

FCC Measurement/Technical Report on

Connect S 2
Bosch Track & Trace Connect Gateway

FCC ID: 2AOSY-CONNECTO2

IC: 25406-CONNECTO2

Test Report Reference: MDE_BOSCH_1912_FCC_01

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Table of Contents

1	Applied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	5
2	Revision History / Signatures	7
3	Administrative Data	8
3.1	Testing Laboratory	8
3.2	Project Data	8
3.3	Applicant Data	8
3.4	Manufacturer Data	8
4	Test object Data	9
4.1	General EUT Description	9
4.2	EUT Main components	9
4.3	Ancillary Equipment	11
4.4	Auxiliary Equipment	11
4.5	EUT Setups	11
4.6	Operating Modes / Test Channels	12
4.7	Product labelling	12
5	Test Results	13
5.1	Conducted Emissions at AC Mains	13
5.2	Occupied Bandwidth (6 dB)	16
5.3	Occupied Bandwidth (99%)	18
5.45.5	Peak Power Output Spurious RF Conducted Emissions	20 23
5.6	Transmitter Spurious Radiated Emissions	26
5.7	Band Edge Compliance Conducted	34
5.8	Band Edge Compliance Radiated	37
5.9	Power Density	40
6	Test Equipment	43
7	Antenna Factors, Cable Loss and Sample Calculations	46
7.1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	46
7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	47
7.3	Antenna R&S HL562 (30 MHz - 1 GHz)	48
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	49
7.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	50
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	51
8	Photo Report	51
9	Measurement Uncertainties	52

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-19 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05r02, 2019-04-02". ANSI C63.10–2013 is applied.

TEST REPORT REFERENCE: MDE_BOSCH_1912_FCC_01

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 2: 5.2 (a)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 2: 5.4 (d)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 2: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 2: 5.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	_	_

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.207			
Conducted Emissions at AC Mains The measurement was performed according OP-Mode Operating mode, Connection to AC mains	ng to ANSI C63.10 Setup	Date	Final Re FCC	sult IC
worst case, via ancillary/auxiliary equipment	S06_BB04	2020-09-10	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (a) (2	2)		
Occupied Bandwidth (6 dB)	ANCL 0/2 10		Final Da	14
The measurement was performed according OP-Mode Radio Technology, Operating Frequency	Setup	Date	Final Re FCC	IC
Bluetooth LE 1 Mbps, high	S06_BD04	2020-09-10	Passed	Passed
Bluetooth LE 1 Mbps, low	S06_BF04	2020-09-10	Passed	Passed
Bluetooth LE 1 Mbps, mid	S06_BE04	2020-09-10	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	IC RSS-Gen &	IC TRC-43;	Ch. 6.7 &	Ch. 8
Occupied Bandwidth (99%) The measurement was performed according	na to ANSL C62 10		Final Re	eult
OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
Bluetooth LE 1 Mbps, high	S06_BD04	2020-09-10	N/A	Performed
Bluetooth LE 1 Mbps, low	S06_BF04	2020-09-10	N/A	Performed
Bluetooth LE 1 Mbps, mid	S06_BE04	2020-09-10	N/A	Performed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (b) (3	3)		
Peak Power Output The measurement was performed according OP-Mode Radio Technology, Operating Frequency,	ng to ANSI C63.10 Setup	Date	Final Re FCC	sult IC
Measurement method				
Bluetooth LE 1 Mbps, high, conducted	S06_BD04	2020-09-10	Passed	Passed
Bluetooth LE 1 Mbps, low, conducted	S06_BF04	2020-09-10	Passed	Passed
Bluetooth LE 1 Mbps, mid, conducted	S06_BE04	2020-09-10	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)			
Spurious RF Conducted Emissions			 , =	
The measurement was performed according OP-Mode	ng to ANSI C63.10 Setup	Date	Final Re FCC	sult IC
Radio Technology, Operating Frequency	S06 PD04	2020-09-10	Doogsal	Dooose
Bluetooth LE 1 Mbps, high	S06_BD04		Passed	Passed
Bluetooth LE 1 Mbps, low	S06_BF04	2020-09-10	Passed	Passed
Bluetooth LE 1 Mbps, mid	S06_BE04	2020-09-10	Passed	Passed

TEST REPORT REFERENCE: MDE_BOSCH_1912_FCC_01

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)			
Transmitter Spurious Radiated Emissions				
The measurement was performed according	_		Final Re	
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency, Measurement range				
Bluetooth LE 1 Mbps, high, 1 GHz - 26 GHz	S06_BA04	2020-09-04	Passed	Passed
Bluetooth LE 1 Mbps, high, 30 MHz - 1 GHz	S06_BA04	2020-09-06	Passed	Passed
Bluetooth LE 1 Mbps, low, 1 GHz - 26 GHz	S06_BC04	2020-09-04	Passed	Passed
Bluetooth LE 1 Mbps, low, 30 MHz - 1 GHz	S06_BC04	2020-09-06	Passed	Passed
Bluetooth LE 1 Mbps, mid, 1 GHz - 26 GHz	S06_BB04	2020-09-04	Passed	Passed
Bluetooth LE 1 Mbps, mid, 30 MHz - 1 GHz	S06_BB04	2020-09-06	Passed	Passed
Bluetooth LE 1 Mbps, mid, 9 kHz - 30 MHz	S06_BB04	2020-09-06	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)			
Band Edge Compliance Conducted				
The measurement was performed according	•		Final Re	sult
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency, Band Edge				
Bluetooth LE 1 Mbps, high, high	S06_BD04	2020-09-10	Passed	Passed
Bluetooth LE 1 Mbps, low, low	S06_BF04	2020-09-10	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)			
Band Edge Compliance Radiated				
The measurement was performed according	_		Final Re	
OP-Mode Radio Technology, Operating Frequency,	Setup	Date	FCC	IC
Band Edge				
Bluetooth LE 1 Mbps, high, high	S06_BA04	2020-09-04	Passed	Passed
47 CFR CHAPTER I FCC PART 15	§ 15.247 (e)			
Subpart C §15.247	3 111211 (1)			
Power Density				_
The measurement was performed according	_		Final Re	
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency	S04 BD04	2020 00 10	Doosed	Daggad
Bluetooth LE 1 Mbps, high Bluetooth LE 1 Mbps, low	S06_BD04	2020-09-10	Passed	Passed
BUTETOOTO LE LIVIDOS TOW	SOE DEO4	2020 00 10		
Bluetooth LE 1 Mbps, mid	S06_BF04 S06_BE04	2020-09-10 2020-09-10	Passed Passed	Passed Passed

2 REVISION HISTORY / SIGNATURES

Report version control					
Version	Release date	Change Description	Version validity		
initial	2020-10-05		valid		

COMMENT: -

(responsible for accreditation scope)
Dipl.-Ing. Marco Kullik

(responsible for testing and report)
Dipl.-Ing. Andreas Petz

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

2	1	TESTI	NIC I	A D C		
٠ 5 .	. I	115011	ו באוו	ADU	JKAI	UKY

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-01 | -02 | -03

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

ISED CAB Identifier DE0007; ISED#: 3699A

Responsible for accreditation scope: Dipl.-Ing. Marco Kullik

Report Template Version: 2020-06-15

3.2 PROJECT DATA

Responsible for testing and report: Dipl.-Ing. Andreas Petz

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2020-10-05

Testing Period: 2020-09-04 to 2020-09-10

3.3 APPLICANT DATA

Company Name: Robert Bosch Manufacturing Solutions GmbH

Address: Wernerstr. 51

70469 Stuttgart

Germany

Contact Person: Mr. Ludger Bredenstein

3.4 MANUFACTURER DATA

Company Name: please see Applicant Data

Address:

Contact Person:

TEST REPORT REFERENCE: MDE_BOSCH_1912_FCC_01 Page 8 of 52

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	The Bosch Track & Trace Connect Gateway is the connectivity unit between asset tagging and monitoring solutions like Sense S, Sense T and Sense H1 and the Bosch Internet Cloud. The connectivity gateways Connect collects data generated by asset tags and sensors, enriches information with position data and uploads this data to the Bosch backend.	
Product name	Bosch Track &Trace Connect Gateway	
Туре	Connect S 2	
Declared EUT data by	the supplier	
Voltage Type	DC (AC via ancillary AC/DC adapter)	
Voltage Level	AC: 120 V / 60 Hz; DC: 12 V	
Antenna / Gain	2.0 dBi	
Tested Modulation Type	GFSK	
General product description	The EUT has an integral rechargeable battery that can be charged using an ancillary AC/DC adapter. The radio operates in the 2.4 GHz ISM band.	
Specific product description for the EUT	BLE transceiver operation in the 2.4 GHz ISM band (2402-2480 MHz)	
EUT ports (connected cables during testing):	Enclosure, Charging	
Tested datarates	1 Mbps	
Special software used for testing	yes: EUT is set into BT test mode transmitting on 2402, 2440 and 2480 MHz (three sample provided for each type of test, conducted and radiated)	

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
Sample #ba04	DE1397000ba04	BLE Test Mode, transmitting
		on 2480 MHz (CH39), integral
		antenna
Sample Parameter	Valu	е
Serial No.	800440547311000400000004923	
HW Version	2.X	
SW Version	V01.x	
Comment	-	

TEST REPORT REFERENCE: MDE_BOSCH_1912_FCC_01

Sample Name	Sample Code	Description
Sample #bb04	DE1397000bb04	BLE Test Mode, transmitting
		on 2440 MHz (CH19), integral
		antenna
Sample Parameter	Valu	ae
Serial No.	80044054731100040000004920	
HW Version	2.X	
SW Version	V01.x	
Comment	-	

Sample Name	Sample Code	Description
Sample #bc04	DE1397000bc04	BLE Test Mode, transmitting
		on 2402 MHz (CH0), integral
		antenna
Sample Parameter	Valu	ıe
Serial No.	800440547311000400000004919	
HW Version	2.X	
SW Version	V01.x	
Comment	-	

Sample Name	Sample Code	Description
Sample #bd04	DE1397000bd04	BLE Test Mode, transmitting
		on 2480 MHz (CH39),
		temporary antenna connector
Sample Parameter		Value
Serial No.	-	
HW Version	2.X	
SW Version	V01.x	
Comment		

Sample Name	Sample Code	Description
Sample #be04	DE1397000be04	BLE Test Mode, transmitting
		on 2440 MHz (CH19),
		temporary antenna connector
Sample Parameter	Valu	ie
Serial No.	800440547311000400000004921	
HW Version	2.X	
SW Version	V01.x	
Comment	-	

Sample Name	Sample Code	Description		
Sample #bf04	DE1397000bf04	BLE Test Mode, transmitting on 2402 MHz (CH0),		
		temporary antenna connector		
Sample Parameter	Value			
Serial No.	800440547311000400000004922			
HW Version	2.X			
SW Version	V01.x			
Comment	-			

 ${\tt NOTE:} The \ short \ description \ is \ used \ to \ simplify \ the \ identification \ of \ the \ {\tt EUT} \ in \ this \ test \ report.$

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model)	Description		
AC / DC Switching	MEAN WELL ENTERPRISES CO. LTD,	100-240 V AC / 24 V,		
Adaptor	GS12E24-P1I	500 mA DC		
Sample Name	Sample Code	Description		
AC/DC #01	DE1397000ACDC01 -			
Sample Parameter	Value			
Serial No.	-			
HW Version	N/A			
SW Version	N/A			
Comment	-			

4.4 AUXILIARY EQUIPMENT

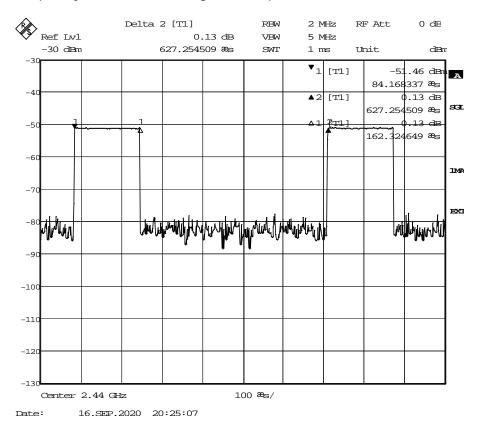
For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
-	_	-

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale	
S06_BF04	Sample #bf04,	setup for conducted test on low channel	
S06_BE04	Sample #be04,	setup for conducted test on mid channel	
S06_BD04	Sample #bd04,	setup for conducted test on high channel	
S06_BC04	AC/DC #01, Sample #bc04,	setup for radiated test on low channel	
S06_BB04	AC/DC #01, Sample #bb04,	setup for radiated test on mid channel	
S06_BA04	AC/DC #01, Sample #ba04,	setup for radiated test on high channel	


4.6 OPERATING MODES / TEST CHANNELS

BT LE Test Channels: Channel:

Frequency [MHz]

2.4 GHz ISM 2400 - 2483.5 MHz							
low	mid	high					
0	19	39					
2402	2440	2480					

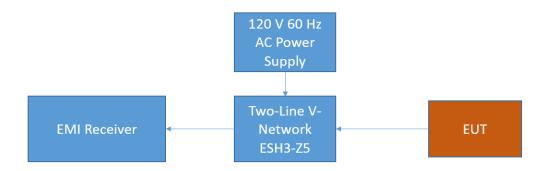
The EUTs operate in a special test mode which continuously transmits on the intended frequency the modulated signal (test pattern).

4.7 PRODUCT LABELLING

Please refer to the documentation of the applicant.

5 TEST RESULTS

5.1 CONDUCTED EMISSIONS AT AC MAINS


Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.1.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C 63.10 The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from $50\mu\text{H}$ || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

FCC Conducted Emissions on AC

The measurement procedure consists of two steps. It is implemented into the EMI test software FMC-32 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT. EMI receiver settings:

- Detector: Peak Maxhold & Average
 Frequency range: 150 kHz 30 MHz
- Frequency steps: 2.5 kHzIF-Bandwidth: 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)
- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:

- Detector: Quasi-Peak & (CISPR) Average
- IF Bandwidth: 9 kHz
- Measuring time: 1 s / frequency

TEST REPORT REFERENCE: MDE_BOSCH_1912_FCC_01

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

5.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.207

Frequency (MHz)	QP Limits (dBµV)	AV Limits (dBμV)	
0.15 - 0.5	66 - 56	56 - 46	
0.5 - 5	56	46	
5 - 30	60	50	

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

5.1.3 TEST PROTOCOL

Temperature: 25 °C Air Pressure: 1017 hPa Humidity: 35 %

Power line	PE	Frequency [MHz]	Measured value QP [dBµV]	Measured value AV [dBµV]	Limit [dBµV]	Margin [dB]
-	-	-	-	-	-	-

Remark: Please see next sub-clause for the measurement plot.

5.1.4 MEASUREMENT PLOT

Operating mode = worst case, Connection to AC mains = via ancillary/auxiliary equipment (S06_BB04)

Common Information

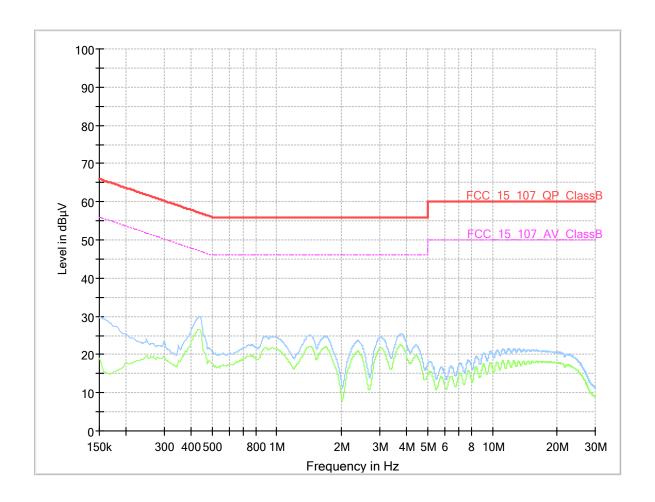
Test Description: Conducted Emissions
Test Standard: FCC §15.207, ANSI C63.10

EUT / Setup Code: DE1397000bb04

Operating Conditions: BTLE local TX on 2440 MHz

Operator Name: URO

Comment: ACDC Adapter @ 120 VAC / 60 Hz


Legend: Trace: blue = QP, green = CISPR AV; Star: red or blue = critical

frequency; Rhombus: blue = final QP, green = final CISPR AV

Tested Port / used LISN: AC mains => ESH3-Z5

Termination of other ports: N/A

Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Line	PE	Corr. (dB)

5.1.5 TEST EQUIPMENT USED

- Conducted Emissions FCC

5.2 OCCUPIED BANDWIDTH (6 DB)

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.2.1 TEST DESCRIPTION

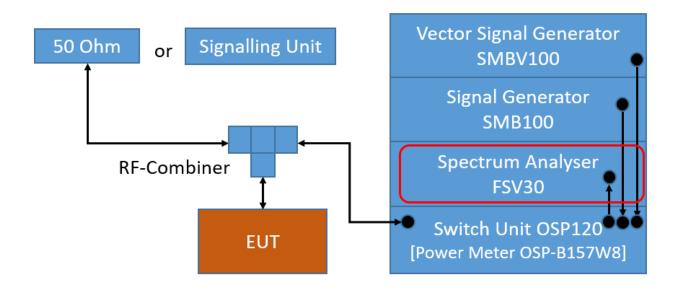
The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (smallest) emission bandwidth.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:


Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz

• Span: Two times nominal bandwidth

• Trace: Maxhold

Sweeps: Till stable (min. 500, max. 15000)

Sweeptime: AutoDetector: Peak

TS8997; Channel Bandwidth

5.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

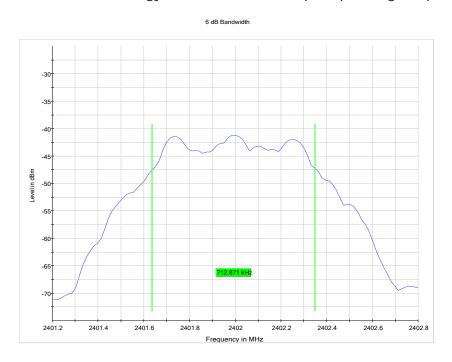
Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.2.3 TEST PROTOCOL

Ambient 25 °C

temperature:

Air Pressure: 1018 hPa Humidity: 38 %


BT LE 1 Mbit/s

Band / Mode	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	0.713	0.5	0.213
	19	2440	0.729	0.5	0.229
	39	2480	0.729	0.5	0.229

Remark: Please see next sub-clause for the measurement plot.

5.2.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = low (S06_BF04)

5.2.5 TEST EQUIPMENT USED

- R&S TS8997

5.3 OCCUPIED BANDWIDTH (99%)

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.3.1 TEST DESCRIPTION

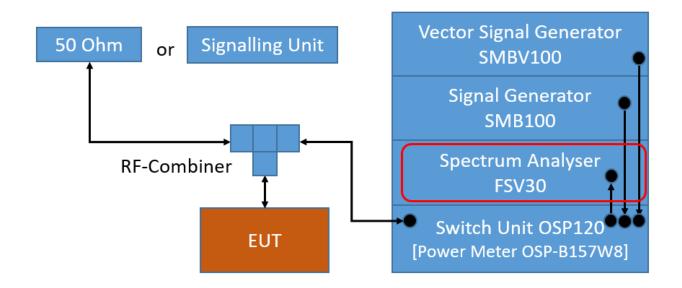
The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

Resolution Bandwidth (RBW): 1 to 5 % of the OBW


Video Bandwidth (VBW): ≥ 3 times the RBW

Span: 1.5 to 5 times the OBW

Trace: Maxhold

• Sweeps: Till stable (min. 500, max. 75000)

Sweeptime: AutoDetector: Peak

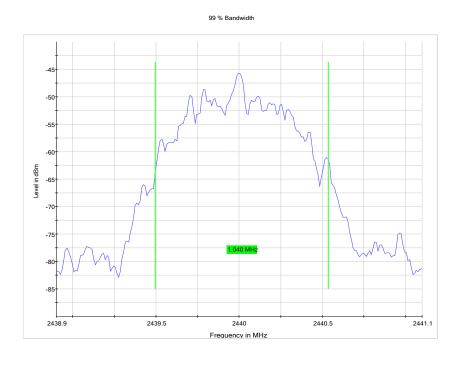
TS8997; Channel Bandwidth

5.3.2 TEST REQUIREMENTS / LIMITS

No applicable limit:

5.3.3 TEST PROTOCOL

 $\begin{array}{lll} \mbox{Ambient temperature:} & 25 \ ^{\circ}\mbox{C} \\ \mbox{Air Pressure:} & 1018 \ \mbox{hPa} \\ \mbox{Humidity:} & 38 \ \% \end{array}$


BT LE 1 Mbit/s

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	0	2402	1.030
	19	2440	1.040
	39	2480	1.010

Remark: Please see next sub-clause for the measurement plot.

5.3.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = mid (S06_BE04)

5.3.5 TEST EQUIPMENT USED

- R&S TS8997

5.4 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.4.1 TEST DESCRIPTION

DTS EQUIPMENT:

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power.

Maximum peak conducted output power (e.g. Bluetooth Low Energy):

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered. The reference level of the spectrum analyser was set higher than the output power of the EUT.

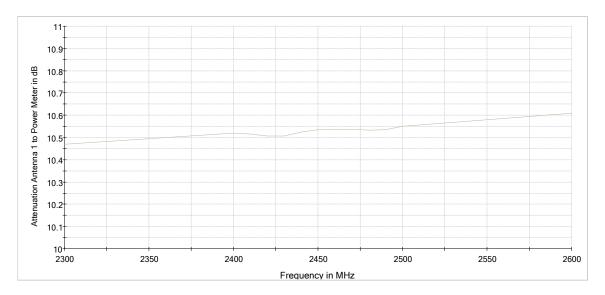
Analyser settings:

• Resolution Bandwidth (RBW): ≥ DTS bandwidth

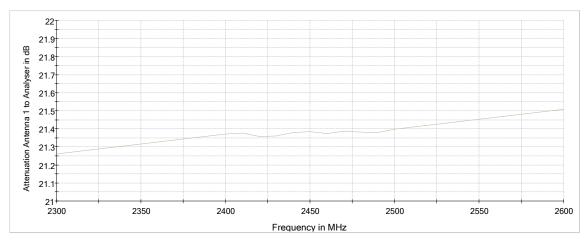

• Video Bandwidth (VBW): ≥ 3 times RBW or maximum of analyzer

• Span: ≥ 3 times RBW

• Trace: Maxhold


Sweeps: Till stable (min. 300, max. 15000)

Sweeptime: AutoDetector: Peak



TS8997; Output Power

Attenuation of the measurement path to Power Meter

Attenuation of the measurement path to Analyser

5.4.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

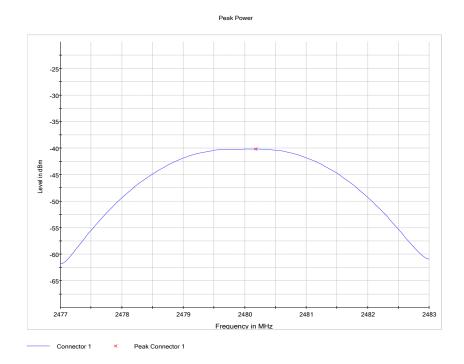
FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW)

5.4.3 TEST PROTOCOL

Ambient temperature: 25 °C
Air Pressure: 1018 hPa
Humidity: 38 %


BT LE 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	-40.9	30.0	70.9	-38.9
	19	2440	-40.6	30.0	70.6	-38.6
	39	2480	-40.2	30.0	70.2	-38.2

Remark: Please see next sub-clause for the measurement plot.

5.4.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = high, Measurement method = conducted (S06_BD04)

5.4.5 TEST EQUIPMENT USED

- R&S TS8997

5.5 SPURIOUS RF CONDUCTED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

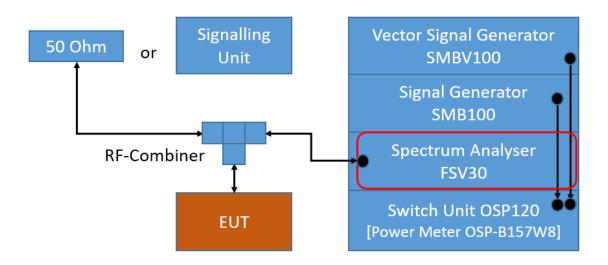
ANSI C63.10

5.5.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

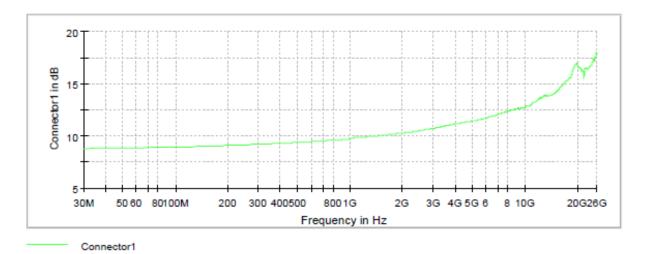
The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:


Frequency range: 30 – 26000 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz

• Trace: Maxhold

Sweeps: Till Stable (max. 120)


Sweep Time: AutoDetector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc or 30 dBc limit.

TS8997; Spurious RF Conducted Emissions

Attenuation of the measurement part

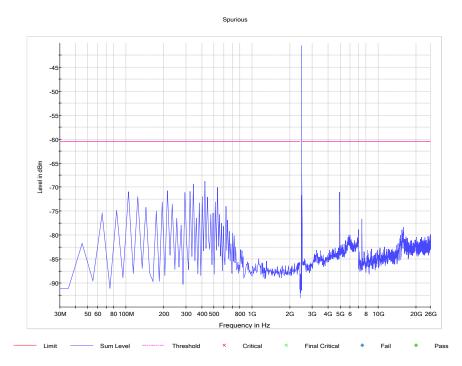
5.5.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.5.3 TEST PROTOCOL

Ambient temperature: 25 °C
Air Pressure: 1018 hPa
Humidity: 38 %
BT LE 1 Mbit/s


Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	343.7	-68.8	PEAK	100	-40.2	-60.2	8.6
19	2440	343.7	-68.6	PEAK	100	-40.4	-60.4	8.2
39	2480	2488.5	-67.0	PEAK	100	-40.5	-60.5	6.5

Remark: Please see next sub-clause for the measurement plot.

5.5.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = high (S06_BD04)

5.5.5 TEST EQUIPMENT USED

- R&S TS8997

5.6 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

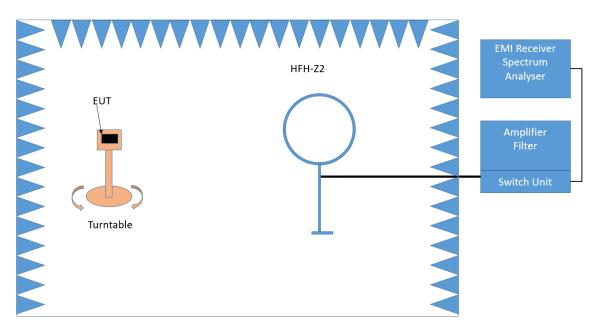
ANSI C63.10

5.6.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following subchapters of ANSI C63.10:

< 30 MHz: Chapter 6.4</p>

• 30 MHz – 1 GHz: Chapter 6.5


• > 1 GHZ: Chapter 6.6 (procedure according 6.6.5 used)

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

Below 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

1. Measurement up to 30 MHz

Test Setup; Spurious Emission Radiated (SAC), 9 kHz - 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

Anechoic chamberAntenna distance: 3 mAntenna height: 1 m

Detector: Peak-Maxhold

• Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

• Frequency steps: 0.05 kHz and 2.25 kHz

• IF-Bandwidth: 0.2 kHz and 9 kHz

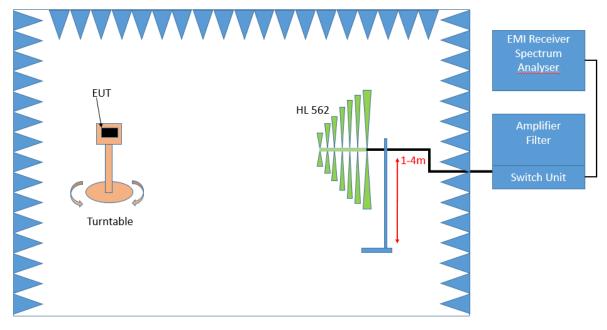
Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

Detector: Quasi-Peak (9 kHz – 150 kHz, Peak / Average 150 kHz- 30 MHz)


• Frequency range: 0.009 – 30 MHz

Frequency steps: measurement at frequencies detected in step 1

• IF-Bandwidth: 0.2 - 10 kHz

• Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:
- Antenna distance: 3 m

Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 – 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 ms

- Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 4 m
Height variation step size: 1.5 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHz
Measuring time: 100 ms
Turntable angle range: 360 °
Height variation range: 1 – 4 m

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

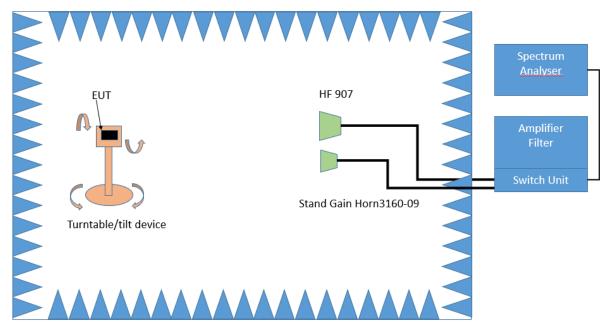
With the settings determined in step 2, the final measurement will be performed: EMI receiver settings for step 3:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.



Above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 $^{\circ}$.

The turn table step size (azimuth angle) for the preliminary measurement is 45 $^{\circ}$. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$.

The elevation angle will slowly vary by \pm 45°

Spectrum analyser settings:

- Detector: Peak

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- RBW = 1 MHz
- VBW = 3 MHz
- Measuring time: 1 s

5.6.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 – 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
30 – 88	100@3m	3	40.0@3m
88 – 216	150@3m	3	43.5@3m
216 – 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

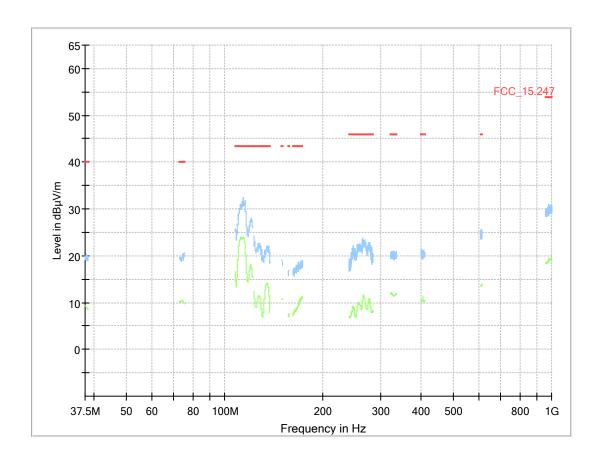
Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

5.6.3 TEST PROTOCOL

Ambient temperature: 25-27 °C
Air Pressure: 1013-1017 hPa
Humidity: 35-44 %

BT LE 1 Mbit/s

Applied duty cycle correction (AV): 0 dB


Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBuV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
		15/0/ 4		DEAK	1000	74.0	10.5	DD
U	2402	15606.4	55.5	PEAK	1000	74.0	18.5	RB
0	2402	15606.4	41.5	AV	1000	54.0	12.5	RB
0	2402	17795.0	59.6	PEAK	1000	74.0	14.4	RB
0	2402	17795.0	44.8	AV	1000	54.0	9.2	RB

Remark: Please see next sub-clause for the measurement plot.

5.6.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = low, Measurement range = 30 MHz - 1 GHz (S06_BC04)

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margi n	Meas. Time (ms)	Bandwidt h	Heigh t	Pol	Azimut h	Corr. (dB/m)	Comment

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz (S06_BB04)

Common Information

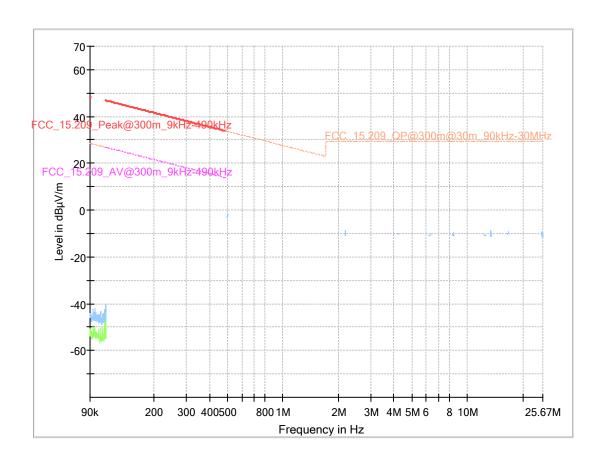
Test Description: Radiated Emissions, Test Site: Semi Anechoic Chamber @ 3 m

FCC §15.247 / ANSI C63.10 Test Standard:

EUT / Setup Code: DE1397000bb04

BTLE local TX on 2440 MHz Operating Conditions:

Operator Name: **URO**

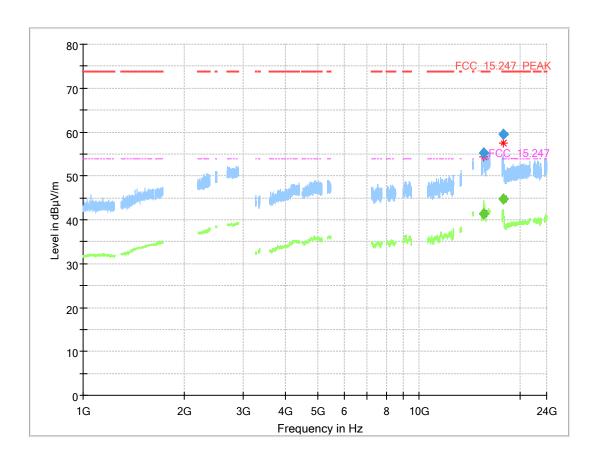

Comment: ACDC Adapter Setup with 120V / 60Hz

x-Orientation (indicate h=100) loop plane vertical, vector in measurement axis directed to EUT y-Orientation (indicate h=200) loop plane vertical, vector perpendicular to measurement axis z-Orientation (indicate h=300)

loop plane horizontal, normal vector directed to ground

Trace: blue = Peak; green = AV, Star: = critical frequency; Rhombus: Legend:

blue = final QP



Final Result

•									
	Frequency (MHz)	MaxPeak (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Azimuth (deg)	Corr. (dB/m)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = low, Measurement range = 1 GHz - 26 GHz (S06_BC04)

Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
15606.417		41.5	54.00	12.45	1000.0	1000.000	150.0	V	-94.0	13.0	-1.6
15606.417	55.5		74.00	18.49	1000.0	1000.000	150.0	V	93.0	9.0	-1.6
17794.950		44.8	54.00	9.18	1000.0	1000.000	150.0	V	-169.0	13.0	1.2
17794.950	59.6		74.00	14.42	1000.0	1000.000	150.0	V	36.0	78.0	1.2

5.6.5 TEST EQUIPMENT USED

- Radiated Emissions

5.7 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.7.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions".

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

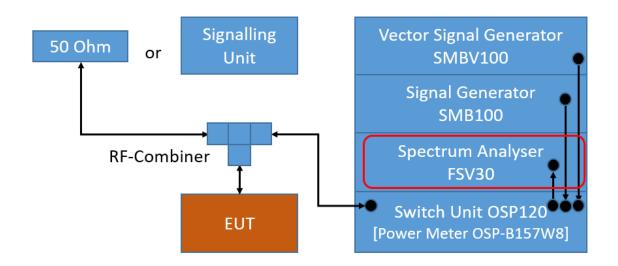
Analyser settings:

• Lower Band Edge:

Measured range: 2310.0 MHz to 2483.5 MHz

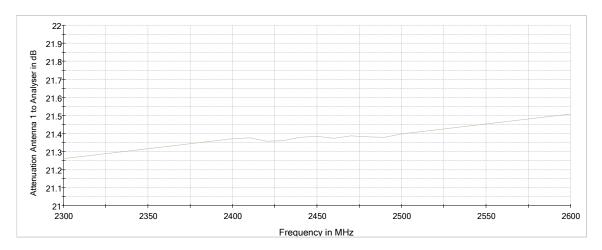
Upper Band Edge

Measured range: 2400.0 MHz to 2500 MHz


Detector: Peak

Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz

Sweeptime: Auto


• Sweeps: Till stable (min. 300, max. 15000)

Trace: Maxhold

TS8997; Band Edge Conducted

Attenuation of the measurement path

5.7.2 TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

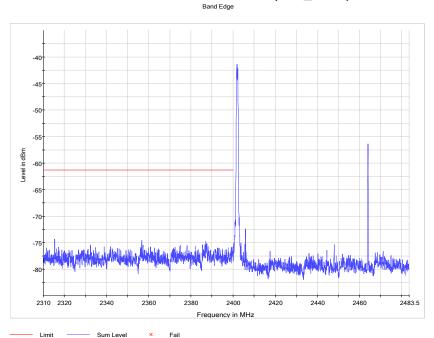
If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

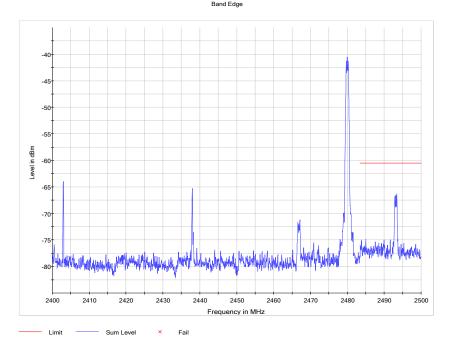
5.7.3 TEST PROTOCOL

Ambient temperature: 25 °C
Air Pressure: 1018 hPa
Humidity: 38 %

BT LE 1 Mbit/s


Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-74.3	PEAK	100	-40.0	-60.0	14.3
39	2480	2483.5	-66.3	PEAK	100	-40.0	-60.0	6.3

Remark: Please see next sub-clause for the measurement plot.



5.7.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = low, Band Edge = low (S06_BF04)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = high, Band Edge = high (S06_BD04)

5.7.5 TEST EQUIPMENT USED

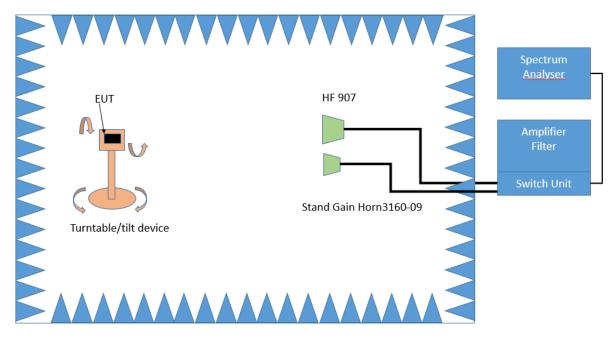
- R&S TS8997

5.8 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10


5.8.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following subchapter of ANSI C63.10: 6.10.5

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only (procedure according ANSI C63.10, chapter 6.6.5.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 $^{\circ}$.

The turn table step size (azimuth angle) for the preliminary measurement is 45 $^{\circ}$. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

Spectrum analyser settings:

- Detector: Peak

TEST REPORT REFERENCE: MDE_BOSCH_1912_FCC_01

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average

- Measured frequencies: in step 1 determined frequencies

- RBW = 1 MHz - VBW = 3 MHz - Measuring time: 1 s

5.8.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 – 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
30 – 88	100@3m	3	40.0@3m
88 – 216	150@3m	3	43.5@3m
216 – 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

5.8.3 TEST PROTOCOL

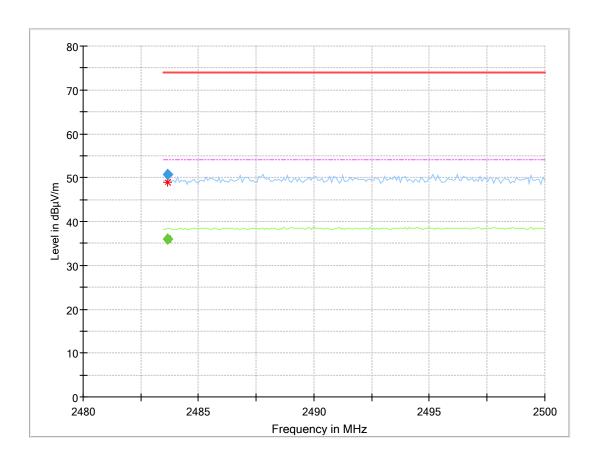
Ambient temperature: 27 °C
Air Pressure: 1015 hPa
Humidity: 44 %

BT LE 1 Mbit/s

Applied duty cycle correction (AV):

11.7 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
39	2480	2483.5	50.6	PEAK	1000	74.0	23.4
39	2480	2483.5	47.7	AV	1000	54.0	6.3


Remark: Please see next sub-clause for the measurement plot.

TEST REPORT REFERENCE: MDE_BOSCH_1912_FCC_01 Page 38 of 52

5.8.4 MEASUREMENT PLOT

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = high, Band Edge = high (S06_BA04)

Final Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBuV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2483.665		36.0	54.00	18.04	1000.0	1000.000	150.0	V	-71.0	-12.0	5.4
2483.665	50.6		74.00	23.35	1000.0	1000.000	150.0	Н	-156.0	105.0	5.4

5.8.5 TEST EQUIPMENT USED

- Radiated Emissions

5.9 POWER DENSITY

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.9.1 TEST DESCRIPTION

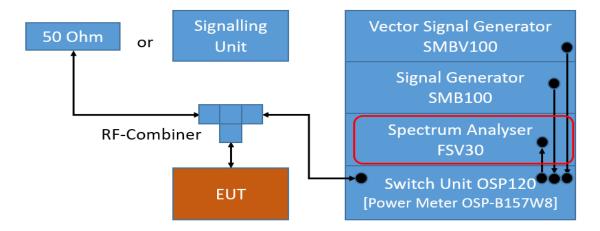
The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) power density.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

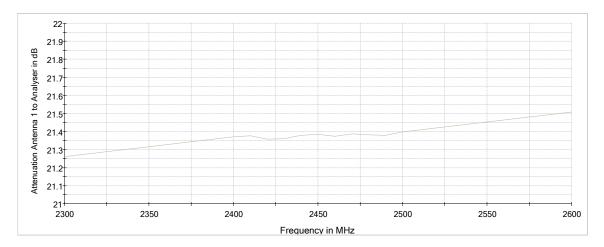
Maximum Peak Power Spectral Density (e.g. Bluetooth low energy):

Analyser settings:


Resolution Bandwidth (RBW): 100 kHz, 10 kHz or 3 kHz

Video Bandwidth (VBW): ≥ 3 times RBW

Trace: Maxhold


• Sweeps: Till stable (min. 200, max. 15000)

Sweeptime: AutoDetector: Peak

TS8997; Power Spectral Density

Attenuation of the measurement path

5.9.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

. . .

The same method of determining the conducted output power shall be used to determine the power spectral density.

FCC Part 15, Subpart C, §15.247 (f)

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques.

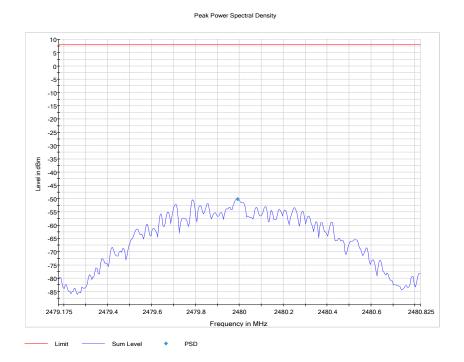
٠..

The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

5.9.3 TEST PROTOCOL

Ambient temperature: 25 °C
Air Pressure: 1018 hPa
Humidity: 38 %

BT LE 1 Mbit/s


Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	-51.0	10.0	8.0	59.0
	19	2440	-50.7	10.0	8.0	58.7
	39	2480	-50.2	10.0	8.0	58.2

Remark: Please see next sub-clause for the measurement plot.

5.9.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = high (S06_BD04)

5.9.5 TEST EQUIPMENT USED

- R&S TS8997

6 TEST EQUIPMENT

Conducted Emissions FCCConducted Emissions AC Mains for FCC standards

Ref.No.	Device Name	Description	Manufacturer	Serial Number		Calibration
					Calibration	Due
1.1	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2019-10	2020-10
1.2	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2020-04	2022-04
1.3	EP 1200/B, NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278		
1.4	Chroma 6404	AC Source	Chroma ATE INC.	64040001304		
1.5	Shielded Room 02		Frankonia Germany EMC Solution GmbH			
1.6	ESH3-Z5		Rohde & Schwarz GmbH & Co. KG	829996/002	2019-06	2021-06
1.7	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2019-01	2021-01
1.8	Opus10 THI (8152.00)	T/H Logger 02	Lufft Mess- und Regeltechnik GmbH	7489	2019-05	2021-05

2 R&S TS8997

2.4 and 5 GHz Bands Conducted Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
		-			Calibration	Due
2.1	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2020-08	2023-08
2.2	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2020-05	2022-05
2.3	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2020-04	2022-04
2.4	NGSM 32/10	Power Supply	Rohde & Schwarz GmbH & Co. KG	3456	2020-01	2022-01
2.5	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2020-05	2022-05
2.6	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	7482	2019-06	2021-06
2.7	SMBV100A		Rohde & Schwarz	259291	2019-11	2022-11
2.8	OSP120	Contains Power Meter and Switching Unit OSP- B157W8	Rohde & Schwarz	101158	2018-05	2021-05
2.9	Temperature Chamber VT 4002	Temperature Chamber Vötsch 05	Vötsch	58566080550010	2020-05	2022-05

TEST REPORT REFERENCE: MDE_BOSCH_1912_FCC_01

Radiated Emissions Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.1	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2019-10	2020-10
3.2	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515		
3.3	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2019-05	2021-05
3.4	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2019-12	2021-12
3.5	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none		
3.6		Biconical-log- per antenna (30 MHz - 3 GHz) with HL 562E biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2018-07	2021-07
3.7		Broadband Amplifier 100 MHz - 18 GHz	Miteq			
3.8	5HC2700/12750 -1.5-KK		Trilithic	9942012		
3.9	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
3.10	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2020-04	2022-04
3.11	Opus10 THI (8152.00)	T/H Logger 10	Lufft Mess- und Regeltechnik GmbH	12488	2019-06	2021-06
3.12	PONTIS Con4101	PONTIS Camera Controller		6061510370		
3.13		Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
3.14	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2019-02	2021-02
3.15	3160-09	Standard Gain	EMCO Elektronic GmbH	00083069		
3.16	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright Instruments GmbH	09		
3.17	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99		
3.18	4HC1600/12750 -1.5-KK		Trilithic	9942011		
3.19	JS4-00102600- 42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
3.20	TT 1.5 WI	Turn Table	Maturo GmbH	-		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.21	HL 562 ULTRALOG	per Antenna (30 MHz - 3 GHz)	Rohde & Schwarz GmbH & Co. KG	100609	2019-05	2022-05
3.22	MA4985-XP-ET	Bore Sight Antenna Mast	innco systems GmbH	none		
3.23	JUN-AIR Mod. 6- 15		JUN-AIR Deutschland GmbH	612582		
3.24	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008		
3.25	HFH2-Z2	Loop Antenna	Rohde & Schwarz	829324/006	2018-01	2021-01
3.26	SB4- 100.OLD20- 3T/10 Airwin 2 x 1.5 kW	Air compressor (oil-free)	airWin Kompressoren UG	901/00503		
3.27	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
3.28	AS 620 P	Antenna Mast (pneumatic polarisation)	HD GmbH	620/37		
3.29	TD1.5-10kg	EUT Tilt Device (Rohacell)	Maturo GmbH	TD1.5- 10kg/024/37907 09		
3.30	Innco Systems CO3000	Controller for bore sight mast SAC	innco systems GmbH	CO3000/967/393 71016/L		
3.31	HF 907-2	Double-ridged horn	Rohde & Schwarz	102817	2019-04	2022-04
3.32	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
3.33	AM 4.0		Maturo GmbH	AM4.0/180/1192 0513		
3.34	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2018-07	2021-07

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

7.1 LISN R&S ESH3-Z5 (150 KHZ – 30 MHZ)

Frequency	Corr.
MHz	dB
0.15	10.1
5	10.3
7	10.5
10	10.5
12	10.7
14	10.7
16	10.8
18	10.9
20	10.9
22	11.1
24	11.1
26	11.2
28	11.2
30	11.3

•	cable
LISN	loss
insertion	(incl. 10
loss	dB
ESH3-	atten-
Z 5	uator)
dB	dB
0.1	10.0
0.1	10.2
0.2	10.3
0.2	10.3
0.3	10.4
0.3	10.4
0.4	10.4
0.4	10.5
0.4	10.5
0.5	10.6
0.5	10.6
0.5	10.7
0.5	10.7
0.5	10.8
	-

Sample calculation

 U_{LISN} (dB μV) = U (dB μV) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used) Linear interpolation will be used for frequencies in between the values in the table.

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

	1	
	۸٦	
Eroguopov	AF	Corr
Frequency MHz	HFH-Z2)	Corr. dB
	dB (1/m)	
0.009	20.50	-79.6
0.01	20.45	-79.6
0.015	20.37	-79.6
0.02	20.36	-79.6
0.025	20.38	-79.6
0.03		-79.6
0.05	20.35	-79.6
0.08	20.30	-79.6
0.1	20.20	-79.6
0.2	20.17	-79.6
0.3	20.14	-79.6
0.49	20.12	-79.6
0.490001	20.12	-39.6
0.5	20.11	-39.6
0.8	20.10	-39.6
1	20.09	-39.6
2	20.08	-39.6
3	20.06	-39.6
4	20.05	-39.5
5	20.05	-39.5
6	20.02	-39.5
8	19.95	-39.5
10	19.83	-39.4
12	19.71	-39.4
14	19.54	-39.4
16	19.53	-39.3
18	19.50	-39.3
20	19.57	-39.3
22	19.61	-39.3
24	19.61	-39.3
26	19.54	-39.3
28	19.46	-39.2
30	19.73	-39.1

cable	cable					
		cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-40 dB/	distance	distance
chamber) c	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.3	0.1	-40	30	3
0.4	0.1	0.3	0.1	-40	30	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit}/d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

(d_L

$d_{Limit} = 3 m$		1
Fraguenay	AF R&S	Corr
Frequency	HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

				1	•	
cable	cable	cable	cable	distance	d_{Limit}	dused
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

50 6.0 -9.6 100 9.7 -9.2 150 7.9 -8.8 200 7.6 -8.6 250 9.5 -8.3 300 11.0 -8.1 350 12.4 -7.9 400 13.6 -7.6 450 14.7 -7.4 550 16.3 -7.0 600 17.2 -6.9 650 18.1 -6.9 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0	$(d_{Limit} = 10 \text{ m})$	1)							
100 9.7 -9.2 150 7.9 -8.8 200 7.6 -8.6 250 9.5 -8.3 300 11.0 -8.1 350 12.4 -7.9 400 13.6 -7.6 450 14.7 -7.4 550 15.6 -7.2 1.44 0.39 0.38 1.11 0.22 -10.5 1.28 0.35 1.03 0.19 -10.5 10 1.28 0.35 1.03 0.19 -10.5 10 1.28 0.35 1.03 0.19 -10.5 10 1.44 0.39 1.20 0.19 -10.5 10 1.55 0.46 1.24 0.22 -10.5 10 1.59 0.43 1.29 0.22 -10.5 10 1.67 0.42 1.41 0.15 <t< td=""><td>30</td><td>18.6</td><td>-9.9</td><td>0.29</td><td>0.04</td><td>0.23</td><td>0.02</td><td>-10.5</td><td>10</td></t<>	30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10
150 7.9 -8.8 200 7.6 -8.6 250 9.5 -8.3 300 11.0 -8.1 350 12.4 -7.9 400 13.6 -7.6 450 14.7 -7.4 550 15.6 -7.2 150 17.2 -6.9 650 18.1 -6.9 750 19.1 -6.3 850 20.1 -6.0	50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10
200 7.6 -8.6 250 9.5 -8.3 300 11.0 -8.1 350 12.4 -7.9 400 13.6 -7.6 450 14.7 -7.4 550 15.6 -7.2 16.3 -7.0 600 17.2 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0	100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10
250 9.5 -8.3 300 11.0 -8.1 350 12.4 -7.9 400 13.6 -7.6 450 14.7 -7.4 550 15.6 -7.2 160 17.2 -6.9 650 18.1 -6.9 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0	150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10
300 11.0 -8.1 350 12.4 -7.9 400 13.6 -7.6 450 14.7 -7.4 500 15.6 -7.2 160 17.2 -6.9 650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0	200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10
350 12.4 -7.9 400 13.6 -7.6 450 14.7 -7.4 500 15.6 -7.2 500 15.6 -7.2 550 16.3 -7.0 600 17.2 -6.9 650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0 1.99 0.60 1.56 0.27 -10.5 10 1.18 0.31 0.96 0.13 -10.5 10 1.28 0.35 1.03 0.19 -10.5 10 1.39 0.38 1.11 0.22 -10.5 10 1.44 0.39 1.20 0.19 -10.5 10 1.55 0.46 1.24 0.23 -10.5 10 1.59 0.43 1.29 0.23 -10.5 10 </td <td>250</td> <td>9.5</td> <td>-8.3</td> <td>0.98</td> <td>0.24</td> <td>0.80</td> <td>0.13</td> <td>-10.5</td> <td>10</td>	250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10
400 13.6 -7.6 450 14.7 -7.4 500 15.6 -7.2 550 16.3 -7.0 600 17.2 -6.9 650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0	300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10
450 14.7 -7.4 500 15.6 -7.2 550 16.3 -7.0 600 17.2 -6.9 650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0	350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10
500 15.6 -7.2 550 16.3 -7.0 600 17.2 -6.9 650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0	400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10
550 16.3 -7.0 600 17.2 -6.9 650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0 1.55 0.46 1.24 0.23 -10.5 10 1.67 0.34 1.35 0.22 -10.5 10 1.67 0.42 1.41 0.15 -10.5 10 1.87 0.54 1.46 0.25 -10.5 10 1.90 0.46 1.51 0.25 -10.5 10 1.99 0.60 1.56 0.27 -10.5 10	450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10
600 17.2 -6.9 650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0	500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10
650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0 1.67 0.34 1.35 0.42 1.41 0.15 -10.5 1.87 0.54 1.46 0.25 -10.5 10 1.90 0.46 1.51 0.25 -10.5 10 1.99 0.60 1.56 0.27 -10.5 10	550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10
700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0 1.67 0.42 1.41 0.15 -10.5 10 1.87 0.54 1.46 0.25 -10.5 10 1.90 0.46 1.51 0.25 -10.5 10 850 20.1 -6.0 1.99 0.60 1.56 0.27 -10.5 10	600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10
750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0 1.87 0.54 1.46 0.25 -10.5 10 1.90 0.46 1.51 0.25 -10.5 10 1.99 0.60 1.56 0.27 -10.5 10	650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10
800 19.6 -6.3 1.90 0.46 1.51 0.25 -10.5 10 850 20.1 -6.0 1.99 0.60 1.56 0.27 -10.5 10	700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10
850 20.1 -6.0 1.99 0.60 1.56 0.27 -10.5 10	750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10
	800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10
900 20.8 -5.8 2.14 0.60 1.63 0.29 -10.5 10	850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10
111 211 010 1100 1100 1100 1100	900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10
950 21.1 -5.6 2.22 0.60 1.66 0.33 -10.5 10	950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10
1000 21.6 -5.6 2.23 0.61 1.71 0.30 -10.5 10	1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

		cable		
cable		loss 3		
loss 1		(switch		
(relay +	cable	unit,		
cable	loss 2	atten-	cable	
inside	(outside	uator &	loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

Fraguency	AF R&S HF907	Corr.
Frequency MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

	ı			ı	1
			cable		
			loss 4		
cable			(switch		
loss 1	cable	cable	unit,		used
(relay	loss 2	loss 3	atten-	cable	for
inside	(inside	(outside	uator &	loss 5 (to	FCC
chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.5 ANTENNA EMCO 3160-09 (18 GHZ – 26.5 GHZ)

Frequency	AF EMCO 3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-9.5	3	1.0
4.4				-9.5	3	1.0
4.5				-9.5	3	1.0
4.6				-9.5	3	1.0
4.7				-9.5	3	1.0
4.7				-9.5	3	1.0
4.8				-9.5	3	1.0
4.9				-9.5	3	1.0
5.0				-9.5	3	1.0
5.1				-9.5	3	1.0
5.1				-9.5	3	1.0
5.2				-9.5	3	1.0
5.3				-9.5	3	1.0
5.4				-9.5	3	1.0
5.5				-9.5	3	1.0

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

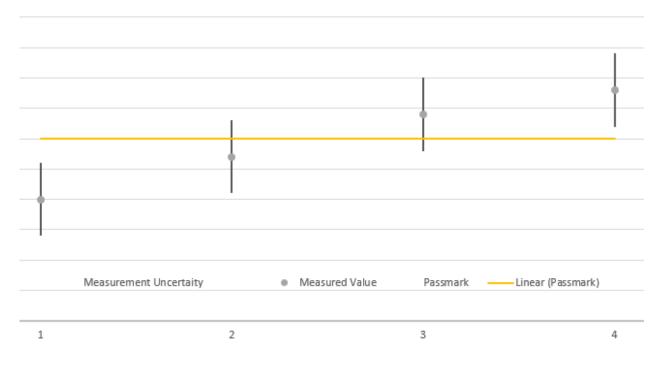
Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

8 PHOTO REPORT


Please see separate photo report.

9 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.