-based)
- Frequency range: 1 GHz 18 GHz
- Frequency steps: 250 kHz
- IF-Bandwidth: 1 MHz
- Measuring time / Frequency step: 100 ms (up to 7 GHz) / 500µs (above 7 GHz
- Turntable angle range: -180° to 135°
- Turntable step size: 45°
- Height variation range: 1 3.7 m (due to the small antenna lobe, a tilt-mast is used)
- Height variation step size: 0.9 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 22.5° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 45 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHz
- Measuring time: 100 ms
- Turntable angle range: \pm 22.5 $^\circ$ around the determined value
- Height variation range: ± 45 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with Max-Peak / CISPR-Average detector With the settings determined in step 2, the final measurement will be performed: EMI receiver settings for step 3:

- Detector: Max-Peak / CISPR-Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHz
- Measuring time: 200 ms

After each measurement, a report will be generated which contains a diagram with the results of the preliminary scan and a table with the frequencies, values and polarisation of the results of the final measurement.

5.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart B, §15.109, Radiated Emission Limits

Class B:

Frequency (MHz)	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 – 88	100@3m	3	40.0@3m
88 – 216	150@3m	3	43.5@3m
216 – 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

Class A:

_

Frequency (MHz)	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)	
30 – 88	90@10m	3	39.1@10m	
88 – 216	150@10m	3	43.5@10m	
216 – 960	210@10m	3	46.4@10m	
960 - 26000	300@10m	3	49.5@10m	
26000 - 40000	300@10m	1	49.5@10m	

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

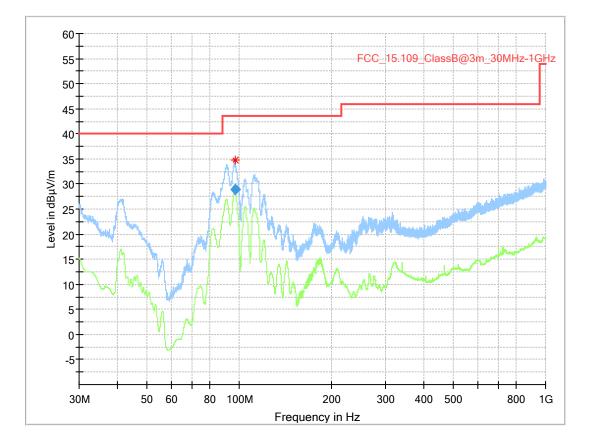
Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

5.2.3 TEST PROTOCOL

Ambient	25–26 °C
temperature:	
Air Pressure:	1013–1017 hPa
Humidity:	35-44 %
AC/DC adapter	

Spurious Freq. [MHz]	I. Spurious Level [dBµV/m]				Limit [dBµV/m]	Margin to Limit [dB]
96.8	28.9	QP	120	43.5	14.6	
17996.3	58.5	PEAK	1000	74.0	15.5	
17998.8	45.7	AV	1000	54.0	8.3	

Remark: Please see next sub-clause for the measurement plot.

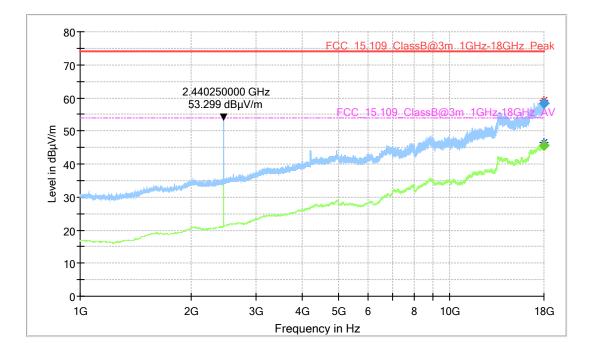


5.2.4 MEASUREMENT PLOT

AC mains connection = via ancillary equipment, Measurement range = 30 MHz - 1 GHz, Test setup = AC connected (S06_BB04)

Common Information Test Description: Test Standard: EUT / Setup Code: Operating Conditions: Operator Name: Comment: Legend:

Radiated Emissions, Test Site: Semi Anechoic Chamber @ 3 m FCC Part 15 B, §15.207, Class B / ANSI C63.4 DE1397000bb04 BTLE local TX on 2440 MHz URO ACDC Adapter Setup with 120V / 60Hz Trace (preview): blue = PK, green = QP; Star: red or blue = critical frequency; Rhombus: blue = final QP


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/ m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimu th (deg)	Comment
96.840000	28.94	43.50	14.56	1000.0	120.000	105.0	V	46.0	

AC mains connection = via ancillary equipment, Measurement range = 1-18 GHz, Test setup = AC connected (S06_BB04)

Common Information Test Description: Radiated Emissions @ 3 m, SAC + mobile floor absorber **Test Standard:** FCC Part 15 B, §15.207, Class B / ANSI C63.4 EUT / Setup Code: DE1397000bb04 Operating Conditions: BTLE local TX on 2440 MHz Operator Name: URO Comment: ACDC Adapter Setup with 120V / 60Hz Legend: Trace (preview): blue = PK, green = AV; Star: red or blue = critical frequency; Rhombus: blue = final Peak, green = Final CISPR AV

Final_Result

Freque (MHz)	ency	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
17996.	.250000	58.49		74.00	15.51	200.0	1000.000	237.0	Н	-121.0	31.9
17998.	.750000		45.74	54.00	8.26	200.0	1000.000	237.0	Н	-121.0	31.9

Note: The marker shows the carrier of the wanted RF (BLE) signal.

5.2.5 TEST EQUIPMENT USED

- Radiated Emissions

6 TEST EQUIPMENT

1 Conducted Emissions FCC Conducted Emissions AC Mains for FCC standards

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2019-10	2020-10
1.2	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2020-04	2022-04
1.3	NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278		
1.4	Chroma 6404	AC Source	Chroma ATE INC.	64040001304		
1.5	Shielded Room 02	Shielded Room 4m x 3m	Frankonia Germany EMC Solution GmbH	-		
1.6	ESH3-Z5		Rohde & Schwarz GmbH & Co. KG	829996/002	2019-06	2021-06
1.7	ESR 7			101424	2019-01	2021-01
1.8	Opus10 THI (8152.00)	T/H Logger 02	Lufft Mess- und Regeltechnik GmbH	7489	2019-05	2021-05

2 Radiated Emissions

Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
		_			Calibration	Due
2.1	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2019-10	2020-10
2.2	N5000/NP		ETS-LINDGREN	241515		
2.3	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2019-05	2021-05
2.4	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2019-12	2021-12
2.5	Anechoic Chamber 01		Frankonia	none		
2.6	HL 562 ULTRALOG	0	Rohde & Schwarz GmbH & Co. KG	830547/003	2018-07	2021-07
2.7	AMF- 7D00101800- 30-10P-R	Broadband Amplifier 100 MHz - 18 GHz	Miteq			
2.8	5HC2700/12750 -1.5-KK	High Pass Filter	Trilithic	9942012		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.9	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2020-04	2022-04
2.10	0 Opus10 THI T/H Logger 10 Lufft Mess- und 1 (8152.00) Regeltechnik GmbH		12488	2019-06	2021-06	
2.11	foRS232 Unit 2	Fibre optic link RS232	PONTIS Messtechnik GmbH	4031516037		
	PONTIS Con4101	PONTIS Camera Controller		6061510370		
2.13	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99		
2.14	MA4985-XP-ET	Bore Sight Antenna Mast	innco systems GmbH	none		
2.15	JUN-AIR Mod. 6- 15		JUN-AIR Deutschland GmbH	612582		
	Innco Systems CO3000	Controller for bore sight mast SAC	innco systems GmbH	CO3000/967/393 71016/L		
2.17	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513		
2.18	HF 907-2	Double-ridged horn	Rohde & Schwarz	102817	2019-04	2022-04

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

			cable
		LISN	loss
		insertion	(incl. 10
		loss	dB
		ESH3-	atten-
Frequency	Corr.	Z5	uator)
MHz	dB	dB	dB
0.15	10.1	0.1	10.0
5	10.3	0.1	10.2
7	10.5	0.2	10.3
10	10.5	0.2	10.3
12	10.7	0.3	10.4
14	10.7	0.3	10.4
16	10.8	0.4	10.4
18	10.9	0.4	10.5
20	10.9	0.4	10.5
22	11.1	0.5	10.6
24	11.1	0.5	10.6
26	11.2	0.5	10.7
28	11.2	0.5	10.7
30	11.3	0.5	10.8

7.1 LISN R&S ESH3-Z5 (150 KHZ – 30 MHZ)

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1	1	1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		<u>م ح</u>							· · · · ·	、
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fraguanau		Corr		•			``		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,				,			. ,	· /
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-	 -	-	-	-	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-	-	-			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-				-	-	-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				 -	-	-	-			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-		-	-			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				-	-	-	-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-	-			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-	-	-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		20.05	-39.5	-	0.1	0.1	0.1	-40	30	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	20.05	-39.5	-	0.1	0.1	0.1	-40	30	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	20.02	-39.5	0.2	0.1	0.1	0.1	-40		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	19.95	-39.5	0.2	0.1	0.1	0.1	-40	30	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	19.83	-39.4	0.2	0.1	0.2	0.1	-40	30	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	19.71	-39.4	0.2	0.1	0.2	0.1	-40	30	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	19.54	-39.4	0.2	0.1	0.2	0.1	-40	30	3
20 19.57 -39.3 22 19.61 -39.3 24 19.61 -39.3 26 19.54 -39.3 28 19.46 -39.2	16	19.53	-39.3	0.3	0.1	0.2	0.1	-40	30	3
22 19.61 -39.3 24 19.61 -39.3 26 19.54 -39.3 28 19.46 -39.2	18	19.50	-39.3	0.3	0.1	0.2	0.1	-40	30	3
24 19.61 -39.3 0.3 0.1 0.2 0.1 -40 30 3 26 19.54 -39.3 0.3 0.1 0.2 0.1 -40 30 3 28 19.46 -39.2 0.3 0.1 0.3 0.1 -40 30 3	20	19.57	-39.3	0.3	0.1	0.2	0.1	-40	30	3
26 19.54 -39.3 0.3 0.1 0.2 0.1 -40 30 3 28 19.46 -39.2 0.3 0.1 0.3 0.1 -40 30 3	22	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
28 19.46 -39.2 0.3 0.1 0.3 0.1 -40 30 3	24	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
28 19.46 -39.2 0.3 0.1 0.3 0.1 -40 30 3	26	19.54	-39.3	0.3	0.1	0.2	0.1	-40	30	3
	28	19.46		0.3	0.1	0.3	0.1	-40	30	
	30	19.73	-39.1	0.4	0.1	0.3	0.1	-40	30	3

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

(<u>d_{Limit} = 3 m)</u>

Frequency	AF R&S HL562	Corr.	cable loss 1 (inside chamber)
MHz	dB (1/m)	dB	dB
30	18.6	0.6	0.29
50	6.0	0.9	0.39
100	9.7	1.2	0.56
150	7.9	1.6	0.73
200	7.6	1.9	0.84
250	9.5	2.1	0.98
300	11.0	2.3	1.04
350	12.4	2.6	1.18
400	13.6	2.9	1.28
450	14.7	3.1	1.39
500	15.6	3.2	1.44
550	16.3	3.5	1.55
600	17.2	3.5	1.59
650	18.1	3.6	1.67
700	18.5	3.6	1.67
750	19.1	4.1	1.87
800	19.6	4.1	1.90
850	20.1	4.4	1.99
900	20.8	4.7	2.14
950	21.1	4.8	2.22
1000	21.6	4.9	2.23

cable loss 1	cable loss 2	cable loss 3	cable loss 4	distance corr.	d _{Limit} (meas.	d _{used} (meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

$(d_{\text{Limit}} = 10 \text{ m})$

	7									
30	18.6	-9.9		0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	[0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	[0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	[0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6		0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	[0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1		1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9		1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	[1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	[1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2		1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	[1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9		1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	[1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8		1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3		1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3		1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	[1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8		2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	[2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6		2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 \times LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

					1	1	1	
					cable			
			cable		loss 3			
			loss 1		(switch			
			(relay +	cable	unit,			
	AF		cable	loss 2	atten-	cable		
F	R&S	0	inside	(outside	uator &	loss 4 (to		
Frequency	HF907	Corr.	chamber)	chamber)	pre-amp)	receiver)		
MHz	dB (1/m)	dB	dB	dB	dB	dB		
1000	24.4	-19.4	0.99	0.31	-21.51	0.79		
2000	28.5	-17.4	1.44	0.44	-20.63	1.38		
3000	31.0	-16.1	1.87	0.53	-19.85	1.33		
4000	33.1	-14.7	2.41	0.67	-19.13	1.31		
5000	34.4	-13.7	2.78	0.86	-18.71	1.40		
6000	34.7	-12.7	2.74	0.90	-17.83	1.47		
7000	35.6	-11.0	2.82	0.86	-16.19	1.46		
						cable		
						loss 4		
			cable			(switch		
			loss 1	cable	cable	unit,		used
	AF		(relay	loss 2	loss 3	atten-	cable	for
	R&S		inside	(inside	(outside	uator &	loss 5 (to	FCC
Frequency	HF907	Corr.	chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	
3000	31.0	-23.4	0.47	1.87	0.53	-27.58	1.33	
4000	33.1	-23.3	0.56	2.41	0.67	-28.23	1.31	
5000	34.4	-21.7	0.61	2.78	0.86	-27.35	1.40	
6000	34.7	-21.2	0.58	2.74	0.90	-26.89	1.47	
7000	35.6	-19.8	0.66	2.82	0.86	-25.58	1.46	
			cable					
			loss 1	cable	cable	cable	cable	cable
	AF		(relay	loss 2	loss 3	loss 4	loss 5	loss 6
	R&S		inside	(High	(pre-	(inside	(outside	(to
Frequency	HF907	Corr.	chamber)	Pass)	amp)	chamber)	chamber)	receiver)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	dB
7000	35.6	-57.3	0.56	1.28	-62.72	2.66	0.94	1.46
8000	36.3	-56.3	0.69	0.71	-61.49	2.84	1.00	1.53
9000	37.1	-55.3	0.68	0.65	-60.80	3.06	1.09	1.60
10000	37.5	-56.2	0.70	0.54	-61.91	3.28	1.20	1.67
11000	37.5	-55.3	0.80	0.61	-61.40	3.43	1.27	1.70
12000	37.6	-53.7	0.84	0.42	-59.70	3.53	1.27	1.73
13000	38.2	-53.5	0.83	0.42	-59.81	3.75	1.32	1.73
14000	39.9	-55.3	0.83	0.44	-63.03	3.75	1.32	1.83
14000	40.9		-					
		-54.1	0.98	0.54	-61.05	4.02	1.44	1.83
16000	41.3	-54.1	1.23	0.49	-61.51	4.17	1.51	1.85
17000	42.8	-54.4	1.36	0.76	-62.36	4.34	1.53	2.00
18000	44.2	-54.7	1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

			cable	cable	cable	cable	cable
	AF		loss 1	loss 2	loss 3	loss 4	loss 5
	EMCO		(inside	(pre-	(inside	(switch	(to
Frequency	3160-09	Corr.	chamber)	amp)	chamber)	unit)	receiver)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB
18000	40.2	-23.5	0.72	-35.85	6.20	2.81	2.65
18500	40.2	-23.2	0.69	-35.71	6.46	2.76	2.59
19000	40.2	-22.0	0.76	-35.44	6.69	3.15	2.79
19500	40.3	-21.3	0.74	-35.07	7.04	3.11	2.91
20000	40.3	-20.3	0.72	-34.49	7.30	3.07	3.05
20500	40.3	-19.9	0.78	-34.46	7.48	3.12	3.15
21000	40.3	-19.1	0.87	-34.07	7.61	3.20	3.33
21500	40.3	-19.1	0.90	-33.96	7.47	3.28	3.19
22000	40.3	-18.7	0.89	-33.57	7.34	3.35	3.28
22500	40.4	-19.0	0.87	-33.66	7.06	3.75	2.94
23000	40.4	-19.5	0.88	-33.75	6.92	3.77	2.70
23500	40.4	-19.3	0.90	-33.35	6.99	3.52	2.66
24000	40.4	-19.8	0.88	-33.99	6.88	3.88	2.58
24500	40.4	-19.5	0.91	-33.89	7.01	3.93	2.51
25000	40.4	-19.3	0.88	-33.00	6.72	3.96	2.14
25500	40.5	-20.4	0.89	-34.07	6.90	3.66	2.22
26000	40.5	-21.3	0.86	-35.11	7.02	3.69	2.28
26500	40.5	-21.1	0.90	-35.20	7.15	3.91	2.36

ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ) 7.5

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver readingAF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values.

Frequency	AF EMCO 3160-10	Corr.		cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
GHz	dB (1/m)	dB		dB	dB	dB	dB	dB	m	m
26.5	43.4	-11.2	Γ	4.4				-9.5	3	1.0
27.0	43.4	-11.2	Γ	4.4				-9.5	3	1.0
28.0	43.4	-11.1		4.5				-9.5	3	1.0
29.0	43.5	-11.0	Γ	4.6				-9.5	3	1.0
30.0	43.5	-10.9	Γ	4.7				-9.5	3	1.0
31.0	43.5	-10.8		4.7				-9.5	3	1.0
32.0	43.5	-10.7		4.8				-9.5	3	1.0
33.0	43.6	-10.7		4.9				-9.5	3	1.0
34.0	43.6	-10.6		5.0				-9.5	3	1.0
35.0	43.6	-10.5		5.1				-9.5	3	1.0
36.0	43.6	-10.4		5.1				-9.5	3	1.0
37.0	43.7	-10.3		5.2				-9.5	3	1.0
38.0	43.7	-10.2		5.3				-9.5	3	1.0
39.0	43.7	-10.2		5.4				-9.5	3	1.0
40.0	43.8	-10.1		5.5				-9.5	3	1.0

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

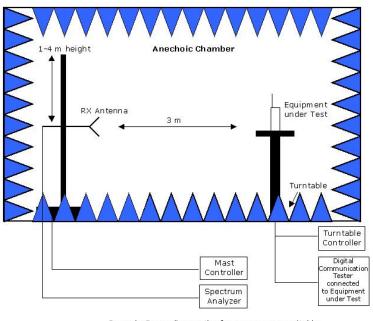
Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

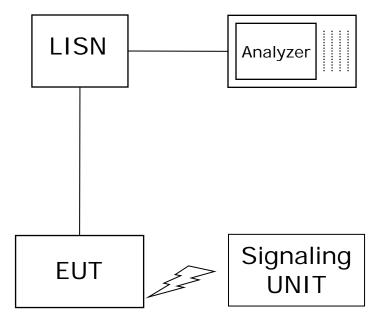
AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.


distance correction = -20 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.



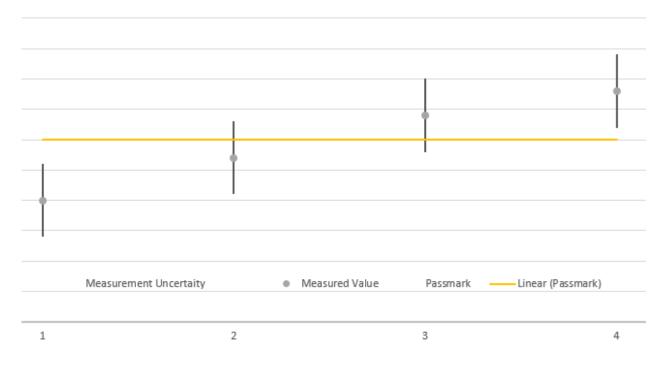
8 SETUP DRAWINGS

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.

Setup in the shielded room for conducted measurements at AC mains port

9 PHOTO REPORT


Please see separate photo report.

10 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
Conducted Emissions at AC mains	Voltage	± 3.4 dB
Radiated Emissions	Field Strength	± 5.5 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.