

TEST REPORT

Report No	CHTEW19070106	Report verification :		
Project No:	SHT1906058201EW			
FCC ID	2AOSL-M236			
Applicant's name:	Bonso Technology (Shenzhe	en) Co., Ltd		
Address:	10/F,FuYong Property Compression ShenZhen City,Guangdong,Ch	ehensive Building,Baoan District nina		
Manufacturer	Bonso Advanced Technology ((XinXing) Co., Ltd		
Address:	Xincheng High-Tech Industrial City,Guangdong,China	Estate,Xinxing,Yunfu		
Test item description:	Remote-control Barking Arre	ester For Dog Training		
Trade Mark:	MODUS			
Model/Type reference:	M-236T			
Listed Model(s):				
Standard:	FCC CFR Title 47 Part 2 FCC CFR Title 47 Part 95C			
Date of receipt of test sample:	Jun.28, 2019			
Date of testing	Jun.28, 2019- Jul.19, 2019			
Date of issue	Jul.22, 2019			
Result	PASS			
Compiled by (position+printed name+signature) .:	File administrators Fanghui Zh	u Janghuizhu		
Supervised by (position+printed name+signature) . :	Project Engineer Tom Ouyang	Tom ouyang		
Approved by (position+printed name+signature) . :	RF Manager Hans Hu	Homsty		
Testing Laboratory Name:	Shenzhen Huatongwei International Inspection Co., Ltd.			
Address:	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China			
Shenzhen Huatongwei International Inspection Co. Ltd. All rights reserved				

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Contents

<u>1</u>	TEST STANDARDS AND REPORT VERSION	3
1.1. 1.2.	Test Standards Report revised information	3 3
<u>2</u>	TEST DESCRIPTION	4
<u>3</u>	SUMMARY	5
3.1 3.2 3.3 3.4 3.5	Client Information Product Description Test frequency list Operation mode EUT configuration	5 5 6 7
<u>4</u>	TEST ENVIRONMENT	8
4.1 4.2 4.3 4.4 4.5	Address of the test laboratory Test Facility Environmental conditions Statement of the measurement uncertainty Equipments Used during the Test	8 8 9 9 10
<u>5</u>	TEST CONDITIONS AND RESULTS	12
5.1 5.2 5.3 5.4 5.5 5.6	Effective Radiated Power(ERP) 99% Occupied Bandwidth Emission Mask Frequency stability VS Temperature Frequency stability VS Voltage Transmitter Radiated Spurious Emission	12 14 16 18 20 22
<u>6</u>	TEST SETUP PHOTOS OF THE EUT	25
<u>7</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	26

1 TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 2: Frequency allocations and radio treaty matters; General rules and regulations

FCC Rules Part 95C: Radio Control Radio Service

<u>ANSI C63.4-2014:</u> American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

1.2. Report revised information

Revised No.	Date of issued	Description
N/A	2019-07-22	Original

2 TEST DESCRIPTION

Test Item	Section in CFR 47	Result	Test Engineer
Carrier Output Power(ERP)	Part 95.767 Part 2.1046(a)	Pass	Pan Xie
99% Occupied Bandwidth	Part 95.773 Part 2.1049	Pass	Pan Xie
Emission Mask	Part 95.779(a)(1)(2)(3) Part 2.1049	Pass	Pan Xie
Frequency Stability V.S. Temperature	Part 95.765 Part 2.1055	Pass	Pan Xie
Frequency Stability V.S. Voltage	Part 95.765 Part 2.1055	Pass	Pan Xie
Transmit Radiated Spurious Emission	Part 95.779(a)(3) Part 2.1053	Pass	Pan Xie

3 SUMMARY

3.1 Client Information

Applicant:	Bonso Technology (Shenzhen) Co., Ltd
Address:	10/F,FuYong Property Comprehensive Building,Baoan District ShenZhen City,Guangdong,China
Manufacturer:	Bonso Advanced Technology (XinXing) Co., Ltd
Address:	Xincheng High-Tech Industrial Estate, Xinxing, Yunfu City, Guangdong, China

3.2 Product Description

Name of EUT:	Remote-control Barking Arrester For Dog Training	
Trade mark:	MODUS	
Model/Type reference:	M-236T	
Listed model(s):	-	
Power supply:	DC3.70V	
Hardware version:	R0D1	
Software version:	D1	
RF Specification		
Support Frequency Range:	27.145MHz	
Rated Output Power:	0.13W(21dBm)	
Modulation Type:	FM	
Antenna Type:	Integral	
Antenna Gain:	1.0dBi	

3.3 Test frequency list

According to ANSI C63.26 section 5.1.2.1:

Measurements of transmitters shall be performed and, if required, reported for each frequency band in which the EUT can be operated with the device transmitting at the number of frequencies in each band specified in Table 2.

Frequency range over which EUT operates	Number of frequencies	Location in frequency range of operation	
1 MHz or less	1	Middle	
1 MHz to 10 MHz	2	1 near top and 1 near bottom	
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom	

Frequency Bands	Test	Test Frequency
(MHz)	Channel	(MHz)
26-28	CH _M	27.145

3.4 Operation mode

Test mode	Transmitting	Receiving	FRS
ТХ			
RX			

Note: ■ is operation mode.

3.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- \circ supplied by the lab

•	Length (m) :	/
	Shield :	/
	Detachable :	1
0	Manufacturer :	/
	Model No. :	1

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China **4.2** Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235.

IC-Registration No.: 5377A

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3 Environmental conditions

Atmospheric Contions		
Temperature:	21°C to 25°C	
Relative Humidity:	20 % to 75 %.	
Atmospheric Pressure:	860 mbar to 1060 mbar	
Norminal Test Voltage:	V _N = DC 3.70V	
Extrem Test Voltage @115%V _N :	V _H = DC 4.26V	
Extrem Test Voltage @85%V _N :	V _L = DC 3.15V	

4.4 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Frequency stability & Occupied Bandwidth	15Hz for <1GHz 70Hz for >1GHz	(1)
Conducted Output Power	0.51dB	(1)
ERP / EIRP / RSE	2.66dB for <1GHz 3.44dB for >1GHz	(1)
Conducted Emission 9KHz-30MHz	3.02dB	(1)
Radiated Emission 30~1000MHz	4.90dB	(1)
Radiated Emission 1~18GHz	4.96dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.5 Equipments Used during the Test

•	Conducted Emission								
Used	Test Equipment	Manufacturer	acturer Model No.		Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)			
•	Shielded Room	Albatross projects	N/A	N/A	2018/09/28	2023/09/27			
•	EMI Test Receiver	R&S	ESCI	101247	2018/10/27	2019/10/26			
•	Artificial Mains	SCHWARZBECK	NNLK 8121	573	2018/10/27	2019/10/26			
•	Pulse Limiter	R&S	ESH3-Z2	100499	2018/10/27	2019/10/26			
•	RF Connection Cable	onnection Cable HUBER+SUHNER EF400 N/A		N/A	2018/11/15	2019/11/14			
•	Test Software	R&S	ES-K1	N/A	N/A	N/A			
0	Single Balanced Telecom Pair ISN	anced FCC FCC-TLISN-T2-02 20371		20371	2018/10/28	2019/10/27			
0	Two Balanced Telecom Pairs ISN	FCC	FCC-TLISN-T4-02	20373	2018/10/28	2019/10/27			
0	Four Balanced Telecom Pairs ISN	FCC	FCC-TLISN-T8-02	20375	2018/10/28	2019/10/27			
0	V-Network	R&S	ESH3-Z6	100211	2018/10/27	2019/10/26			
0	V-Network	R&S	ESH3-Z6	100210	2018/10/27	2019/10/26			
0	2-Line V-Network	R&S	ESH3-Z5	100049	2018/10/27	2019/10/26			

•	Radiated Emission-6th test site									
Used	Test Equipment	Manufacturer	lanufacturer Model No.		Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)				
•	Semi-Anechoic Chamber	Albatross projects	SAC-3m-02	N/A	2018/09/30	2021/09/29				
•	EMI Test Receiver	R&S	ESCI	100900	2018/10/28	2019/10/27				
•	Loop Antenna	R&S	HFH2-Z2	100020	2017/11/20	2020/11/19				
•	Ultra-Broadband Antenna	SCHWARZBECK VULB9163 546		546	2017/04/05	2020/04/04				
•	Pre-Amplifer	SCHWARZBECK	BBV 9742	N/A	2018/11/15	2019/11/14				
•	RF Connection Cable	HUBER+SUHNER	N/A	N/A	2018/09/28	2019/09/27				
•	RF Connection Cable	HUBER+SUHNER	SUCOFLEX104	501184/4	2018/09/28	2019/09/27				
•	Test Software	R&S	ES-K1	N/A	N/A	N/A				
•	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A				
•	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A				

•	Radiated emission-7th test site									
Used	Test Equipment	Manufacturer Model No. Se		Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)				
•	Semi-Anechoic Chamber	Albatross projects	SAC-3m-01	N/A	2018/09/30	2021/09/29				
•	Spectrum Analyzer	R&S	FSP40	100597	2018/10/27	2019/10/26				
•	Horn Antenna	SCHWARZBECK	9120D	1011	2017/03/27	2020/03/26				
•	Pre-amplifier	BONN	BLWA0160-2M	1811887	2018/11/14	2019/11/13				
•	Pre-amplifier	plifier CD PAP-0102 12004		12004	2018/11/14	2019/11/13				
•	Broadband Pre- amplifier	SCHWARZBECK	BBV 9718	9718-248	2019/04/26	2020/04/25				
•	RF Connection Cable	HUBER+SUHNER	RE-7-FH	N/A	2018/11/15	2019/11/14				
•	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	2018/11/15	2019/11/14				
•	Test Software	Audix	E3	N/A	N/A	N/A				

Shenzhen Huatongwei International Inspection Co., Ltd.

•	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
•	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A

•	RF Conducted Method									
Used	d Test Equipment Manufacturer Model No. Serial No. Last Cal. Date (YY-MM-DD) (YY-MM									
•	Signal and spectrum Analyzer	R&S	FSV40	100048	2018/10/28	2019/10/27				
•	Spectrum Analyzer	Agilent	N9020A	MY50510187	2018/09/29	2019/09/28				
0	Radio communication tester	R&S	CMW500	137688-Lv	2018/09/29	2019/09/28				
0	Test software	Tonscend	JS1120-1(LTE)	N/A	N/A	N/A				
0	Test software	Tonscend	JS1120-2(WIFI)	N/A	N/A	N/A				
0	Test software	Tonscend	JS1120-3(WCDMA)	N/A	N/A	N/A				
0	Test software	Tonscend	JS1120-4(GSM)	N/A	N/A	N/A				

•	Auxiliary Equipment									
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)				
•	Climate chamber	ESPEC	GPL-2	N/A	2018/11/08	2019/11/07				
•	DC Power Supply	Gwinstek	SPS-2415	GER835793	2018/10/28	2019/10/27				

5 TEST CONDITIONS AND RESULTS

5.1 Effective Radiated Power(ERP)

<u>LIMIT</u>

FCC Part FCC Part 95.767, FCC Part 2.1046

26-28 MHz frequency band. For an RCRS transmitter operating on 27.255 MHz, the mean transmitter output power must not exceed 25 Watts. For an RCRS transmitter operating on 26.995, 27.045, 27.095, 27.145, or 27.195 MHz, the mean transmitter output power must not exceed 4 Watts.

TEST CONFIGURATION

TEST PROCEDURE

- EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in six channels were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=100kHz,VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - PcI - Ga We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- PcI - Ga
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST MODE

Please reference to the section 3.4

TEST RESULTS

☑ Passed □ Not Applicable

ERP:

Mode	Frequency(MHz)	Antenna Pol.	ERP	Limit (dBm)	Result	
	27 145	V	20.55	<36.00	Pass	
TX-NON3	27.145	Н	19.58	<30.00	Pass	

Conducted output power:

Mode	Frequency(MHz)	Limit (dBm)	Result	
TX-RCRS	27.145	20.74	<36.00	Pass

5.2 99% Occupied Bandwidth

<u>LIMIT</u>

FCC Part 95.773, FCC Part 2.1049

Each RCRS transmitter type must be designed such that the occupied bandwidth does not exceed 8 kHz for any emission type.

TEST CONFIGURATION

TEST PROCEDURE

- (1) Connect the equipment as illustrated
- (2) Spectrum set as follow:

Centre frequency = the nominal EUT channel center frequency,

The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of $1.5 \times OBW$ is sufficient) RBW = 1% to 5% of the anticipated OBW, VBW $\ge 3 \times RBW$, Sweep = auto,

Detector function = peak, Trace = max hold

- (3) Set 99% Occupied Bandwidth
- (4) Measure and record the results in the test report.

TEST MODE

Please reference to the section 3.4

TEST RESULTS

5.3 Emission Mask

<u>LIMIT</u>

FCC Part 95.779(a)(1)(2)(3),FCC Part 2.1049

(a) 26-28 MHz frequency band. For an RCRS transmitter operating in the 26-28 MHz frequency band, the power of unwanted emissions must be attenuated below the transmitter output power in Watts (P) by at least:
(1) 25 dB (decibels) in the frequency band 4 kHz to 8 kHz removed from the channel center frequency;
(2) 35 dB in the frequency band 8 kHz to 20 kHz removed from the channel center frequency;
(3) 43 + 10 log (P) dB in any frequency band removed from the channel center frequency by more than 20 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1) Connect the equipment as illustrated.
- 2) Spectrum set as follow: Centre frequency = fundamental frequency, span=120kHz for 12.5kHz channel spacing, RBW=100Hz, VBW=1000Hz, Sweep = auto, Detector function = peak, Trace = max hold
- 3) Key the transmitter, and set the level of the unmodulated carrier to a full scale reference line. This is the 0dB reference for the measurement.
- 4) Apply Input Modulation Signal to EUT according to Section 3.4
- 5) Measure and record the results in the test report.

TEST MODE

Please reference to the section 3.4

TEST RESULTS

MultiView	BSpect	trum									▼
Ref Level 51.0	00 dBm (Offset	: 21.00 dB	Mode Auto FFT							
1 Spurious Em	issions										●1 Max
Lîmît Che	ck			PAS	S						
Line _SPI	JRIOUS_I	_INE_	ABS_001	PAS	5						
40 dBm											
30 dBm							_				
20 d8m											
20 0011					Λ	Λ					
10 dBm											
0 dBm						mr [
	PC 001					<u> </u>					
_SPORIOUS_LINE_A	65_001					- V	2.				
-20 000		-		- Andrew Marked	and the second		m	~			
-90 dBm			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					- man		~~~	
-40 dBm											
27.115 MHz				7007 pts	2		6.0 kHz/				27.175 MHz
2 Result Summ	anv			7007 pt	,		0101012/				27117011112
Range L	ow		Range Up	RB	w	Frequ	iency	F	Power Abs		ΔLimit
27.115 M	Hz		27.125 MHz	3.000	kHz	27.1250	O MHZ	-27	7.35 dBm	-14	1.35 dB
27.125 M	Hz		27.137 MHz	300.00	i0 Hz	27.1369	9 MHz	-20	6.15 dBm	· -27	7.15 dB
27.137 M	Hz		27.141 MHz	300.00	IO Hz	27.1409		-19	5./9 dBm 7 86 dBm	-27	7.79 dB
27.141 M	HZ HZ		27.149 MHZ 27.153 MHz	300.00	IO HZ	27.140/		_13	7.80 uBM 3.81 dBm	-10	1.81 dB
27.149 M	Hz		27.165 MHz	300.00	10 Hz	27.1531	0 MHz	-2	5.10 dBm	-26	5.10 dB
27.165 M	Ηz		27.175 MHz	3.000) kHz	27.1650	O MHz	-20	5.19 dBm	-13	3.19 dB
)[) м	leasuring		18.07.2019 15:21:53

5.4 Frequency stability VS Temperature

<u>LIMIT</u>

FCC Part 95.765, Part 2.1055:

(b) Except as allowed under paragraph (c) of this section, each RCRS transmitter type capable of transmitting in the 26-28 MHz frequency band must be designed such that the carrier frequencies remain within ±50 ppm of the channel center frequencies listed in §95.763(a) during normal operating conditions.

(c) Each RCRS transmitter type that transmits in the 26-28 MHz frequency band with a mean transmitter power of 2.5 W or less and is used solely by the operator to turn on and/or off a device at a remote location, other than a device used solely to attract attention, must be designed such that the carrier frequencies remain within ± 100 ppm of the channel center frequencies listed in §95.763(a) during normal operating conditions.

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT output port was connected to communication tester.
- 2) The EUT was placed inside the temperature chamber.
- 3) Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency as MCF_{MHz} .
- 4) Calculate the ppm frequency error by the following: ppm error=(MCF_{MHZ}/ACF_{MHZ}-1)*10⁶ where MCF_{MHz} is the Measured Carrier Frequency in MHz ACF_{MHz} is the Assigned Carrier Frequency in MHz
- 5) Repeat step 3 measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST MODE

Please reference to the section 3.4

TEST RESULTS

Frequency (MHz)	Voltage (Vdc)	Temperature (℃)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
27.145	3.70	25	1000	36	50	PASS
	3.15	-30	1100	40	50	PASS
	4.26	50	1200	44	50	PASS

5.5 Frequency stability VS Voltage

<u>LIMIT</u>

FCC Part 95.765, Part 2.1055:

(b) Except as allowed under paragraph (c) of this section, each RCRS transmitter type capable of transmitting in the 26-28 MHz frequency band must be designed such that the carrier frequencies remain within ± 50 ppm of the channel center frequencies listed in §95.763(a) during normal operating conditions.

(c) Each RCRS transmitter type that transmits in the 26-28 MHz frequency band with a mean transmitter power of 2.5 W or less and is used solely by the operator to turn on and/or off a device at a remote location, other than a device used solely to attract attention, must be designed such that the carrier frequencies remain within ± 100 ppm of the channel center frequencies listed in §95.763(a) during normal operating conditions.

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT output port was connected to communication tester.
- 2) The EUT was placed inside the temperature chamber at 25°C
- 3) Record the carrier frequency of the transmitter as MCF_{MHZ}
- Calculate the ppm frequency error by the following: *ppm error=(MCF_{MHZ}/ACF_{MHZ}-1)*10⁶ where MCF_{MHz}* is the Measured Carrier Frequency in MHz *ACF_{MHz}* is the Assigned Carrier Frequency in MHz
- 5) Repeat step 3 measure with varied ±15% of the nominal value measured at the input to the EUT

TEST MODE

Please reference to the section 3.4

TEST RESULTS

Frequency (MHz)	Voltage (Vdc)	Temperature (℃)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
	3.70	-30	1000	36	50	PASS
	3.70	-20	1000	36	50	PASS
	3.70	-10	1000	36	50	PASS
	3.70	0	1000	36	50	PASS
27.145	3.70	10	1000	36	50	PASS
	3.70	20	1000	36	50	PASS
	3.70	30	1000	36	50	PASS
	3.70	40	1000	36	50	PASS
	3.70	50	1000	36	50	PASS

5.6 Transmitter Radiated Spurious Emission

<u>LIMIT</u>

FCC Part 95.779(a)(3): 43 + 10 log (P) dB in any frequency band removed from the channel center frequency by more than 20 kHz.

43 + 10 log (Pwatts) Calculation: Limit (dBm) =EL-43-10log10 (TP) Notes: EL is the emission level of the Output Power expressed in dBm, In this application, the EL is P(dBm). Limit (dBm) = P(dBm)-43-10 log (Pwatts) = -13 dBm

TEST CONFIGURATION

Below 1GHz:

Above 1GHz:

TEST PROCEDURE

- 1. Place the EUT in the center of the turntable.
 - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
 - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
- Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
- 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
- Receiver or Spectrum set as follow: Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto
- 5. Each emission under consideration shall be evaluated:
 - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - c) Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
 - e) Record the measured emission amplitude level and frequency
- 6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
- Set-up the substitution measurement with the reference point of the substitution antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement.
- 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- 10. For each emission that was detected and measured in the initial test
 - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
 - c) Record the output power level of the signal generator when equivalence is achieved in step b).
- 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
- 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation: Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)
 - where

Pe = equivalent emission power in dBm

Ps = source (signal generator) power in dBm

NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

- 13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from: gain (dBd) = gain (dBi) 2.15 dB.
- If necessary, the antenna gain can be calculated from calibrated antenna factor information
- 14. Provide the complete measurement results as a part of the test report.

TEST MODE

Please reference to the section 3.4

TEST RESULTS

6 TEST SETUP PHOTOS OF THE EUT

Radiated Emission:

7 EXTERNAL AND INTERNAL PHOTOS OF THE EUT External Photos of the EUT

Shenzhen Huatongwei International Inspection Co., Ltd.

Internal Photos of the EUT

Shenzhen Huatongwei International Inspection Co., Ltd.

.....End of Report.....