

ABEEWAY TEST REPORT

SCOPE OF WORK

FCC TESTING-U310

REPORT NUMBER

200731014SZN-004

ISSUE DATE

October 14, 2020

PAGES

58

DOCUMENT CONTROL NUMBER

FCC SAR_b © 2017 INTERTEK

SAR TEST REPORT

For

ABEEWAY

SMART BADGE

Model No.: U310

FCC ID: 2AOSP-U310

Report No.: 200731014SZN-004

Issue Date: October 14, 2020

Prepared by

Intertek Testing Services Shenzhen Ltd. Longhua Branch 101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, ShenZhen, China Telephone: 86-755-8601 6288 Fax: 86-755-8601 6751

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results referenced from this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

The test report only allows to be revised only within the report defined retention period unless further standard or the requirement was noticed

Version: 01-November-2017 Page: 1 of 58 FCC SAR_b

Table of Contents

1	GEN	ERAL INFORMATION	3
2	STA	TEMENT OF COMPLIANCE	4
3	EQU	IPMENT UNDER TEST (EUT) TECHNICAL DESCRIPTION	6
4	AUX	IILIARY EQUIPMENT DETAILS	7
5		Γ FACILITY	
6		ANTENNA LOCATIONS	
7		DANCE STANDARD	
8		XPOSURE	
8			
	8.1 8.2	LIMITSEVALUATION	
9		CIFIC ABSORPTION RATE (SAR)	
9		INTRODUCTION MATE (SAR)	
	9.1 9.2	SAR DEFINITION	
10		MEASUREMENTS SYSTEM CONFIGURATION	
10	10.1	SAR MEASUREMENT SET-UP	
	10.1	DASY5 E-FIELD PROBE SYSTEM	
	10.2	E-FIELD PROBE CALIBRATION	
	10.4	OTHER TEST EQUIPMENT	
	10.5	SCANNING PROCEDURE	
	10.6	DATA STORAGE AND EVALUATION	
	10.7	TISSUE-EQUIVALENT LIQUID	
	10.8	SYSTEM CHECK	
11	MEA	ASUREMENT PROCEDURES	25
	11.1	GENERAL DESCRIPTION OF TEST PROCEDURES	
	11.2	MEASUREMENT VARIABILITY	
	11.3	TEST RESULTS	27
12	MEA	ASUREMENT UNCERTAINTY	31
13	MAI	N TEST INSTRUMENT	31
ΑN	NEX A	A: TEST LAYOUT	32
ΑN	INEX I	3: SYSTEM CHECK RESULTS	33
ΑN	INEX E	E: PROBE DAE AND DIPOLE CALIBRATION CERTIFICATE	37

Page: 2 of 58

1 GENERAL INFORMATION

Applicant:	ABEEWAY 2000, Route des lucioles Sophia-Antipolis 06410 Biot France
Product Description:	SMART BADGE
Model Number:	U310
FCC ID	2AOSP-U310
File Number:	200731014SZN-004
Date of Test:	20 September 2020

The above equipment was tested by Intertek Testing Services Shenzhen Ltd. Longhua Branch. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in IEEE 1528-2013 and KDB 865664. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in ANSI/IEEE C95.1-1992.

The test results of this report relate only to the tested sample identified in this report.

Prepared and Checked by:	Approved by:	
Rode Liu	Kidd Yang	
Engineer	Technical Supervisor Date: October 14, 2020	

Version: 01-November-2017 Page: 3 of 58 FCC SAR_b

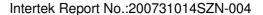
2 STATEMENT OF COMPLIANCE

Max. Reported SAR (1g)

	Test Position			Channel /	Limit of SAR _{1g} : 1.6 W/kg	
			Mode	Frequency	Measured	Reported
			(MHz)		SAR1g (W/kg)	SAR1g (W/kg)
	Body	Front Side	FHSS	CH63/914.9	1.16	1.41
	Body	Rear Side	DSSS	CH07 / 914.2	1.15	1.40

The SAR values found for the **SMART BADGE** are below the maximum recommended levels of 1.6 W/kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

The maximum reported SAR value is: 1.41W/kg (1g).


Version: 01-November-2017 Page: 4 of 58 FCC SAR_b

Modified Information

Rev.	Summary	Date of Rev.	Report No.	
Ver.1.0	Original Report	October 14, 2020	200731014SZN-004	

Version: 01-November-2017 Page: 5 of 58 FCC SAR_b

3 EQUIPMENT UNDER TEST (EUT) TECHNICAL DESCRIPTION

Characteristics	Description
Description:	SMART BADGE
Model name:	U310
Exposure Category:	Uncontrolled Environment/General Population
Test Mode(s):	Lora transmit
Operating Frequency Range:	Lora: 902.3-914.9MHz and 903-914.2MHz, Bluetooth:2402-2480MHz
Modulation:	CSS for Lora, GFSK for Bluetooth
Power Level:	Lora: 18dBm Bluetooth: -3.0dBm(max.)
Antenna Type:	Integral Antenna
Antenna Gain:	0 dBi for Lora antenna 0 dBi for Bluetooth antenna
Dimensions:	105mmX70mmX10mm
Rating:	DC 3.7V internal rechargeable Li-ion Polymer battery or DC 5V from charge port.
Product Software Version:	NA
Product Hardware Version:	NA

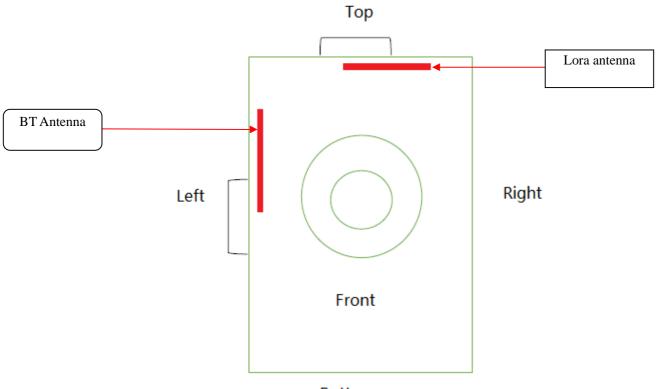
Note:

- 1. For more details, please refer to the User's manual of the EUT.
- 2. The sample under test was selected by the Client.

Version: 01-November-2017 Page: 6 of 58 FCC SAR_b

4 AUXILIARY EQUIPMENT DETAILS

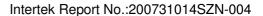
AE: Battery	Description
Manufacturer:	
Model:	
S/N:	
capacity:	1300mAh
Voltage:	3.7V


5 TEST FACILITY

Site Description					
	Intertek Testing Services Shenzhen Ltd. Longhua Branch was accredited by China National Accreditation Service for Conformity Assessment (CNAS) with registration no.: L0327 according to ISO/IEC 17025: 2005.				
	Accredited by FCC				
EMC Lab.	The Certificate Registration Number is CN1188				
	Accredited by Industry Canada				
	The Certificate Registration Number is 2055C				
Name of Firm	Intertek Testing Services Shenzhen Ltd. Longhua Branch				
Site Location	101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, ShenZhen, China				

Version: 01-November-2017 Page: 7 of 58 FCC SAR_b

6 EUT ANTENNA LOCATIONS



Bottom

Lora Antenna Location				
Distance from Lora ANT to Front Side	5mm			
Distance from Lora ANT to Rear Side	5mm			
Distance from Lora ANT to Top Side	10mm			
Distance from Lora ANT to Bottom Side	92mm			
Distance from Lora ANT to Left Side	30mm			
Distance from Lora ANT to Right Side	8mm			

Bluetooth Antenna Location				
Distance from Bluetooth ANT to Front Side	5mm			
Distance from Bluetooth ANT to Rear Side	6mm			
Distance from Bluetooth ANT to Top Side	15mm			
Distance from Bluetooth ANT to Bottom Side	52mm			
Distance from Bluetooth ANT to Left Side	12mm			
Distance from Bluetooth ANT to Right Side	58mm			

Version: 01-November-2017 Page: 8 of 58 FCC SAR_b

TEST REPORT

All Sides for SAR Testing Evaluation:

Mode	Location	Distance from ANT (mm)	Max. tune-up Power (mW)	SAR Exclusion Threshold Level (mW)	SAR Test
	Front Side	5	63.1	15.7	YES
	Rear Side	5		15.7	YES
902.3-914.9(Lora)	Top Side	10		31.4	YES
902.3-914.9(L01a)	Bottom Side	92	65.1	513.0	N/A
	Left Side	30		94.1	N/A
	Right Side	8		25.1	YES
	Front Side	5		15.7	YES
	Rear Side	5	63.1	15.7	YES
002 014 2/1 010	Top Side	10		31.4	YES
903-914.2(Lora)	Bottom Side	92		513.0	N/A
	Left Side	30		94.1	N/A
	Right Side	8		25.1	YES
	Front Side	5		9.5	N/A
	Rear Side	6		11.4	N/A
Bluetooth	Top Side	15	0.5	28.6	N/A
Diuelootti	Bottom Side	52		99.1	N/A
	Left Side	12		22.9	N/A
	Right Side	58		227.5	N/A

Note: SAR testing exemption according to KDB 447498 D01 Clause 4.3.1 with the following formula.

a) For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR,

b) For 100 MHz to 6 GHz and test separation distances > 50 mm, the 1-g SAR test exclusion thresholds are determined by the following

[Power allowed at numeric threshold for 50 mm in step a)] + [(test separation distance – 50 mm)·(f(MHz)/150)]} mW, for 100 MHz to 1500 MHz

c) Lora maximum power level = 18dBm = 79.4mW(duty factor=1); Bluetooth BLE maximum power level= -3.0dBm = 0.5mW(duty factor=1)

Version: 01-November-2017 Page: 9 of 58 FCC SAR_b

^{*}where f(GHz) is the RF channel transmit frequency in GHz

^{*}When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

7 GUIDANCE STANDARD

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

FCC 47CFR §2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices

△ANSI C95.1, 1992: Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.(IEEE Std C95.1-1991)

☑IEEE Std 1528™-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB 865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

⊠KDB 447498 D01 General RF Exposure Guidance v06: RF Exposure Procedures and Equipment Authorization Policies For Mobile and Portable Table Device

KDB 248227 D01 802.11 Wi-Fi SAR v02r02: SAR Guidance for IEEE 802.11 (Wi-Fi) Transmotters

Remark:

This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 11 of this test report are below limits specified in the relevant standards for the tested bands only.

Version: 01-November-2017 Page: 10 of 58 FCC SAR_b

8 RF EXPOSURE

8.1 LIMITS

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and ankles
0.08	1.6	4.0

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

8.2 EVALUATION

According to FCC KDB447498 D01 and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Routine SAR evaluation refers to that specifically required by § 2.1093, using measurements or computer simulation. Portable transmitters with output power greater than the applicable low threshold require SAR testing to qualify for TCB approval.

Version: 01-November-2017 Page: 11 of 58 FCC SAR_b

9 SPECIFIC ABSORPTION RATE (SAR)

9.1 INTRODUCTION

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

9.2 SAR DEFINITION

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density ($^{\rho}$). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

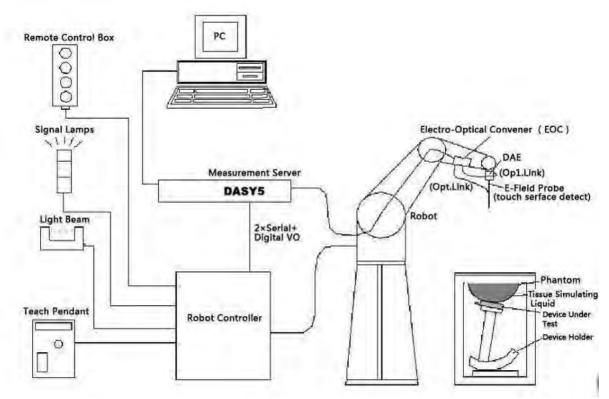
Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

Version: 01-November-2017 Page: 12 of 58 FCC SAR_b



10 SAR MEASUREMENTS SYSTEM CONFIGURATION

10.1 SAR MEASUREMENT SET-UP

The DASY5 system for performing compliance tests consists of the following items:

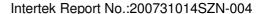
- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing,
 AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win 7 profesional operating system and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Picture 1. SAR Lab Test Measurement Set-up

Version: 01-November-2017 Page: 13 of 58 FCC SAR_b

10.2 DASY5 E-FIELD PROBE SYSTEM

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection turning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.


Probe Specifications:

Frequency	10 MHz - >6 GHz Linearity: ±0.2 dB (30 MHz - 6 GHz)
Directivity	±0.3 dB in TSL (rotation around probe axis) ±0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g - >100 mW/g Linearity: ±0.2 dB (noise: typically <1 μW/g)
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 10 mm) Typical distance from probe tip to dipole centers: 1 mm
Applications	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better than 30%

Picture 2 E-field Probe

Version: 01-November-2017 Page: 14 of 58 FCC SAR_b

10.3 E-FIELD PROBE CALIBRATION

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mw/ cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

10.4 OTHER TEST EQUIPMENT

10.4.1 Data Acquisition Electronics (DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode

rejection is above 80 dB.

Picture 3: DAE

Version: 01-November-2017 Page: 15 of 58 FCC SAR_b

10.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02mm)
- > High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- > Jerk-free straight movements (brushless synchron motors; no stepper motors)
- > Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture 4 DASY 5

Version: 01-November-2017 Page: 16 of 58 FCC SAR_b

10.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chip disk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

Picture 5 Server for DASY 5

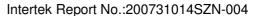
The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

10.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\mathcal{E}=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.


<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture 6: Device Holder

Version: 01-November-2017 Page: 17 of 58 FCC SAR_b

10.4.5 Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness: 2 ± 0. 2 mm Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Available: Special

Picture 7: SAM Twin Phantom

10.5 SCANNING PROCEDURE

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. \pm 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above \pm 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within \pm 30°.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing is set according to FCC KDB Publication 865664. During scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The

Version: 01-November-2017 Page: 18 of 58 FCC SAR_b

volume was then integrated with the trapezoidal algorithm.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- · maximum search
- extrapolation
- · boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

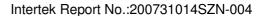
Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space.

They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Table 1. Area	and Zoom Scan	Recolutions no	er FCC KDB Publication	1 26566/ DO1
Table L. Alea	i anu zuuni otan	L DESOIULIONS DE	H FUU NUD FUUIIGAIIUI	1 003004 DU1

Frequency	Maximum Area Scan Resolution (mm) (Δxarea, Δyarea)	Maximum Zoom Scan Resolution (mm) (Δxzoom, Δyzoom)	Maximum Zoom Scan Spatial Resolution (mm) Δzzoom(n)	Minimum Zoom Scan Volume (mm) (x,y,z)
≤2 GHz	≤15	≤8	≤5	≥ 30
2-3 GHz	≤12	≤5	≤5	≥30
3-4 GHz	≤12	≤5	≤4	≥28
4-5 GHz	≤10	≤4	≤3	≥25
5-6 GHz	≤10	≤4	≤2	≥22


10.6 DATA STORAGE AND EVALUATION

10.6.1 Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device set up, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a loss less media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Version: 01-November-2017 Page: 19 of 58 FCC SAR_b

10.6.2 Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:

- Sensitivity Normi, aio, ai1, ai2

Conversion factor ConvF_iDiode compression point Dcp_i

Device parameters:

- Frequency f
- Crest factor cf

Media parameters:

- Conductivity
- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

 $V_i = U_i + U_i^2 \cdot c f / dcp_i$

With V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be

evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

aii = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

Version: 01-November-2017 Page: 20 of 58 FCC SAR_b

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

TEST REPORT

The primary field data are used to calculate the derived field units.

SAR = (E_{tot})
$$2 \cdot \sigma / (\rho \cdot 1000)$$

with SAR = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

- = conductivity in [mho/m] or [Siemens/m]
- = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

 $P_{pwe} = E_{tot}^2 / 3770 \text{ or } P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 \mathbf{E}_{tot} = total electric field strength in V/m; \mathbf{H}_{tot} = total magnetic field strength in A/m

Version: 01-November-2017 Page: 21 of 58 FCC SAR_b

10.7 TISSUE-EQUIVALENT LIQUID 10.7.1 Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, salt and Glycol. The liquid has previously been proven to be suited for worst-case. The Table 2 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB 865664 D01.

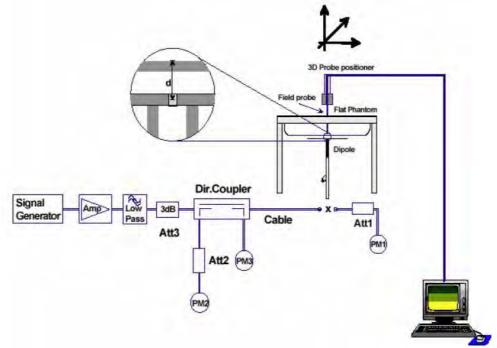
Table 2: Composition of the Head Tissue Equivalent Matter

- 44515 21 5511155511511 51 1115 11544 115545 2541 4115111	atto
MIXTURE%	FREQUENCY (Head) 900MHz
Water	73.2
Glycol	26.7
Salt	0.1
Dielectric Parameters Target Value	f=900MHz ε=41.5 σ =0.97

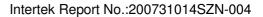
10.7.2 Tissue-equivalent Liquid Properties

Table 3: Dielectric Performance of Tissue Simulating Liquid

Test Date	Frequ ency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (εr)	Conductivity Target (σ)	Permittivity Target (εr)	Delta (o) (%)	Delta (εr) (%)	Limit (%)
2020-09-20	900	Head	21.5	0.95	40.75	0.97	41.5	-2.06	-1.81	±5


Version: 01-November-2017 Page: 22 of 58 FCC SAR_b

10.8 SYSTEM CHECK


10.8.1 Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 4. System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %). System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

Picture 9. System Check Set-up

Version: 01-November-2017 Page: 23 of 58 FCC SAR_b

10.8.2 System Check Results

Table 4: System Check for Head Tissue Simulating Liquid

Frequency	Test Date	Dielectric Parameters		250mW Measured SAR1g	1W Normalized SAR1g	1W Target SAR1	Limit(±10% Deviation)
		٤r	σ (s/m)	(W/kg)			
900MHz	2020-09-20	41.5	0.97	2.81	11.24	10.7	5.05

Note: 1. The graph results see ANNEX B.

Version: 01-November-2017 Page: 24 of 58 FCC SAR_b

^{2.} Target Values used derive from the calibration certificate.

11 MEASUREMENT PROCEDURES

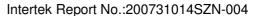
11.1 GENERAL DESCRIPTION OF TEST PROCEDURES

For LaRa SAR testing, engineering testing software installed on the DUT can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

For the Lora SAR tests, a communication link is set up with the test mode software for Lora mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Provided higher maximum output power is not specified for the other channels, channels 1, 31 and 64 are used to configure 200KHz channels for SAR measurements; otherwise, the closest adjacent channel with the highest maximum output power specified for production units should be tested instead of channels 1, 31 or 64. otherwise, the channel with highest specified maximum output power should be tested instead.

All operating modes are tested independently according to the service requirements in each frequency point.

Version: 01-November-2017 Page: 25 of 58 FCC SAR_b


11.2 MEASUREMENT VARIABILITY

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Version: 01-November-2017 Page: 26 of 58 FCC SAR_b

11.3 TEST RESULTS

11.3.1 Conducted Power Result

Lora Mode (902.3-914.9MHz)

Mode	Channel number	Frequency (MHz)	Average Output Power(dBm)	Average Tune up limited(dBm)
	0	902.3	17.73	16±2
Lora	31	908.7	17.55	16±2
	63	914.9	17.17	16±2

Lora Mode (903-914.2MHz)

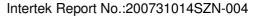
 (- /			
Mode	Channel number	Frequency (MHz)	Average Output Power(dBm)	Average Tune up limited(dBm)
	0	903.0	17.68	16±2
Lora	4	907.8	17.40	16±2
	7	914.2	17.15	16±2

Bluetooth BLE

Test Frequency (MHz)	Output Power (dBm)	Tune up limited(dBm)
2402	-3.0	-5.0±2
2440	-3.4	-5.0±2
2480	-3.9	-5.0±2

Version: 01-November-2017 Page: 27 of 58 FCC SAR_b

11.3.2 SAR TEST RESULTS

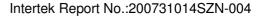

Lora 902.3-914.9MHz SAR Value

Test Position	Channel / Frequency	Mode	Maximum Allowed Power	Conducted Power	Drift ±2.0 dB		nit SAR1g 1	.6 W/kg
	(MHz)		(dBm)	(dBm)	Drift (dB)	Measured SAR1g	Scaling Factor	Reported SAR1g (W/kg)
	Test Position	on of extre	emity (Distar	nce Between	EUT and F	Flat Phatom	:0mm)	
Rear Side	CH00 / 902.3	FHSS	18.0	17.73	0.16	1.14	1.06	1.21
Rear Side	CH31 / 908.7	FHSS	18.0	17.55	-0.13	1.16	1.11	1.29
Rear Side	CH63 / 914.9	FHSS	18.0	17.15	-0.08	1.01	1.22	1.23
Front Side	CH00 / 902.3	FHSS	18.0	17.73	-0.14	1.30	1.06	1.39
Front Side	CH31 / 908.7	FHSS	18.0	17.55	-0.18	1.22	1.11	1.36
Front Side	CH63 / 914.9	FHSS	18.0	17.15	-0.03	1.16	1.22	1.41
Right Side	CH00 / 902.3	FHSS	18.0	17.73	-0.19	0.327	1.06	0.35
Right Side	CH31 / 908.7	FHSS	18.0	17.55	-0.15	0.418	1.11	0.47
Right Side	CH63 / 914.9	FHSS	18.0	17.15	-0.16	0.303	1.22	0.37
Top Side	CH00 / 902.3	FHSS	18.0	17.73	0.18	1.04	1.06	1.11
Top Side	CH31 / 908.7	FHSS	18.0	17.55	0.14	0.891	1.11	0.99
Top Side	CH63 / 914.9	FHSS	18.0	17.15	-0.12	0.794	1.22	0.97
			Repeat	ed measurer	ments			
Rear Side	CH00 / 902.3	FHSS	18.0	17.73	0.18	1.11	1.06	1.18
Rear Side	CH31 / 908.7	FHSS	18.0	17.55	-0.19	1.13	1.11	1.26
Rear Side	CH63 / 914.9	FHSS	18.0	17.15	-0.14	1.05	1.22	1.28
Front Side	CH00 / 902.3	FHSS	18.0	17.73	-0.16	1.18	1.06	1.25
Front Side	CH31 / 908.7	FHSS	18.0	17.55	0.12	1.14	1.11	1.27
Front Side	CH63 / 914.9	FHSS	18.0	17.15	0.14	1.07	1.22	1.31
Top Side	CH00 / 902.3	FHSS	18.0	17.73	-0.15	0.96	1.06	1.02
Top Side	CH31 / 908.7	FHSS	18.0	17.55	0.19	0.831	1.11	0.93
Top Side	CH63 / 914.9	FHSS	18.0	17.15	-0.11	0.737	1.22	0.90

Note:

- 1. The value with blue color is the maximum SAR Value of each test band.
- 2. The EUT exercise program (provided by client) used during SAR testing was designed to exercise the various system components in a manner similar to a typical use. During the test, Channel and test mode software provided by the applicant was used to control the operating channel as well as the test mode. The worst case configuration is used in all specified testing.
- 3. When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

Version: 01-November-2017 Page: 28 of 58 FCC SAR_b


Lora 903-914.2MHz SAR Value

Test Position	Channel / Frequency	Mode	Maximum Allowed Power	Conducted Power (dBm)	Drift ±2.0 dB		mit SAR1g	
	(MHz)		(dBm)	(UDIII)	Drift (dB)	Measured SAR1g	Scaling Factor	Reported SAR1g (W/kg)
	Test Position	n of extre	mity (Distan	ce Between	EUT and F	lat Phatom:	0mm)	
Rear Side	CH00 / 903.0	DSSS	18.0	17.68	-0.18	1.29	1.08	1.39
Rear Side	CH04 / 907.8	DSSS	18.0	17.40	-0.16	1.16	1.15	1.33
Rear Side	CH07 / 914.2	DSSS	18.0	17.15	-0.04	1.15	1.22	1.40
Front Side	CH00 / 903.0	DSSS	18.0	17.68	-0.17	1.23	1.08	1.33
Front Side	CH04 / 907.8	DSSS	18.0	17.40	-0.14	1.21	1.15	1.39
Front Side	CH07 / 914.2	DSSS	18.0	17.15	-0.17	1.13	1.22	1.38
Right Side	CH00 / 903.0	DSSS	18.0	17.68	-0.09	0.49	1.08	0.53
Right Side	CH04 / 907.8	DSSS	18.0	17.40	-0.11	0.46	1.15	0.53
Right Side	CH07 / 914.2	DSSS	18.0	17.15	-0.06	0.35	1.22	0.43
Top Side	CH00 / 903.0	DSSS	18.0	17.68	-0.10	1.02	1.08	1.10
Top Side	CH04 / 907.8	DSSS	18.0	17.40	-0.19	1.03	1.15	1.18
Top Side	CH07 / 914.2	DSSS	18.0	17.15	-0.12	0.83	1.22	1.01
			Repeat	ed measurer	nents			
Rear Side	CH00 / 903.0	DSSS	18.0	17.68	-0.16	1.23	1.08	1.33
Rear Side	CH04 / 907.8	DSSS	18.0	17.40	-0.11	1.12	1.15	1.29
Rear Side	CH07 / 914.2	DSSS	18.0	17.15	0.13	1.10	1.22	1.34
Front Side	CH00 / 903.0	DSSS	18.0	17.68	-0.18	1.25	1.08	1.35
Front Side	CH04 / 907.8	DSSS	18.0	17.40	0.06	1.17	1.15	1.35
Front Side	CH07 / 914.2	DSSS	18.0	17.15	-0.15	1.02	1.22	1.24
Top Side	CH00 / 903.0	DSSS	18.0	17.68	-0.16	1.04	1.08	1.12
Top Side	CH04 / 907.8	DSSS	18.0	17.40	-0.19	0.98	1.15	1.13
Top Side	CH07 / 914.2	DSSS	18.0	17.15	-0.13	0.79	1.22	0.96

Note:

- 1. The value with blue color is the maximum SAR Value of each test band.
- 2. The EUT exercise program (provided by client) used during SAR testing was designed to exercise the various system components in a manner similar to a typical use. During the test, Channel and test mode software provided by the applicant was used to control the operating channel as well as the test mode. The worst case configuration is used in all specified testing.
- 3. When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.

Version: 01-November-2017 Page: 29 of 58 FCC SAR_b

11.3.3 Simultaneous Transmission SAR Analysis.

List of Mode for Simultaneous Multi-band Transmission:

No.	Applicable Simultaneous Transmission Combination
1.	LoRa+Bluetooth

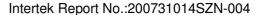
1. According to the KDB 447498 D01 v06, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion: (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01 v06 as below:

Bluetooth:

Tune-Up Power (dBm)	Max. Power (mW)	Distance (mm)	Frequency(GHz)	X	SAR(1g) W/kg
-3.0	0.5	5	2.480	7.5	0.02

2. The maximum SAR summation is calculated based on the same configuration and test position.


Maximum Summation:

5	Lora	ВТ	Summed	
Position	Max. Scaled SAR(1g) W/kg	Max. Scaled SAR(1g) W/kg	SAR(1g) W/kg	
Top Side	1.41	0.02	1.43	

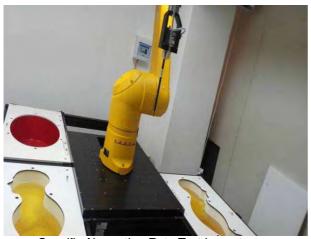
11.3.4 MAXIMUM GRAPH RESULTS

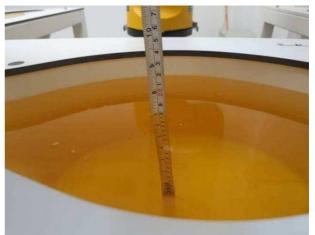
The graph results see ANNEX C.

Version: 01-November-2017 Page: 30 of 58 FCC SAR_b

12 MEASUREMENT UNCERTAINTY

The measured SAR were <1.5 W/kg for all frequency bands, therefore per KDB Publication 865664 D01 v01r04, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports.


13 MAIN TEST INSTRUMENT


	Equipment No.	Equipment	Manufacture r	Model No.	Serial No.	Last Cal.	Cal. Interval
	SZ060-01	SAR Test System	SPEAG	DASY52 SAR TX90XL	F14/5YJ0B1/ A/01	10/22/2019	1 year
\boxtimes	SZ060-01- 01	E-Field Probe	SPEAG	EX3DV4	7322	10/22/2019	1 year
\boxtimes	SZ060-01- 05	System Validation Dipole	SPEAG	D900V2	1d182	9/7/2018	3year
	SZ060-01- 13	Data Acquisition Unit	SPEAG	DAE4	1473	9/24/2019	1 year
\boxtimes	SZ060-01- 14	Dielectric Assessment Kit	SPEAG	DAKS 3.5	1056	N/A	N/A
\boxtimes	SZ060-01- 15	Vector Reflectometer	Copper Mountain Technologies	Planar R140	0090614	N/A	N/A
\boxtimes	SZ060-01- 16	Thermometer	LKM electronics GmbH	DTM3000	3477	7/8/2020	1 year
\boxtimes	SZ060-01- 17	Power Amplifier	Mini Circuits	ZHL-42W+	QA1449003	N/A	N/A
\boxtimes	SZ060-01- 18	Power Amplifier	Mini Circuits	ZVE-8G+	111701437	N/A	N/A
\boxtimes	SZ060-01- 20	SAM Twin Phantom	SPEAG	SAM Twin Phantom V5.0	1891	N/A	N/A
\boxtimes	SZ180-15	Signal Generator	R&S	SMB100A	113589	10/29/2019	1 year
\boxtimes	SZ070-04	Directional Bridge	Agilent	86205A	MY31402141	12/24/2019	1 year
\boxtimes	SZ182-02	RF Power Meter	Anritsu	ML2496A	1302005	5/27/2020	1 year
\boxtimes	SZ182-03	Average power sensor	R&S	NRP-Z22	101689	5/27/2020	1 year
\boxtimes	SZ070-01	Attenuator	Huber Suhner	10dB	N/A	N/A	N/A
\boxtimes	SZ070-02	Attenuator	Huber Suhner	30dB	N/A	N/A	N/A
\boxtimes	N/A	Device Holder	SPEAG	N/A	N/A	N/A	N/A
\boxtimes	SZ060-01- 22	SAR Test System Software	SPEAG	DASY5.2 SW: 52.10.1 (1476)	N/A	N/A	N/A

Version: 01-November-2017 Page: 31 of 58 FCC SAR_b

ANNEX A: TEST LAYOUT

Specific Absorption Rate Test Layout

Liquid Depth in the flat phantom (900MHz, 18.2cm)

Remark: For the EuT test configuration, please refer to the document of SAR test setup photos.pdf.

Version: 01-November-2017 Page: 32 of 58 FCC SAR_b

ANNEX B: SYSTEM CHECK RESULTS

Date: 09/20/2020

Test Laboratory: Intertek Service

System Check 900

Communication System: UID 0, CW (0); Frequency: 900 MHz; Duty Cycle: 1:1

Medium: HSL900 Medium parameters used: f = 900 MHz; $\sigma = 0.95$ S/m; $\epsilon r = 40.75$; $\rho = 1000$ kg/m3

Phantom section: Flat Section

Ambient Temperature: 22.0 °C; Liquid Temperature: 21.5 °C

DASY Configuration:

Probe: EX3DV4 - SN7322; ConvF(9.63, 9.63, 9.63) @ 900 MHz; Calibrated: 10/22/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1473; Calibrated: 9/24/2019

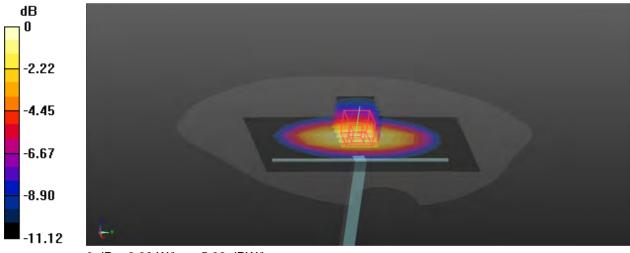
Phantom: SAM 1 V5.0 (30deg); Type: QD 000 P40 CD; Serial: 1891

• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

System Performance Check at Frequencies above 1 GHz/System Check/Area Scan (7x13x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 3.53 W/kg


System Performance Check at Frequencies above 1 GHz/System Check/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 57.02 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 4.38 W/kg

SAR(1 g) = 2.81 W/kg; SAR(10 g) = 1.82 W/kgMaximum value of SAR (measured) = 3.83 W/kg

0 dB = 3.83 W/kg = 5.83 dBW/kg

Version: 01-November-2017 Page: 33 of 58 FCC SAR_b

ANNEX C: MAXIMUM GRAPH RESULTS

Date: 09/20/2020

Test Laboratory: Intertek Service

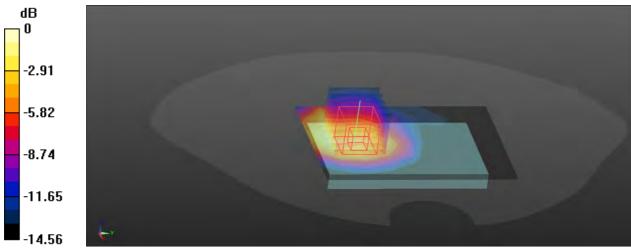
FHSS 914.9MHz Front Face Side

Communication System: UID 0, Lora (0); Frequency: 914.9 MHz;Duty Cycle: 1:1

Medium: HSL900 Medium parameters used: f = 914.9 MHz; $\sigma = 0.95 \text{ S/m}$; $\epsilon r = 40.7$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Flat Section

Ambient Temperature: 22.0 °C; Liquid Temperature: 21.5 °C


DASY Configuration:

- Probe: EX3DV4 SN7322; ConvF(9.63, 9.63, 9.63) @ 902.3 MHz; Calibrated: 10/22/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1473; Calibrated: 9/24/2019
- Phantom: SAM 1 V5.0 (30deg); Type: QD 000 P40 CD; Serial: 1891
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Configuration/Body/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.08 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.33 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 2.48 W/kg SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.775 W/kg

SAH(1 g) = 1.16 W/kg; SAH(10 g) = 0.7/5 W/kg Maximum value of SAH (measured) = 2.03 W/kg

0 dB = 2.03 W/kg = 3.07 dBW/kg

Version: 01-November-2017 Page: 34 of 58 FCC SAR_b

Date: 9/20/2020

Test Laboratory: Intertek Service

DSSS_914.2M_Rear Face Side

Communication System: UID 0, Lora (0); Frequency: 914.2 MHz;Duty Cycle: 1:1

Medium: HSL900 Medium parameters used (interpolated): f = 914.2 MHz; $\sigma = 0.95 \text{ S/m}$; $\epsilon r = 40.693$; $\rho =$

1000 kg/m3

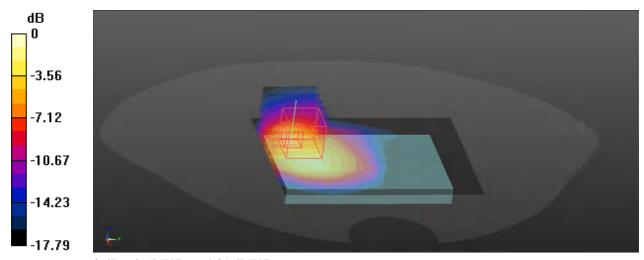
Phantom section: Flat Section

Ambient Temperature: 22.0 °C; Liquid Temperature: 21.5 °C

DASY Configuration:

Probe: EX3DV4 - SN7322; ConvF(9.63, 9.63, 9.63) @ 903 MHz; Calibrated: 10/22/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)


Electronics: DAE4 Sn1473; Calibrated: 9/24/2019

Phantom: SAM 1 V5.0 (30deg); Type: QD 000 P40 CD; Serial: 1891

DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Configuration/Body/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.32 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.01 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.69 W/kg SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.691 W/kg Maximum value of SAR (measured) = 2.52 W/kg

0 dB = 2.52 W/kg = 4.01 dBW/kg

Version: 01-November-2017 Page: 35 of 58 FCC SAR_b

ANNEX D: SYSTEM VALIDATION

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (≤20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Table D.1: Antenna Parameters with Body Tissue Simulating Liquid

Table D.1: System Validation Part 1

	Dipole D900V2	SN: 1d18	2	
	Head Lic	uid		
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ
2018-09-07	-36.9	N/A	50.3-1.40j	N/A
2019-11-13	-36.7	0.54%	50.3-1.45j	0.05Ω
2020-09-20	-36.5	1.08%	50.3-1.52j	0.12Ω

Table D.2: System Validation Part 2

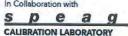
Temperature: 21°C

·		Probe SN:	7322		
Liquid	Measured	Description	Dielectric Pa	arameters	Verdict
name	Date	Description	εr	σ(s/m)	Verdict
		Target Value	41.5	0.97	
900MHz	2019-11-13	±5% window	39.43 — 43.57	0.92 - 1.02	PASS
(Head)	2019-11-13	Measurement Value	40.73	0.96	PAGG

Table D.3: System Validation Part 3

CW	Sensitivity	PASS	PASS
Validation	Probe linearity	PASS	PASS
validation	Probe Isotropy	PASS	PASS
Mod	MOD.type	QPSK	QPSK
Validation	Duty factor	PASS	PASS
vandation	PAR	PASS	PASS

Version: 01-November-2017 Page: 36 of 58 FCC SAR_b



TEST REPORT

Intertek Report No.:200731014SZN-004

ANNEX E: PROBE, DAE AND DIPOLE CALIBRATION CERTIFICATE

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

Intertek

Certificate No:

Z18-60299

CALIBRATION CERTIFICATE

Object

D900V2 - SN:1d182

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

September 7, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 \pm 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102083	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
Power sensor NRV-Z5	100542	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
Reference Probe EX3DV4	SN 7464	12-Sep-17(SPEAG,No.EX3-7464_Sep17)	Sep-18
DAE4	SN 1524	13-Sep-17(SPEAG,No.DAE4-1524_Sep17)	Sep-18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-18 (CTTL, No.J18X00560)	Jan-19
NetworkAnalyzer E5071C	MY46110673	24-Jan-18 (CTTL, No.J18X00561)	Jan-19

Calibrated by:

Name Zhao Jing Function SAR Test Engineer Signatu

Reviewed by:

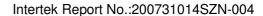
Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader


Issued: September 10, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z18-60299

Page 1 of 8

Version: 01-November-2017 Page: 37 of 58 FCC SAR_b

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax; +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss; These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60299

Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.1.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5,1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.7 ± 6 %	0.97 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.66 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	10.7 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.72 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.92 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.5 ± 6 %	1.07 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		,202

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.74 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	10.8 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.81 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	7.17 mW /g ± 18.7 % (k=2)

Certificate No: Z18-60299

Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.3Ω- 1.40jΩ	
Return Loss	- 36.9dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.8Ω- 3.13jΩ	
Return Loss	- 26.7dB	

General Antenna Parameters and Design

1.273 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z18-60299

Page 4 of 8

Date: 09.07.2018

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tcl: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 1d182

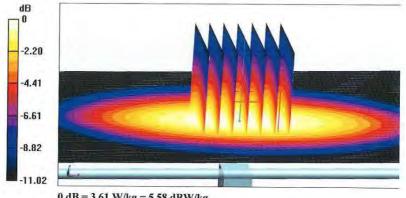
Communication System: UID 0, CW; Frequency: 900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 900 MHz; $\sigma = 0.966 \text{ S/m}$; $\epsilon_r = 42.67$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(10.03, 10.03, 10.03) @ 900 MHz; Calibrated: 9/12/2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1524; Calibrated: 9/13/2017
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

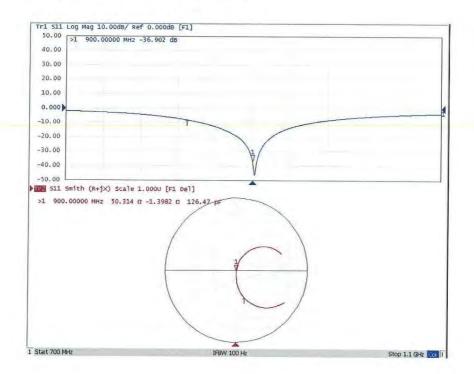
Reference Value = 59.81 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 4.11 W/kg

SAR(1 g) = 2.66 W/kg; SAR(10 g) = 1.72 W/kg

Maximum value of SAR (measured) = 3.61 W/kg

0 dB = 3.61 W/kg = 5.58 dBW/kg


Certificate No: Z18-60299

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: Z18-60299

Page 6 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 09.06.2018

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 1d182

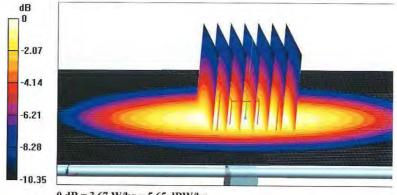
Communication System: UID 0, CW; Frequency: 900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 900 MHz; $\sigma = 1.071$ S/m; $\epsilon_r = 55.51$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(10.17, 10.17, 10.17) @ 900 MHz; Calibrated: 9/12/2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1524; Calibrated: 9/13/2017
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

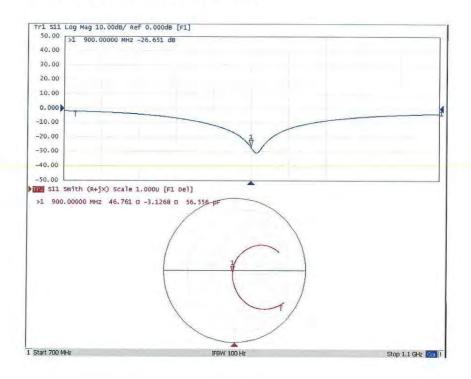
Reference Value = 57.39 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 4.17 W/kg

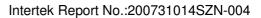
SAR(1 g) = 2.74 W/kg; SAR(10 g) = 1.81 W/kg

Maximum value of SAR (measured) = 3.67 W/kg

0 dB = 3.67 W/kg = 5.65 dBW/kg


Certificate No: Z18-60299

Page 7 of 8



Impedance Measurement Plot for Body TSL

Certificate No: Z18-60299

Page 8 of 8

In Collaboration with CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504

Client

Intertek

Certificate No: Z19-60328

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:7322

Calibration Procedure(s)

FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date: October 22, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	18-Jun-19 (CTTL, No.J19X05125)	Jun-20
Power sensor NRP-Z91	101547	18-Jun-19 (CTTL, No.J19X05125)	Jun-20
Power sensor NRP-Z91	101548	18-Jun-19 (CTTL, No.J19X05125)	Jun-20
Reference10dBAttenuator	18N50W-10dB	09-Feb-18(CTTL, No.J18X01133)	Feb-20
Reference20dBAttenuator	18N50W-20dB	09-Feb-18(CTTL, No.J18X01132)	Feb-20
Reference Probe EX3DV4	SN 7307	24-May-19(SPEAG,No.EX3-7307_May19/2)	May-20
DAE4	SN 1525	26-Aug-19(SPEAG, No.DAE4-1525_Aug19)	Aug -20
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	18-Jun-19 (CTTL, No.J19X05127)	Jun-20
Network Analyzer E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan -20
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	Amo I
Reviewed by:	Lin Hao	SAR Test Engineer	林光
Approved by:	Qi Dianyuan	SAR Project Leader	261

Issued: October 24, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z19-60328

Page 1 of 11

Version: 01-November-2017 Page: 45 of 58 FCC SAR_b

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).

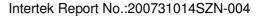
NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
frequency response is included in the stated uncertainty of ConvF.

 DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.

 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.

Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
media. VR is the maximum calibration range expressed in RMS voltage across the diode.

• ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.


 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
probe tip (on probe axis). No tolerance required.

 Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z19-60328

Page 2 of 11

Probe EX3DV4

SN: 7322

Calibrated: October 22, 2019

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z19-60328

Page 3 of 11

Version: 01-November-2017 Page: 47 of 58 FCC SAR_b

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7322

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.45	0.56	0.52	±10.0%
DCP(mV) ^B	97.8	98.5	98.9	1

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc E (k=2)
0 CW	Х	0.0	0.0	1.0	0.00	155.3	±2.2%	
		Υ	0.0	0.0	1.0		176.3	
		Z	0.0	0.0	1.0		171.6	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%,

B Numerical linearization parameter: uncertainty not required.

Certificate No: Z19-60328

Page 4 of 11

Version: 01-November-2017 Page: 48 of 58 FCC SAR_b

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.51 Xueyuan Rond, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7322

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.92	9.92	9.92	0.40	0.80	±12.1%
835	41.5	0.90	9.63	9.63	9.63	0.14	1.44	±12.1%
1750	40.1	1.37	8.33	8.33	8.33	0.22	1.10	±12.1%
1900	40.0	1.40	8.06	8.06	8.06	0.24	1.02	±12.1%
2300	39.5	1.67	7.73	7.73	7.73	0.48	0.75	±12.1%
2450	39.2	1.80	7.49	7.49	7.49	0.54	0.73	±12.1%
2600	39.0	1.96	7.28	7.28	7.28	0.42	0.85	±12.1%
5250	35.9	4.71	5.28	5.28	5.28	0.45	1.40	±13.3%
5750	35.4	5.22	4.70	4.70	4.70	0.50	1.50	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z19-60328

Page 5 of 11

Version: 01-November-2017 Page: 49 of 58 FCC SAR_b

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

E-mail: ettl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.cbinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7322

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
835	55.2	0.97	9.71	9.71	9.71	0.18	1.34	±12.1%
1750	53.4	1.49	8.03	8.03	8.03	0.20	1.18	±12.1%
1900	53.3	1.52	7.75	7.75	7.75	0.20	1,15	±12.1%
2450	52.7	1.95	7.46	7.46	7.46	0.57	0.77	±12.1%
2600	52.5	2.16	7.22	7.22	7.22	0.66	0.70	±12.1%
5250	48.9	5.36	4.74	4.74	4.74	0.47	1.49	±13.3%
5750	48.3	5,94	4.22	4.22	4.22	0.50	1.70	±13.3%

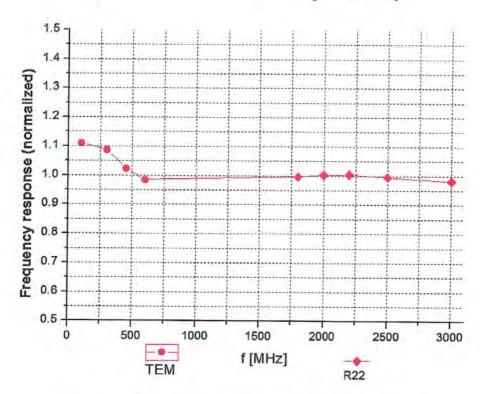
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z19-60328

Page 6 of 11

Version: 01-November-2017 FCC SAR_b Page: 50 of 58

F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

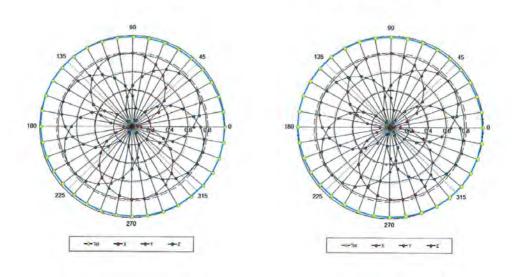
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

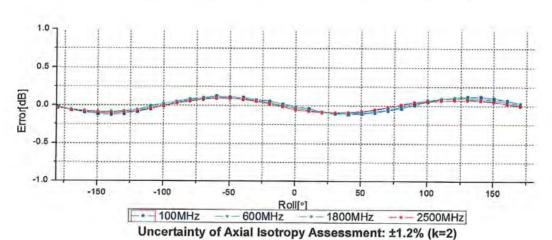
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No: Z19-60328

Page 7 of 11




Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

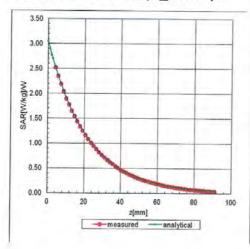
Certificate No: Z19-60328

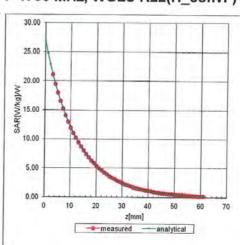
Page 8 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

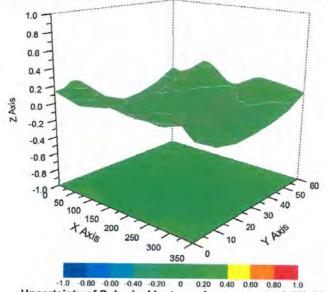
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) 105 Input Signal[µV] 104 10 10-2 10 10 10² 10³ SAR[mW/cm3] not compensated Error[dB] -2 10-2 10-1 10° SAR[mW/cm³]^{10¹} 10² 10 not compensated compensated Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No: Z19-60328

Page 9 of 11




Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Fttp://www.chinattl.cn

Conversion Factor Assessment


f=750 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)

Certificate No: Z19-60328

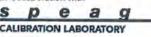
Page 10 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax; +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7322

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	41.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm


Certificate No: Z19-60328

Page 11 of 11

In Collaboration with

Client :

Intertek

Certificate No: Z19-60329

CALIBRATION CERTIFICATE

Object DAE4 - SN: 1473

Calibration Procedure(s) FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date: September 24, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
1971018	24-Jun-19 (CTTL, No.J19X05126)	Jun-20

Name

Function

Calibrated by:

Yu Zongying

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: September 26, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60329

Page 1 of 3

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z19-60329

Page 2 of 3

Version: 01-November-2017 Page: 57 of 58 FCC SAR_b

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1µV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Υ	Z
High Range	404.010 ± 0.15% (k=2)	404.606 ± 0.15% (k=2)	404.459 ± 0.15% (k=2)
Low Range	3.96560 ± 0.7% (k=2)	3.99656 ± 0.7% (k=2)	3.99009 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	347° ± 1 °
---	------------

Certificate No: Z19-60329

****** End of Report*

Page 3 of 3

Version: 01-November-2017 Page: 58 of 58 FCC SAR_b