

TE	ST REPORT		
Applicant:	Nuvyyo Inc.		
Address of Applicant:	555 Legget Drive Tower B Suite 836 Kanata, ON K2K2X3, Canada		
Manufacturer:	Nuvyyo Inc.		
Address of Manufacturer:	555 Legget Drive Tower B Suite 836 Kanata, ON K2K2X3, Canada		
Factory:	Shenzhen Giec Digital Co., Ltd		
Address of Factory:	1st&3rd Building, No.26 Puzai Road, Pingdi, Longgang District, Shenzhen, China		
Equipment Under Test (I			
Product Name:	OTA streamer		
Model No.:	TF1284B-01-CN,TF1284B-AN-01-CN		
FCC ID:	2AOR7-TABLO040		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart E Section 15.407		
Date of sample receipt:	September 11, 2023		
Date of Test:	September 12-22, 2023		
Date of report issue:	September 22, 2023		
Test Result :	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 32

2 Version

Version No.	Date	Description
00	September 22, 2023	Original

Prepared By: Date: September 22, 2023 35m Cu Project Engineer Opinson lund Check By: Date: September 22, 2023 Reviewer

GTS

Report No.: GTS2023090109F03

3 Contents

			Pag	ge
1	(cov		1
2	1	VER	SION	2
3	•	CON	ITENTS	3
4		TES	T SUMMARY	. 4
	41	122	MEASUREMENT UNCERTAINTY	
	200			
5	(GEN	ERAL INFORMATION	. 5
	5.1		GENERAL DESCRIPTION OF EUT	5
	5.2		TEST MODE	. 7
	5.3		TEST FACILITY	. 7
	5.4		TEST LOCATION	
	5.5		DESCRIPTION OF SUPPORT UNITS	
	5.6		DEVIATION FROM STANDARDS	
	5.7		Additional Instructions	. 7
6		TES	T INSTRUMENTS LIST	8
7		TES	T RESULTS AND MEASUREMENT DATA	10
	7.1		ANTENNA REQUIREMENT:	10
	7.2		AUTOMATICALLY DISCONTINUE TRANSMISSION:	10
	7.3		CONDUCTED EMISSIONS	11
	7.4		EMISSION BANDWIDTH	14
	7.5		MAXIMUM CONDUCTED OUTPUT POWER	15
	7.6		POWER SPECTRAL DENSITY	16
	7.7		BAND EDGE	17
	7.8		RADIATED EMISSION	21
	7.9		FREQUENCY STABILITY	31
8		TES	T SETUP PHOTO	32
			월 2011년 1월 1011년 1월 1	
9	E	EUT	CONSTRUCTIONAL DETAILS	32

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203	PASS
AC Power Line Conducted Emission	FCC part 15.207	PASS
Emission Bandwidth	FCC part 15.407	PASS
Maximum Conducted Output Power	FCC part 15.407(a)(1)	PASS
Power Spectral Density	FCC part 15.407(a)(1)	PASS
Undesirable Emission	FCC part 15.407(b), 15.205/15.209	PASS
Radiated Emission	FCC part 15.205/15.209	PASS
Band Edge	FCC part 15.407(b)(1)	PASS
Frequency Stability	FCC part 15.407(g)	PASS
Non-Transmit & Software Protection	FCC part 15.407(c)	PASS

Remark:

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	diated Emission 9kHz-30MHz		(1)
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

OTA streamer					
TF1284B-01-CN, TF1284B-AN-01-CN					
TF1284B-AN-0	TF1284B-AN-01-CN				
are identical in th	ne same PCB layout, interior	r structure and e	electrical circuits	5.	
sories.				100	
GTS20230901	09-1			121	
Engineer samp	ble			112	
5087B8529BC	6				
Band	Mode	Frequency Range(MHz)	Number of channels	1919	
U-NII Band	IEEE 802.11a	5180-5240	4	5	
1	IEEE 802.11n/ac 20MHz	5180-5240	4	-	
	IEEE 802.11n/ac 40MHz	5190-5230	2		
	IEEE 802.11ac 80MHz	5210	1	22	
OFDM				111	
Integral Antenr	าล			12	
ANT 1: 1.31dB	ii 👘 👘				
ANT 2: 2.03dB	i				
AC ADAPTER	1			127	
MODEL: TEKA	A-TC120150US				
INPUT: AC 10	0-240V, 50/60Hz, 0.5A MAX	<			
OUTPUT: DC	12.0V, 1.5A				
AC ADAPTER	2			14	
MODEL: JYSY	1588-1201500U				
INPUT: AC 10	0-240V, 50/60Hz, 0.5A MAX	<			
OUTPUT: DC	12.0V, 1.5A				
	TF1284B-01-C TF1284B-AN-C are identical in the sories. GTS20230901 Engineer samp 5087B8529BC Band U-NII Band I U-NII Band I OFDM Integral Antenn ANT 1: 1.31dB ANT 2: 2.03dB AC ADAPTER MODEL: TEKA INPUT: AC 100 OUTPUT: DC AC ADAPTER MODEL: JYSY INPUT: AC 100	TF1284B-01-CN, TF1284B-AN-01-CN TF1284B-AN-01-CN are identical in the same PCB layout, interior sories. GTS2023090109-1 Engineer sample 5087B8529BC6 Band Mode U-NII Band IEEE 802.11a I IEEE 802.11n/ac 20MHz IEEE 802.11n/ac 40MHz IEEE 802.11ac 80MHz OFDM Integral Antenna ANT 1: 1.31dBi ANT 2: 2.03dBi AC ADAPTER 1 MODEL: TEKA-TC120150US INPUT: AC 100-240V, 50/60Hz, 0.5A MA> OUTPUT: DC 12.0V, 1.5A AC ADAPTER 2 MODEL: JYSY1588-1201500U	TF1284B-01-CN, TF1284B-AN-01-CN TF1284B-AN-01-CN are identical in the same PCB layout, interior structure and esories. GTS2023090109-1 Engineer sample 5087B8529BC6 Band Mode Frequency Range(MHz) U-NII Band IEEE 802.11a 5180-5240 I IEEE 802.11n/ac 20MHz 5180-5240 I IEEE 802.11n/ac 20MHz 5190-5230 IEEE 802.11n/ac 40MHz 5190-5230 IEEE 802.11ac 80MHz 5210 OFDM Integral Antenna ANT 1: 1.31dBi ANT 2: 2.03dBi AC ADAPTER 1 MODEL: TEKA-TC120150US INPUT: AC 100-240V, 50/60Hz, 0.5A MAX OUTPUT: DC 12.0V, 1.5A AC ADAPTER 2 MODEL: JYSY1588-1201500U INPUT: AC 100-240V, 50/60Hz, 0.5A MAX	TF1284B-01-CN, TF1284B-AN-01-CN TF1284B-AN-01-CN are identical in the same PCB layout, interior structure and electrical circuits sories. GTS2023090109-1 Engineer sample 5087B8529BC6 Band Mode U-NII Band IEEE 802.11a 5180-5240 4 I IEEE 802.11n/ac 20MHz 5180-5240 U-NII Band IEEE 802.11n/ac 20MHz 5180-5230 2 IEEE 802.11n/ac 40MHz 5190-5230 2 1 OFDM Itele 802.11a c 80MHz 5210 1 OFDM Integral Antenna ANT 1: 1.31dBi ANT 2: 2.03dBi AC ADAPTER 1 MODEL: TEKA-TC120150US INPUT: AC 100-240V, 50/60Hz, 0.5A MAX OUTPUT: DC 12.0V, 1.5A AC ADAPTER 2 MODEL: JYSY1588-1201500U INPUT: AC 100-240V, 50/60Hz, 0.5A MAX NUTPUT: AC 100-240V, 50/60Hz, 0.5A MAX	

Remark:

1. Antenna gain information provided by the customer

2. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.

3. All 2 adapters were tested and passed, only report the worst case adapter 1.

Channel list for 802.11a/n/ac(HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180MHz	40	5200MHz	44	5220MHz	48	5240MHz

Channel list for 802.11n(HT40)/ac(HT40)						
Channel	Frequency	Channel	Frequency			
38	5190MHz	46	5230MHz			

Channel list for 802.11ac(HT80)	
Channel	Frequency
42	5210MHz

5.2 Test mode

	Transmitting mode	Ansmitting mode Keep the EUT in transmitting with modulation					
	We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:						
	Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.						
	Mode Data rate						
	802.11a/n/	ac(HT20)	6/6.5 Mbps				
	802.11n/ac(HT40) 13.5 Mbps 802.11ac(HT80) 29.3 Mbps						

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• ISED — Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing .

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

None.

5.6 Deviation from Standards

None.

5.7 Additional Instructions

Test Software	test command provided by manufacturer
Power level setup	Default

6 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	June 23, 2021	June 22, 2024	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 14, 2023	April 13, 2024	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 19, 2023	March 18, 2025	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	April 17, 2023	April 16, 2025	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 14, 2023	April 13, 2024	
8	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 29, 2022	Nov. 28, 2023	
9	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 14, 2023	April 13, 2024	
10	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 14, 2023	April 13, 2024	
11	Horn Antenna (18- 26.5GHz)	1	UG-598A/U	GTS664	Oct. 29, 2023	Oct. 28, 2024	
12	Horn Antenna (26.5-40GHz)	A.H Systems	SAS-573	GTS665	Oct. 29, 2023	Oct. 28, 2024	
13	FSV-Signal Analyzer (10Hz- 40GHz)	Keysight	FSV-40-N	GTS666	March 13, 2023	March 12, 2024	
14	Amplifier	/	LNA-1000-30S	GTS650	April 14, 2023	April 13, 2024	
15	CDNE M2+M3-16A	HCT	30MHz-300MHz	GTS668	Dec. 20, 2022	Dec.19, 2023	
16	Wideband Amplifier	1	WDA-01004000-15P35	GTS602	April 14, 2023	April 13, 2024	
17	Thermo meter	JINCHUANG	GSP-8A	GTS643	April 19, 2023	April 18, 2024	
18	RE cable 1	GTS	N/A	GTS675	July 31. 2023	July 30. 2024	
19	RE cable 2	GTS	N/A	GTS676	July 31. 2023	July 30. 2024	
20	RE cable 3	GTS	N/A N/A	GTS677	July 31. 2023	July 30. 2024	
21	RE cable 4			GTS678	July 31. 2023	July 30. 2024	
22	RE cable 5	GTS	N/A	GTS679	July 31. 2023	July 30. 2024	
23	RE cable 6	GTS	N/A	GTS680	July 31. 2023	July 30. 2024	
24	RE cable 7	GTS	N/A	GTS681	July 31. 2023	July 30. 2024	
25	RE cable 8	GTS	N/A	GTS682	July 31. 2023	July 30. 2024	

Cone	Conducted Emission									
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	July 12, 2022	July 11, 2027				
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024				
3	LISN	ROHDE & SCHWARZ	ENV216	GTS226	April 14, 2023	April 13, 2024				
4	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				
6	Thermo meter	JINCHUANG	GSP-8A	GTS642	April 19, 2023	April 18, 2024				
7	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 14, 2023	April 13, 2024				
8	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 14, 2023	April 13, 2024				
9	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 14, 2023	April 13, 2024				
10	Antenna end assembly	Weinschel	1870A	GTS560	April 14, 2023	April 13, 2024				

RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 14, 2023	April 13, 2024			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024			
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	April 14, 2023	April 13, 2024			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 14, 2023	April 13, 2024			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 14, 2023	April 13, 2024			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 14, 2023	April 13, 2024			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 14, 2023	April 13, 2024			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 14, 2023	April 13, 2024			
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	April 19, 2023	April 18, 2024			
10	EXA Signal Analyzer	Keysight	N9010B	MY60241168	Nov. 04, 2022	Nov. 03, 2023			

Ger	General used equipment:								
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Barometer	KUMAO	SF132	GTS647	April 19, 2023	April 18, 2024			

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7 Test results and Measurement Data

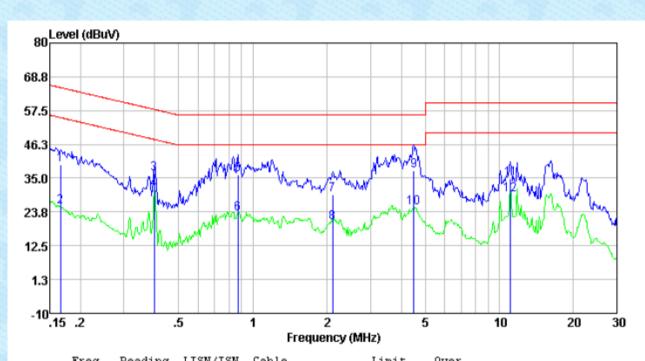
7.1 Antenna requirement:

Standard requirement:	FCC Part15 C Section 15.203						
15.203 requirement:	15.203 requirement:						
	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an						
	coupling to the intentional radiator, the manufacturer may design the unit in be replaced by the user, but the use of a standard antenna jack or bited.						
E.U.T Antenna:							
The antenna is integral antenna, reference to the appendix II for details							

7.2 Automatically discontinue transmission:

Standard requirement: FCC Part 15 Subpart E Section 15.407(c)

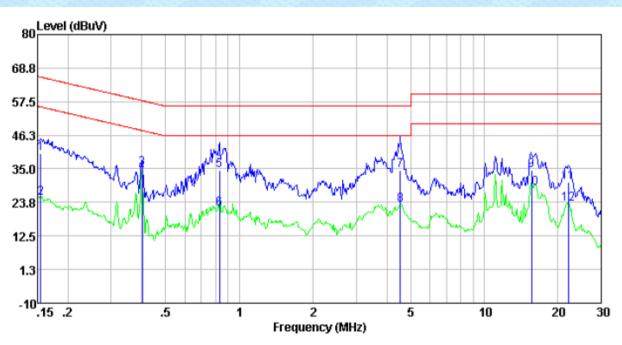
The applicant declare that the device (FCC Part 15 Subpart E Section 15.407) shall automatically discontinue transmission in cases of absence of information to transmit, or operational failure.


7.3 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10							
Test Frequency Range:	150KHz to 30MHz							
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto						
Limit:		Limit	(dBuV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarithm	n of the frequency.						
Test setup:	Reference Plane							
		1						
	40cm 40cm							
		30cm LISN						
	Equipment E.U.T	Filter –	AC power					
	Test table/Insulation plane							
		Receiver						
	Remark							
	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network							
	Test table height=0.8m							
Test procedure:	1. The E.U.T and simulators	are connected to the I	main power through a					
	line impedance stabilizatio	n network (L.I.S.N.). 1	This provides a					
	50ohm/50uH coupling imp	edance for the measu	iring equipment.					
	2. The peripheral devices are	also connected to the	e main power through a					
	LISN that provides a 50ohr	m/50uH coupling impe	edance with 50ohm					
	termination. (Please refer t	o the block diagram c	of the test setup and					
	photographs).							
	3. Both sides of A.C. line are	checked for maximun	n conducted					
	interference. In order to fin	d the maximum emiss	sion, the relative					
	positions of equipment and							
	according to ANSI C63.10							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test environment:	Temp.: 25 °C Hur	nid.: 52%	Press.: 1012mbar					
Test voltage:	AC 120V, 60Hz							
Test results:	Pass							
		State of the second						

Measurement data

Pre-scan all test modes, found worst case at ANT 1 802.11a 5180MHz, and so only show the test result of it. Line:



Freq	Reading level	LISN/ISN factor	Cable loss	Level	Limit level	Over limit	Remark
MHz	dBuV	dB	dB	dBuV	dBu∛	dB	
0.17	29.98	9.55	0.01	39.54	65.16	-25.62	 QP
0.17	15.89	9.55	0.01	25.45	55.16	-29.71	Average
0.40	26.86	9.49	0.01	36.36	57.90	-21.54	QP
0.40	21.56	9.49	0.01	31.06	47.90	-16.84	Average
0.87	26.71	9.49	0.03	36.23	56.00	-19.77	QP
0.87	13.85	9.49	0.03	23.37	46.00	-22.63	Average
2.11	19.75	9.60	0.05	29.40	56.00	-26.60	QP
2.11	10.63	9.60	0.05	20.28	46.00	-25.72	Average
4.50	28.00	9.50	0.06	37.56	56.00	-18.44	QP
4.50	15.55	9.50	0.06	25.11	46.00	-20.89	Average
11.10	25.46	9.38	0.12	34.96	60.00	-25.04	QP
11.10	20.16	9.38	0.12	29.66	50.00	-20.34	Average

GTS

Report No.: GTS2023090109F03

Neutral:

Freq	Reading level	LISN/ISN factor	Cable loss	Level	Limit level	Over limit	Remark
MHz	dBuV	dB	dB	dBu∛	dBuV	dB	
0.15	30.70	9.55	0.01	40.26	65.74	-25.48	QP
0.15	15.72	9.55	0.01	25.28	55.74	-30.46	Average
0.40	25.60	9.57	0.01	35.18	57.81	-22.63	QP
0.40	24.39	9.57	0.01	33.97	47.81	-13.84	Average
0.83	24.96	9.56	0.03	34.55	56.00	-21.45	QP
0.83	12.06	9.56	0.03	21.65	46.00	-24.35	Average
4.55	24.76	9.56	0.06	34.38	56.00	-21.62	QP
4.55	13.20	9.56	0.06	22.82	46.00	-23.18	Average
15.59	24.73	9.73	0.16	34.62	60.00	-25.38	QP
15.59	18.75	9.73	0.16	28.64	50.00	-21.36	Average
22.06	20.22	10.17	0.19	30.58	60.00	-29.42	QP
22.06	12.79	10.17	0.19	23.15	50.00	-26.85	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.4 Emission Bandwidth

Test Requirement :	FCC Part15 E Section 15.407						
Test Method :	NSI C63.10:2013 & KDB 789033 D02 v02r01						
Limit:	N/A						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table						
	Ground Reference Plane						
Test procedure:	According to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

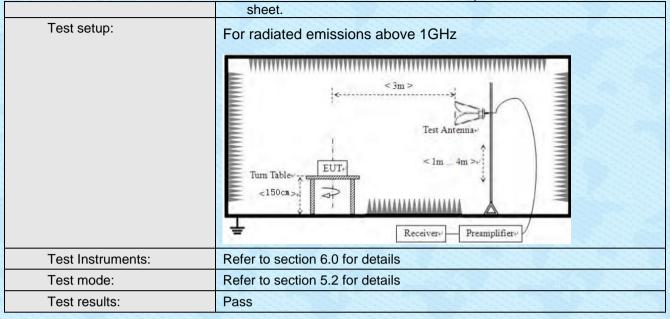
Measurement Data: The detailed test data see Appendix.

7.5 Maximum Conducted Output Power

Test Requirement	FCC Part15 E Section 15.407
Test Method :	ANSI C63.10:2013 & KDB 789033 D02 v02r01
Limit:	Frequency band (MHz)
	5150-5250 ≤250Mw(23.98dBm) for master device
	5250-5350 ≤250Mw(23.98dBm) for client device or
	<pre>11dBm+10logB^ <250Mw(23.98dBm) for client device or</pre>
	5470-5725 11dBm+10logB* Remark: *Where B is the 26Db emission bandwidth in MHz.
	The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.
Test setup:	Power Meter E.U.T Non-Conducted Table
	Ground Reference Plane
Duty Cycle set up:	RBW=VBW=8MHz
Test procedure:	Measurement using an RF average power meter
	(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied
	a) The EUT is configured to transmit continuously or to transmit with a constant duty cycle.
	b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
	c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
	(ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B).
	(iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
	(iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is
Test Instruments:	
Test Instruments: Test mode:	the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent).

Measurement Data: The detailed test data see Appendix.

7.6 Power Spectral Density


Test Requirement:	FCC Part15 E Section 15.4	407						
Test Method :	ANSI C63.10:2013 & KDB	ANSI C63.10:2013 & KDB 789033 D02 v02r01						
Limit:	Frequency band (MHz)	Limit						
	5150-5250	≤17dBm in 1MHz for master device						
		≤11dBm in 1MHz for client device						
	5250-5350	≤11dBm in 1MHz for client device						
	5470-5725	≤11dBm in 1MHz for client device						
		ower spectral density is measured as a rect connection of a calibrated test instrument est.						
Test setup:	Spectrum Analyzer							
Test procedure:	 being tested by following measuring maximum of analyzer or EMI received SA-2, SA-3, or alternate including, the step laber 2) Use the peak search furthe spectrum. 3) Make the following adjuapplicable: a) If Method SA-2 or S where x is the duty cycle b) If Method SA-3 Alternated in step E)2)g)(viii for the difference between the step test of test of the step test of test	wer spectrum for the EUT operating mode ng the instructions in section E)2) for conducted output power using a spectrum er: select the appropriate test method (SA-1, tives to each) and apply it up to, but not eled, "Compute power". unction on the instrument to find the peak of ustments to the peak value of the spectrum, if A-2 Alternative was used, add 10 log(1/x), cle, to the peak of the spectrum. rnative was used and the linear mode was (), add 1 dB to the final result to compensate een linear averaging and power averaging.						
Test Instruments:	4) The result is the PSD. Refer to section 6.0 for det	ails						
Test mode:	Refer to section 5.2 for det							
1001110001	Pass							

Measurement Data: The detailed test data see Appendix.

7.7 Band Edge

				- Section and			
Test Requirement:	FCC Part15 E Section 15.407 and 5.205						
Test Method:	ANSI C63.10:2013						
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver setup:							
	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
		AV	1MHz	3MHz	Average Value		
Limit:			1		Durit		
	Frequen		_imit (dBuV		Remark		
	30MHz-88 88MHz-216		40.0		Quasi-peak Value Quasi-peak Value		
	216MHz-96		45.0		Quasi-peak Value		
	960MHz-1		54.0		Quasi-peak Value		
			54.0		Average Value		
	Above 10	GHz	68.2		Peak Value		
	 Undesirable emission limits: (1) For transmitters operating in the 5.15-5.25 GHz band: all o outside of the 5.15-5.35 GHz band shall not exceed an Ell dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: all o outside of the 5.15-5.35 GHz band shall not exceed an Ell dBm/MHz. Devices operating in the 5.25-5.35 GHz band must applicable technical requirements for operation in the 5.15-band (including indoor use) or alternatively meet an our emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band: all o outside of the 5.47-5.725 GHz band shall not exceed an Ell dBm/MHz. 						
Test Procedure:	 ground at a 3 determine the determine the b. The EUT was antenna, whi tower. c. The antenna the ground to Both horizon make the me d. For each sus case and the meters and the degrees to fin e. The test-rece Specified Baa f. If the emission the limit spect of the EUT we have 10dB m 	B meter cambe e position of the s set 3 meters ch was mount height is varie o determine the tal and vertica asurement. pected emissi n the antenna he rotable table nd the maximu- siver system wo ndwidth with M on level of the sified, then test ould be report hargin would b	r. The table le highest ra away from ed on the to ed from one e maximum I polarizatio on, the EUT was tuned e was turned m reading. as set to Per faximum Ho EUT in peal ting could b ed. Otherwi e re-tested	was rotate adiation. the interfere op of a varia meter to for value of the ns of the an was arran- to heights fir d from 0 de eak Detect F old Mode. k mode was e stopped a se the emis- one by one			

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data:

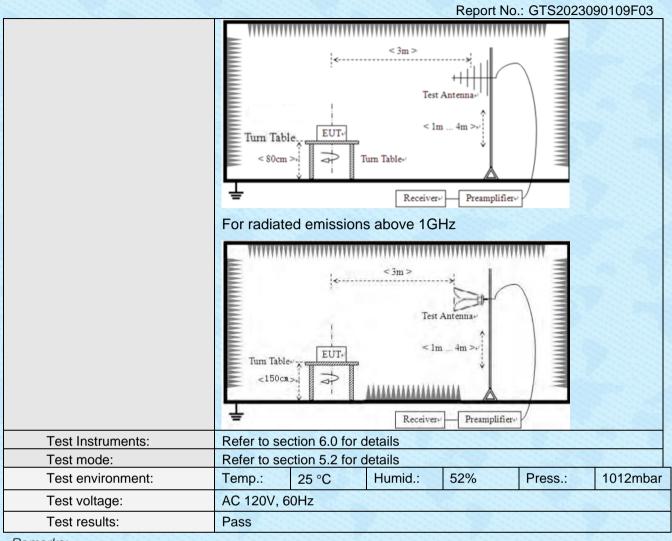
Both 2 antennas were tested and compliance, only worst condition(ANT 1) report.

				dition(ANT 1) repo		E1901	<u></u>
Worse case		8	02.11a	Test Freque	ency:	5180N	
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V
5150	50.50	-3.63	46.87	68.20	-21.33	peak	Н
5150	46.17	-3.63	42.54	54.00	-11.46	AVG	Н
5150	52.09	-3.63	48.46	68.20	-19.74	peak	V
5150	45.52	-3.63	41.89	54.00	-12.11	AVG	V
Worse case	mode:	8	02.11a	Test Freque	ency:	5240N	ЛНz
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V
5350	49.01	-3.59	45.42	68.20	-22.78	peak	Н
5350	45.52	-3.59	41.93	54.00	-12.07	AVG	Н
5350	50.64	-3.59	47.05	68.20	-21.15	peak	V
5350	44.21	-3.59	40.62	54.00	-13.38	AVG	V
Worse case	mode:	8	02.11n	Test Freque	ency:	5180N	ЛНz
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V
5150	49.76	-3.63	46.13	68.20	-22.07	peak	Н
5150	46.38	-3.63	42.75	54.00	-11.25	AVG	Н
5150	52.20	-3.63	48.57	68.20	-19.63	peak	V
5150	44.95	-3.63	41.32	54.00	-12.68	AVG	V
Worse case	mode:	802.11n		Test Freque	ency:	5240N	ЛНz
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V
5350	49.22	-3.59	45.63	68.20	-22.57	peak	Н
5350	45.56	-3.59	41.97	54.00	-12.03	AVG	Н
5350	49.86	-3.59	46.27	68.20	-21.93	peak	V
5350	44.19	-3.59	40.60	54.00	-13.40	AVG	V
Worse case	mode:	802.11ac		Test Frequency:		5180N	/IHz
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V
5150	50.49	-3.63	46.86	68.20	-21.34	peak	Н
5150	46.16	-3.63	42.53	54.00	-11.47	AVG	Н
5150	52.09	-3.63	48.46	68.20	-19.74	peak	V
5150	45.52	-3.63	41.89	54.00	-12.11	AVG	V
Worse case)2.11ac	Test Freque		5240N	ЛНz
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V
5350	49.01	-3.59	45.42	68.20	-22.78	peak	H
0000	+3.01	0.08	40.42	00.20	22.70	peak	1

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

					Report No.: GT	520230901	09F03
5350	45.51	-3.59	41.92	54.00	-12.08	AVG	Н
5350	50.64	-3.59	47.05	68.20	-21.15	peak	V
5350	44.20	-3.59	40.61	54.00	-13.39	AVG	V
Worse case n	node:	802.1	1n(HT40)	Test Fre	equency:	5190N	ИНz
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V
5150	49.75	-3.63	46.12	68.20	-22.08	peak	Н
5150	46.37	-3.63	42.74	54.00	-11.26	AVG	Н
5150	52.20	-3.63	48.57	68.20	-19.63	peak	V
5150	44.94	-3.63	41.31	54.00	-12.69	AVG	V
Worse case n			1n(HT40)		equency:	5230	ИНz
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V
5350	49.19	-3.45	45.74	68.20	-22.46	peak	Н
5350	45.54	-3.45	42.09	54.00	-11.91	AVG	Н
5350	49.85	-3.45	46.40	68.20	-21.80	peak	V
5350	44.17	-3.45	40.72	54.00	-13.28	AVG	V
Worse case n	node:	802.11	ac(VHT40)	Test Frequency:		5190N	ИНz
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V
5150	49.30	-3.63	45.67	68.20	-22.53	peak	Н
5150	45.41	-3.63	41.78	54.00	-12.22	AVG	H
5150	51.55	-3.63	47.92	68.20	-20.28	peak	V
5150	44.51	-3.63	40.88	54.00	-13.12	AVG	V
Worse case n	node:	802.11	ac(VHT40)	Test Fre	equency:	5230N	ИНz
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V
5350	48.35	-3.59	44.76	68.20	-23.44	peak	Н
5350	45.01	-3.59	41.42	54.00	-12.58	AVG	Н
5350	49.54	-3.59	45.95	68.20	-22.25	peak	V
5350	43.48	-3.59	39.89	54.00	-14.11	AVG	V
Worse case n	node:	802.11	ac(VHT80)	Test Fre	equency:	5210	ИНz
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V
5150	48.63	-3.63	45.00	68.20	-23.20	peak	Н
5150	42.44	-3.63	38.81	54.00	-15.19	AVG	Н
5150	49.78	-3.63	46.15	68.20	-22.05	peak	V
5150	43.04	-3.63	39.41	54.00	-14.59	AVG	V
	49.04	-3.59	45.45	68.20	-22.75	peak	Н
5350				= 1 0 0	40.47	11/0	
5350 5350	41.42	-3.59	37.83	54.00	-16.17	AVG	Н
	41.42 50.56	-3.59 -3.59	37.83 46.97	54.00 68.20	-16.17 -21.23	AVG peak	н V

Global United Technology Services Co., Ltd.


No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.8 Radiated Emission

ANSI C63.10: 2 9kHz to 40GHz	Z Distance: 3m (Ser Detector Z Quasi-peak Hz Quasi-peak Z Quasi-peak		c Chamber) VBW 1kHz	Value				
9kHz to 40GHz Measurement I Frequency 9kHz-150KH 150kHz-30MH 30MHz-1GH	Z Distance: 3m (Ser Detector Z Quasi-peak Hz Quasi-peak Z Quasi-peak	RBW 200Hz	VBW					
Measurement I Frequency 9kHz-150KH 150kHz-30MH 30MHz-1GH	Distance: 3m (Ser Detector z Quasi-peak Hz Quasi-peak z Quasi-peak	RBW 200Hz	VBW					
Frequency 9kHz-150KH 150kHz-30MH 30MHz-1GH	Detector z Quasi-peak Hz Quasi-peak z Quasi-peak	RBW 200Hz	VBW					
9kHz-150KH 150kHz-30MH 30MHz-1GH	z Quasi-peak Hz Quasi-peak z Quasi-peak	200Hz		value				
150kHz-30MH 30MHz-1GH	Iz Quasi-peak z Quasi-peak			Quasi-peak Value				
30MHz-1GH	z Quasi-peak		30kHz	Quasi-peak Value				
	Peak	120KHz	300KHz	Quasi-peak Value				
Above 1GHz		1MHz	3MHz	Peak Value				
	AV	1MHz	3MHz	Average Value				
-								
	-	lts/meter)	Measuremen	it distance (meters) 300				
0.490-1.705	24000/F(kHz)			30				
1.705-30.0	30			30				
30-88				3				
216-960	200**			3				
Above 960	500			3				
 the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. Substitution method was performed to determine the actual ERP emission levels of the EUT. 								
 emission levels of the EUT. The following test procedure as below: 1>.Below 1GHz test procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported 								
	1.705-30.0 30-88 88-216 216-960 Above 960 The emission measurement the frequency MHz. Radiate measurement the frequency MHz. Radiate measurement Substitution measurement the following to the groun Both horiz make the following the groun Both horiz make the the following to the groun Both horiz make the following to the	0.009-0.490 2400/F(kHz) 0.490-1.705 24000/F(kHz) 1.705-30.0 30 30-88 100** 88-216 150** 216-960 200** Above 960 500 The emission limits shown in the measurements employing a C the frequency bands 9-90 kHz MHz. Radiated emission limits measurements employing an Substitution method was perform emission levels of the EUT. The following test procedure as the 1>.Below 1GHz test procedure: 1. The EUT was placed on the 1GHz and 1.5 meters for ab meter camber. The table was position of the highest radiated? 2. The EUT was set 3 meters antenna, which was mounter antenna tower. 3. The antenna height is varie the ground to determine the Both horizontal and vertical make the measurement. 4. For each suspected emission case and then the antenna meters and the rotable table degrees to find the maximu 5. The test-receiver system was Specified Bandwidth with M 6. If the emission level of the EUT would be did not have 10dB margin we peak, quasi-peak or average in a data sheet. 2>.Above 1GHz test procedure:	0.009-0.490 2400/F(kHz) 0.490-1.705 24000/F(kHz) 1.705-30.0 30 30-88 100** 88-216 150** 216-960 200** Above 960 500 The emission limits shown in the above measurements employing a CISPR quat the frequency bands 9-90 kHz, 110-490 MHz. Radiated emission limits in these frequency bands 9-90 kHz, 110-490 MHz. Radiated emission limits in these frequency bands 9-90 kHz, 110-490 MHz. Radiated emission limits in these free measurements employing an average d Substitution method was performed to detere emission levels of the EUT. The following test procedure as below: 1>.Below 1GHz test procedure: 1. The EUT was placed on the top of a rot 1GHz and 1.5 meters for above 1GHz) meter camber. The table was rotated 31 position of the highest radiation. 2. The EUT was set 3 meters away from antenna, which was mounted on the to antenna tower. 3. The antenna height is varied from one the ground to determine the maximum Both horizontal and vertical polarization make the measurement. 4. For each suspected emission, the EUT case and then the antenna was tuned meters and the rotable table was turned degrees to find the maximum reading. 5. The test-receiver system was set to Pe Specified Bandwidth with Maximum Hd 6. If the emission level of the EUT in peal the limit specified, then testing could be values of the EUT would be repo	b.009-0.490 2400/F(kHz) 0.490-1.705 24000/F(kHz) 1.705-30.0 30 30-88 100** 88-216 150** 216-960 200** Above 960 500 The emission limits shown in the above table are been and the frequency bands 9-90 kHz, 110-490 kHz and a measurements employing a CISPR quasi-peak deen the frequency bands 9-90 kHz, 110-490 kHz and a MHz. Radiated emission limits in these three band measurements employing an average detector. Substitution method was performed to determine the advertise of the EUT. The following test procedure as below: 1>.Below 1GHz test procedure: 1. The EUT was placed on the top of a rotating table 1GHz and 1.5 meters for above 1GHz) above the granter camber. The table was rotated 360 degrees position of the highest radiation. 2. The EUT was set 3 meters away from the interferer antenna, which was mounted on the top of a varia antenna tower. 3. The antenna height is varied from one meter to for the ground to determine the maximum value of the Both horizontal and vertical polarizations of the arr make the measurement. 4. For each suspected emission, the EUT was arran case and then the antenna was tuned to heights f meters and the rotable table was turned from 0 de degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect I Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was the limit specified, then testing could be stopped a values of the EUT would be reported. Otherwise the did not have 10dB margin would be re-tested one peak, quasi-peak or average method as specified in a data sheet.				

	Report No.: GTS2023090109F03
	the 0.8m support on the turntable and in the position closest to normal use as declared by the provider.
	2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
	3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
	 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver. 5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
	 Remove the transmitter and replace it with a substitution antenna Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output. Repeat step 7 with both antennas horizontally polarized for each test
	 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: EIRP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBi) where: Pg is the generator output power into the substitution antenna.
Test setup:	For radiated emissions from 9kHz to 30MHz
	<pre></pre>
	For radiated emissions from 30MHz to1GHz

GTS

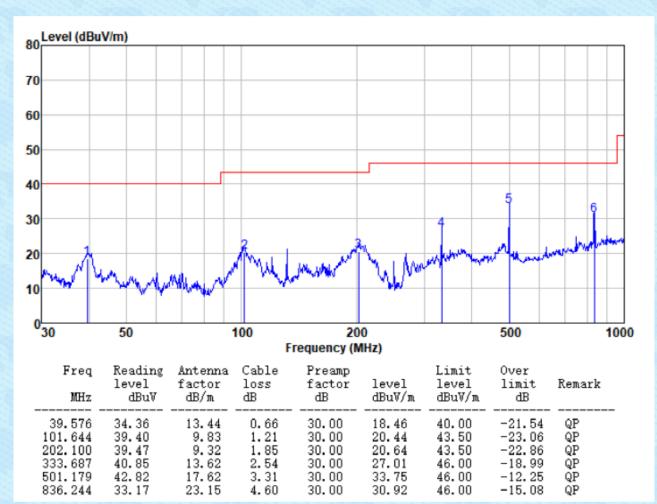
Remarks:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

2. Both 2 antennas were tested and compliance, only worst condition(ANT 1) report.

Measurement Data:

9 kHz ~ 30 MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

30MHz~ 1GHz

Pre-scan all test modes, found worst case at 802.11a 5180MHz(ANT 1), and so only show the test result of it.

Horizontal:

GTS

Vertical:

Report No.: GTS2023090109F03

Above 1GHz:

	802.1	1a(HT20)			Test Frequency: 5180MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360	36.50	38.96	8.27	35.64	48.09	68.20	-20.11	Vertical		
15540	34.36	38.40	10.57	35.35	47.98	68.20	-20.22	Vertical		
10360	35.52	38.96	8.27	35.64	47.11	68.20	-21.09	Horizontal		
15540	32.02	38.40	10.57	35.35	45.64	68.20	-22.56	Horizontal		
10360	28.84	38.96	8.27	35.64	40.43	54.00	-13.57	Vertical		
15540	27.13	38.40	10.57	35.35	40.75	54.00	-13.25	Vertical		
10360	26.76	38.96	8.27	35.64	38.35	54.00	-15.65	Horizontal		
15540	26.73	38.40	10.57	35.35	40.35	54.00	-13.65	Horizontal		

	802.1	1a(HT20)			Test Frequency: 5200MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400	36.17	39.01	8.29	35.67	47.80	68.20	-20.40	Vertical		
15600	34.47	38.30	10.62	35.36	48.03	68.20	-20.17	Vertical		
10400	35.95	39.01	8.29	35.67	47.58	68.20	-20.62	Horizontal		
15600	29.95	38.30	10.62	35.36	43.51	68.20	-24.69	Horizontal		
10400	29.81	39.01	8.29	35.67	41.44	54.00	-12.56	Vertical		
15600	28.42	38.30	10.62	35.36	41.98	54.00	-12.02	Vertical		
10400	24.96	39.01	8.29	35.67	36.59	54.00	-17.41	Horizontal		
15600	25.78	38.30	10.62	35.36	39.34	54.00	-14.66	Horizontal		

	802.1	1a(HT20)			Tes	t Frequency:	5240MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480	36.81	39.15	8.32	35.78	48.50	68.20	-19.70	Vertical
15720	33.26	38.00	10.72	35.37	46.61	68.20	-21.59	Vertical
10480	33.54	39.15	8.32	35.78	45.23	68.20	-22.97	Horizontal
15720	33.51	38.00	10.72	35.37	46.86	68.20	-21.34	Horizontal
10480	27.41	39.15	8.32	35.78	39.10	54.00	-14.90	Vertical
15720	25.32	38.00	10.72	35.37	38.67	54.00	-15.33	Vertical
10480	25.88	39.15	8.32	35.78	37.57	54.00	-16.43	Horizontal
15720	22.59	38.00	10.72	35.37	35.94	54.00	-18.06	Horizontal

	802.1	1n(HT20)			Test Frequency: 5180MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360	36.49	39.20	8.34	35.82	48.21	68.20	-19.99	Vertical		
15540	34.92	37.90	10.77	35.38	48.21	68.20	-19.99	Vertical		
10360	36.20	39.20	8.34	35.82	47.92	68.20	-20.28	Horizontal		
15540	30.28	37.90	10.77	35.38	43.57	68.20	-24.63	Horizontal		
10360	28.51	39.20	8.34	35.82	40.23	54.00	-13.77	Vertical		
15540	26.00	37.90	10.77	35.38	39.29	54.00	-14.71	Vertical		
10360	24.54	39.20	8.34	35.82	36.26	54.00	-17.74	Horizontal		
15540	24.46	37.90	10.77	35.38	37.75	54.00	-16.25	Horizontal		

	802.1	1n(HT20)			Test Frequency: 5200MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10400	37.15	38.96	8.27	35.64	48.74	68.20	-19.46	Vertical	
15600	32.54	38.40	10.57	35.35	46.16	68.20	-22.04	Vertical	
10400	33.26	38.96	8.27	35.64	44.85	68.20	-23.35	Horizontal	
15600	34.10	38.40	10.57	35.35	47.72	68.20	-20.48	Horizontal	
10400	30.33	38.96	8.27	35.64	41.92	54.00	-12.08	Vertical	
15600	28.51	38.40	10.57	35.35	42.13	54.00	-11.87	Vertical	
10400	27.47	38.96	8.27	35.64	39.06	54.00	-14.94	Horizontal	
15600	22.84	38.40	10.57	35.35	36.46	54.00	-17.54	Horizontal	

	802.1	1n(HT20)			Test Frequency: 5240MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480	33.79	39.15	8.32	35.78	45.48	68.20	-22.72	Vertical		
15720	33.27	38.00	10.72	35.37	46.62	68.20	-21.58	Vertical		
10480	32.95	39.15	8.32	35.78	44.64	68.20	-23.56	Horizontal		
15720	29.21	38.00	10.72	35.37	42.56	68.20	-25.64	Horizontal		
10480	28.32	39.15	8.32	35.78	40.01	54.00	-13.99	Vertical		
15720	27.94	38.00	10.72	35.37	41.29	54.00	-12.71	Vertical		
10480	24.62	39.15	8.32	35.78	36.31	54.00	-17.69	Horizontal		
15720	25.81	38.00	10.72	35.37	39.16	54.00	-14.84	Horizontal		

and the second second										
	802.1	1ac(HT20)			Test Frequency: 5180MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360	34.05	38.96	8.27	35.64	45.64	68.20	-22.56	Vertical		
15540	34.84	38.40	10.57	35.35	48.46	68.20	-19.74	Vertical		
10360	32.66	38.96	8.27	35.64	44.25	68.20	-23.95	Horizontal		
15540	33.06	38.40	10.57	35.35	46.68	68.20	-21.52	Horizontal		
10360	26.93	38.96	8.27	35.64	38.52	54.00	-15.48	Vertical		
15540	24.57	38.40	10.57	35.35	38.19	54.00	-15.81	Vertical		
10360	25.03	38.96	8.27	35.64	36.62	54.00	-17.38	Horizontal		
15540	22.36	38.40	10.57	35.35	35.98	54.00	-18.02	Horizontal		

	802.1	1ac(HT20)			Test Frequency: 5200MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400	37.27	39.01	8.29	35.67	48.90	68.20	-19.30	Vertical		
15600	33.72	38.30	10.62	35.36	47.28	68.20	-20.92	Vertical		
10400	33.58	39.01	8.29	35.67	45.21	68.20	-22.99	Horizontal		
15600	34.14	38.30	10.62	35.36	47.70	68.20	-20.50	Horizontal		
10400	29.65	39.01	8.29	35.67	41.28	54.00	-12.72	Vertical		
15600	28.09	38.30	10.62	35.36	41.65	54.00	-12.35	Vertical		
10400	24.52	39.01	8.29	35.67	36.15	54.00	-17.85	Horizontal		
15600	26.91	38.30	10.62	35.36	40.47	54.00	-13.53	Horizontal		

	802.1	1ac(HT20)			Test Frequency: 5240MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480	32.60	39.15	8.32	35.78	44.29	68.20	-23.91	Vertical		
15720	33.54	38.00	10.72	35.37	46.89	68.20	-21.31	Vertical		
10480	34.31	39.15	8.32	35.78	46.00	68.20	-22.20	Horizontal		
15720	34.12	38.00	10.72	35.37	47.47	68.20	-20.73	Horizontal		
10480	27.51	39.15	8.32	35.78	39.20	54.00	-14.80	Vertical		
15720	27.57	38.00	10.72	35.37	40.92	54.00	-13.08	Vertical		
10480	23.70	39.15	8.32	35.78	35.39	54.00	-18.61	Horizontal		
15720	25.05	38.00	10.72	35.37	38.40	54.00	-15.60	Horizontal		

	802.11n(HT40)					Test Frequency: 5190MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380	37.94	39.01	8.28	35.67	49.56	68.20	-18.64	Vertical			
15570	33.12	38.30	10.60	35.36	46.66	68.20	-21.54	Vertical			
10380	34.23	39.01	8.28	35.67	45.85	68.20	-22.35	Horizontal			
15570	31.13	38.30	10.60	35.36	44.67	68.20	-23.53	Horizontal			
10380	27.15	39.01	8.28	35.67	38.77	54.00	-15.23	Vertical			
15570	26.47	38.30	10.60	35.36	40.01	54.00	-13.99	Vertical			
10380	28.05	39.01	8.28	35.67	39.67	54.00	-14.33	Horizontal			
15570	25.54	38.30	10.60	35.36	39.08	54.00	-14.92	Horizontal			

	802.11n(HT40)					Test Frequency: 5230MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10460	36.40	39.11	8.31	35.75	48.07	68.20	-20.13	Vertical		
15690	33.69	38.10	10.70	35.37	47.12	68.20	-21.08	Vertical		
10460	33.25	39.11	8.31	35.75	44.92	68.20	-23.28	Horizontal		
15690	31.05	38.10	10.70	35.37	44.48	68.20	-23.72	Horizontal		
10460	30.29	39.11	8.31	35.75	41.96	54.00	-12.04	Vertical		
15690	29.21	38.10	10.70	35.37	42.64	54.00	-11.36	Vertical		
10460	25.37	39.11	8.31	35.75	37.04	54.00	-16.96	Horizontal		
15690	27.50	38.10	10.70	35.37	40.93	54.00	-13.07	Horizontal		

	802.11ac(HT40)					Test Frequency: 5190MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380	33.48	39.01	8.28	35.67	45.10	68.20	-23.10	Vertical			
15570	30.70	38.30	10.60	35.36	44.24	68.20	-23.96	Vertical			
10380	32.40	39.01	8.28	35.67	44.02	68.20	-24.18	Horizontal			
15570	32.07	38.30	10.60	35.36	45.61	68.20	-22.59	Horizontal			
10380	26.67	39.01	8.28	35.67	38.29	54.00	-15.71	Vertical			
15570	26.96	38.30	10.60	35.36	40.50	54.00	-13.50	Vertical			
10380	28.14	39.01	8.28	35.67	39.76	54.00	-14.24	Horizontal			
15570	26.61	38.30	10.60	35.36	40.15	54.00	-13.85	Horizontal			

	802.11ac(HT40)				Test Frequency: 5230MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10460	34.00	39.11	8.31	35.75	45.67	68.20	-22.53	Vertical	
15690	34.39	38.10	10.70	35.37	47.82	68.20	-20.38	Vertical	
10460	31.81	39.11	8.31	35.75	43.48	68.20	-24.72	Horizontal	
15690	32.94	38.10	10.70	35.37	46.37	68.20	-21.83	Horizontal	
10460	28.96	39.11	8.31	35.75	40.63	54.00	-13.37	Vertical	
15690	27.60	38.10	10.70	35.37	41.03	54.00	-12.97	Vertical	
10460	24.00	39.11	8.31	35.75	35.67	54.00	-18.33	Horizontal	
15690	23.87	38.10	10.70	35.37	37.30	54.00	-16.70	Horizontal	

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	802.11ac(HT80)					Test Frequency: 5210MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10420	36.57	39.06	8.29	35.71	48.21	68.20	-19.99	Vertical			
15630	33.68	38.20	10.65	35.36	47.17	68.20	-21.03	Vertical			
10420	34.79	39.06	8.29	35.71	46.43	68.20	-21.77	Horizontal			
15630	33.71	38.20	10.65	35.36	47.20	68.20	-21.00	Horizontal			
10420	29.36	39.06	8.29	35.71	41.00	54.00	-13.00	Vertical			
15630	27.60	38.20	10.65	35.36	41.09	54.00	-12.91	Vertical			
10420	25.22	39.06	8.29	35.71	36.86	54.00	-17.14	Horizontal			
15630	26.90	38.20	10.65	35.36	40.39	54.00	-13.61	Horizontal			

Notes:

1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.

2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.

7.9 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)	FCC Part15 C Section 15.407(g)					
Test Method:	ANSI C63.10:2013, FCC Part 2.1055,						
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified						
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.						
Test setup:	Spectrum analyzer Image: Att. Att.	Temperature Chamber					
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Measurement Data:

Test Condition	Test Mode	Test Frequency [MHz]	Ant	Result [ppm]	Limit [ppm]	Verdict
	Carrier	5180	1	-8.63	<=20	PASS
NTNV		5190	1	-7.32	<=20	PASS
		5200	1	-9.54	<=20	PASS
		5210	1	-2.37	<=20	PASS
		5230	1	1.91	<=20	PASS
		5240	1	-9.90	<=20	PASS

8 **Test Setup Photo**

Reference to the appendix I for details.

EUT Constructional Details

Reference to the appendix II for details.

----END----