

Global United Technology Services Co., Ltd.

Report No.: GTSL2024020098F03

TEST REPORT

Nuvyyo Inc. **Applicant:**

555 Legget Drive Tower B Suite 836 Kanata, ON K2K2X3, **Address of Applicant:**

Canada

Nuvvvo Inc. Manufacturer:

555 Legget Drive Tower B Suite 836 Kanata, ON K2K2X3, Address of

Canada Manufacturer:

Shenzhen Giec Digital Co., Ltd **Factory:**

1st&3rd Building, No.26 Puzai Road, Pingdi, Longgang District, **Address of Factory:**

Shenzhen, China

Equipment Under Test (EUT)

OTA streamer **Product Name:**

TF1282B-01-CN, TF1282B-02-CN, TF1282B-AN-01-CN, Model No.:

TF1282B-AN-02-CN

FCC ID: 2AOR7-TABLO02O

FCC CFR Title 47 Part 15 Subpart E Section 15.407 Applicable standards:

Date of sample receipt: September 11, 2023

Date of Test: September 12, 2023-February 26, 2024

Date of report issue: February 26, 2024

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 34

Report No.: GTSL2024020098F03

2 Version

Version No.	Date	Description
00	February 26, 2024	Original

Prepared By: Date: February 26, 2024

Project Engineer

Check By: Date: February 26, 2024

Reviewer

3 Contents

		Pa	age
1	cov	'ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	IERAL INFORMATION	
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	
	5.3	TEST FACILITY	7
	5.4	TEST LOCATION	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	DEVIATION FROM STANDARDS	
	5.7	ADDITIONAL INSTRUCTIONS	7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	. 10
	7.1	ANTENNA REQUIREMENT:	. 10
	7.2	AUTOMATICALLY DISCONTINUE TRANSMISSION:	
	7.3	CONDUCTED EMISSIONS	. 11
	7.4	EMISSION BANDWIDTH	. 14
	7.5	MAXIMUM CONDUCTED OUTPUT POWER	
	7.6	POWER SPECTRAL DENSITY	
	7.7	BAND EDGE	
	7.8	RADIATED EMISSION	
	7.9	FREQUENCY STABILITY	. 33
8	TES	T SETUP PHOTO	. 34
9	EUT	CONSTRUCTIONAL DETAILS	34

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203	PASS
AC Power Line Conducted Emission	FCC part 15.207	PASS
Emission Bandwidth	FCC part 15.407	PASS
Maximum Conducted Output Power	FCC part 15.407(a)(1)	PASS
Power Spectral Density	FCC part 15.407(a)(1)	PASS
Undesirable Emission	FCC part 15.407(b), 15.205/15.209	PASS
Radiated Emission	FCC part 15.205/15.209	PASS
Band Edge	FCC part 15.407(b)(1)	PASS
Frequency Stability	FCC part 15.407(g)	PASS
Non-Transmit & Software Protection	FCC part 15.407(c)	PASS

Remark:

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

			W. 35 . 35 . 35
Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz-30MHz	3.1dB	(1)
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

5 General Information

5.1 General Description of EUT

Product Name:	OTA streamer	OTA streamer						
Model No.:	TF1282B-01-0 02-CN	TF1282B-01-CN, TF1282B-02-CN, TF1282B-AN-01-CN, TF1282B-AN-02-CN						
Test Model No.:	TF1282B-AN-02-CN							
Remark:All above models a	are identical in the same PCB layout, interior structure and electrical circuits.							
The difference is the acces	sories.							
Test sample(s) ID:	GTSL2024020	0098-1						
Sample(s) Status:	Engineer samp	ole						
S/N:	5087B8529BC	6						
Operation Frequency:	Band	Mode	Frequency Range(MHz)	Number of channels				
	U-NII Band	IEEE 802.11a	5180-5240	4				
	I IEEE 802.11n/ac 20MHz 5180-5240							
		IEEE 802.11n/ac 40MHz IEEE 802.11ac 80MHz	5190-5230 5210	1				
Modulation technology:	OFDM							
Antenna Type:	Integral Anteni	na						
Antenna gain:	ANT 1: 1.31dE	Bi						
	ANT 2: 2.03dE	Bi .						
Power supply:	AC ADAPTER	1						
	MODEL: TEKA	A-TC120150US						
	INPUT: AC 10	0-240V, 50/60Hz, 0.5A MA>	<					
	OUTPUT: DC	12.0V, 1.5A						
	AC ADAPTER 2							
	MODEL: JYSY1588-1201500U							
	INPUT: AC 10	0-240V, 50/60Hz, 0.5A MA	(
	OUTPUT: DC	12.0V, 1.5A						

Remark:

- 1. Antenna gain information provided by the customer
- 2. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.
- 3. All 2 adapters were tested and passed, only report the worst case adapter 1.

Channel list for 802.11a/n/ac(HT20)								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
36	5180MHz	40	5200MHz	44	5220MHz	48	5240MHz	

Channel list for 802.11n(HT40)/ac(HT40)						
Channel	Frequency	Channel	Frequency			
38	5190MHz	46	5230MHz			

Channel list for 802.11ac(HT80)	
Channel	Frequency
42	5210MHz

5.2 Test mode

Tra	Transmitting mode Keep the EUT in transmitting with modulation						
	We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:						
	Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.						
	Mo	de	Data rate				
	802.11a/n/	ac(HT20)	6/6.5 Mbps				
	802.11n/ac(HT40) 13.5 Mbps						
	802.11ad	c(HT80)	29.3 Mbps				

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• ISED —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing.

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

None.

5.6 Deviation from Standards

None.

5.7 Additional Instructions

Test Software	test command provided by manufacturer
Power level setup	Default

6 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	June 23, 2021	June 22, 2024		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 14, 2023	April 13, 2024		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 19, 2023	March 18, 2025		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	April 17, 2023	April 16, 2025		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 14, 2023	April 13, 2024		
8	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 13, 2023	Nov.12, 2024		
9	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 14, 2023	April 13, 2024		
10	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 14, 2023	April 13, 2024		
11	Horn Antenna (18- 26.5GHz)	1	UG-598A/U	GTS664	Oct. 29, 2023	Oct. 28, 2024		
12	Horn Antenna (26.5-40GHz)	A.H Systems	SAS-573	GTS665	Oct. 29, 2023	Oct. 28, 2024		
13	FSV·Signal Analyzer (10Hz-40GHz)	Keysight	FSV-40-N	GTS666	March 13, 2023	March 12, 2024		
14	Amplifier	1	LNA-1000-30S	GTS650	April 14, 2023	April 13, 2024		
15	CDNE M2+M3-16A	HCT	30MHz-300MHz	GTS692	Nov. 08, 2023	Nov.07, 2024		
16	Wideband Amplifier	1	WDA-01004000-15P35	GTS602	April 14, 2023	April 13, 2024		
17	Thermo meter	JINCHUANG	GSP-8A	GTS643	April 19, 2023	April 18, 2024		
18	RE cable 1	GTS	N/A	GTS675	July 31. 2023	July 30. 2024		
19	RE cable 2	GTS	N/A	GTS676	July 31. 2023	July 30. 2024		
20	RE cable 3	GTS	N/A	GTS677	July 31. 2023	July 30. 2024		
21	RE cable 4	GTS	N/A	GTS678	July 31. 2023	July 30. 2024		
22	RE cable 5	GTS	N/A	GTS679	July 31. 2023	July 30. 2024		
23	RE cable 6	GTS	N/A	GTS680	July 31. 2023	July 30. 2024		
24	RE cable 7	GTS	N/A	GTS681	July 31. 2023	July 30. 2024		
25	RE cable 8	GTS	N/A	GTS682	July 31. 2023	July 30. 2024		

Cond	Conducted Emission								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	July 12, 2022	July 11, 2027			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024			
3	LISN	ROHDE & SCHWARZ	ENV216	GTS226	April 14, 2023	April 13, 2024			
4	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
6	Thermo meter	JINCHUANG	GSP-8A	GTS642	April 19, 2023	April 18, 2024			
7	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 14, 2023	April 13, 2024			
8	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 14, 2023	April 13, 2024			
9	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 14, 2023	April 13, 2024			
10	Antenna end assembly	Weinschel	1870A	GTS560	April 14, 2023	April 13, 2024			

RF C	RF Conducted Test:										
Item	Test Equipment	Manufacturer	Manufacturer Model No. Serial N		Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)					
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 14, 2023	April 13, 2024					
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024					
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	April 14, 2023	April 13, 2024					
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 14, 2023	April 13, 2024					
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 14, 2023	April 13, 2024					
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 14, 2023	April 13, 2024					
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 14, 2023	April 13, 2024					
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 14, 2023	April 13, 2024					
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	April 19, 2023	April 18, 2024					
10	EXA Signal Analyzer	Keysight	N9010B	MY60241168	Nov. 03, 2023	Nov. 02, 2024					

Ger	General used equipment:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)					
1	Barometer	KUMAO	SF132	GTS647	April 19, 2023	April 18, 2024					

7 Test results and Measurement Data

7.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

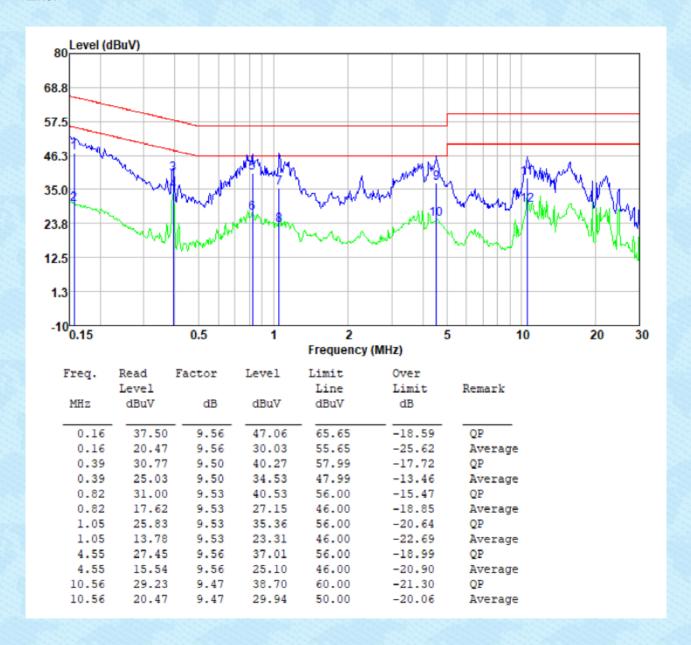
The antenna is integral antenna, reference to the appendix II for details

7.2 Automatically discontinue transmission:

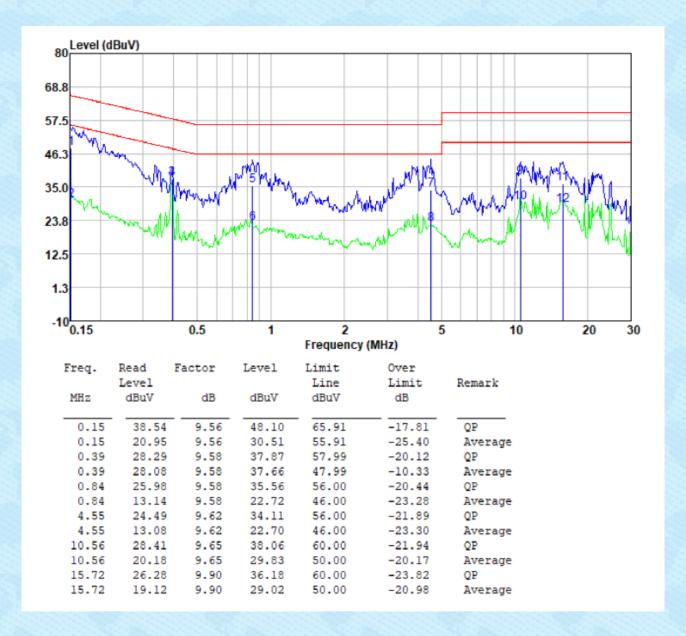
Standard requirement: FCC Part 15 Subpart E Section 15.407(c)

The applicant declare that the device (FCC Part 15 Subpart E Section 15.407) shall automatically discontinue transmission in cases of absence of information to transmit, or operational failure.

7.3 Conducted Emissions

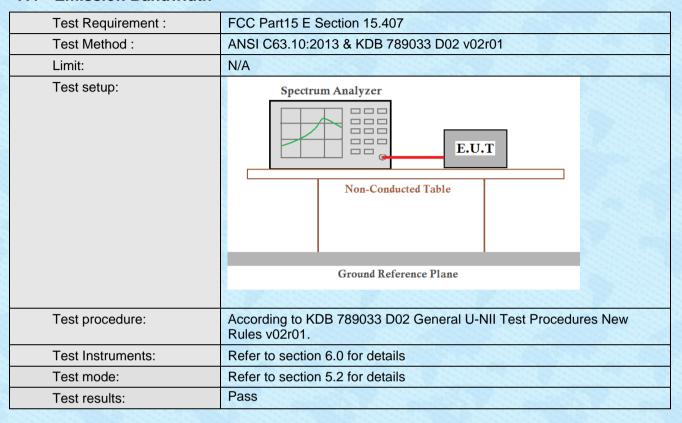

Test Requirement:	FCC Part15 C Section 15.207	7									
Test Method:	ANSI C63.10										
Test Frequency Range:	150KHz to 30MHz										
Receiver setup:	RBW=9KHz, VBW=30KHz, S	RBW=9KHz, VBW=30KHz, Sweep time=auto									
Limit:	Limit (dBuV)										
	Frequency range (MHz)	Quasi-peak	Average								
	0.15-0.5	56 to 46*									
	0.5-5	46									
	5-30	60	50								
	* Decreases with the logarithm	m of the frequency.									
Test setup:	Reference Plane										
·	40cm	40cm									
	40cm										
		BOcm LISN									
	AUX Equipment E.U.T										
	Equipment	Filter —	AC power								
	Test table/Insulation plane	EMI									
		Receiver									
	Remark: E.U.T: Equipment Under Test										
	LISN: Line Impedence Stabilization Network										
	Test table height=0.8m										
Test procedure:	1. The E.U.T and simulators		the first the same of the same								
	line impedance stabilizatio										
	50ohm/50uH coupling imp										
	2. The peripheral devices are										
	LISN that provides a 50oh										
	termination. (Please refer t	to the block diagram (of the test setup and								
	photographs).										
	3. Both sides of A.C. line are										
	interference. In order to fin										
	positions of equipment and										
To at the atminus and a	according to ANSI C63.10		irement.								
Test Instruments:	Refer to section 6.0 for details										
Test mode:	Refer to section 5.2 for details		Drago . 4040l								
Test environment:		mid.: 52%	Press.: 1012mbar								
Test voltage:	AC 120V, 60Hz										
Test results:	Pass										

Measurement data


Pre-scan all test modes, found worst case at ANT 1 802.11a 5180MHz, and so only show the test result of it.

Line:

Neutral:



Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.4 Emission Bandwidth

Measurement Data: The detailed test data see Appendix.

7.5 Maximum Conducted Output Power

Test Requirement	FCC Part15 E Section 15.407				
Test Method :	ANSI C63.10:2013 & KDB 789033 D02 v02r01				
Limit:	Frequency band (MHz)				
	5150-5250 ≤1W(30dBm) for master device ≤250Mw(23.98dBm) for client device				
	5250-5350 ≤250Mw(23.98dBm) for client device or				
	11dBm+10logB* ≤250Mw(23.98dBm) for client device or				
	5470-5725 S250/W(25.98dBiff) for client device of 11dBm+10logB*				
	Remark: *Where B is the 26Db emission bandwidth in MHz.				
	The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in				
	terms of an rms-equivalent voltage.				
Test setup:	Power Meter E.U.T				
	Non-Conducted Table				
	Ground Reference Plane				
Duty Cycle set up:	RBW=VBW=8MHz				
Test procedure:	Measurement using an RF average power meter				
	(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied				
	a) The EUT is configured to transmit continuously or to transmit				
	a) The EUT is configured to transmit continuously or to transmit with a constant duty cycle.				
	with a constant duty cycle. b) At all times when the EUT is transmitting, it must be				
	with a constant duty cycle. b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of				
	with a constant duty cycle. b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in				
	with a constant duty cycle. b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B). (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of				
Test Instruments:	with a constant duty cycle. b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B). (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter. (iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is				
Test Instruments: Test mode:	with a constant duty cycle. b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B). (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter. (iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent).				

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 15 of 34

Measurement Data: The detailed test data see Appendix.

Remark:

Antenna gain: ANT 1: 1.31dBi, ANT 2: 2.03dBi

Directional gain=10log [(10^{ANT1/20}+10^{ANT2/20})²/2]dBi=4.69dBi

7.6 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407						
Test Method :	ANSI C63.10:2013 & KDB 789033 D02 v02r01						
Limit:	Frequency band Limit (MHz)						
	5150-5250	≤17dBm in 1MHz for master device					
	3130-3230	≤11dBm in 1MHz for client device					
	5250-5350	≤11dBm in 1MHz for client device					
	5470-5725	≤11dBm in 1MHz for client device					
		ewer spectral density is measured as a ect connection of a calibrated test instrument st.					
Test setup:	Spectrum Analyzer Non-Conducte Ground Referen						
Test procedure:	 Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power". Use the peak search function on the instrument to find the peak of the spectrum. Make the following adjustments to the peak value of the spectrum, if applicable: a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum. b) If Method SA-3 Alternative was used and the linear mode was used in step E)2)g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. 						
Test Instruments:	 The result is the PSD. Refer to section 6.0 for deta 	ils					
Test mode:	Refer to section 5.2 for deta						
Test results:	Pass						

Measurement Data: The detailed test data see Appendix.

Remark:

Antenna gain:ANT 1: 1.31dBi, ANT 2: 2.03dBi Directional gain=10log [(10^{ANT1/20}+10^{ANT2/20})²/2]dBi=4.69dBi

7.7 Band Edge

Test Requirement:	FCC Part15 E Section 15.407 and 5.205								
Test Method:	ANSI C63.10:201	13							
Test site:	Measurement Dis	stance: 3m (S	emi-Anecho	ic Chambe	r)				
Receiver setup:	Frequency 30MHz-1GHz Above 1GHz	Detector Quasi-peak Peak AV	RBW 120KHz 1MHz 1MHz	VBW 300KHz 3MHz 3MHz	Remark Quasi-peak Value Peak Value Average Value				
Limit:	Frequency Limit (dBuV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz 54.0 Average Value 68.2 Peak Value								
	outside of th dBm/MHz. (2) For transmitte outside of th dBm/MHz. I generate en applicable te band (includemission EIF (3) For transmitte	ers operating e 5.15-5.35 (ers operating e 5.15-5.35 (Devices openissions in the chnical requiling indoor upper the company of	in the 5.25-GHz band shrating in the 5.15-5.2 rements for dise) or alter dBm/MHz in the 5.47-4	nall not exc -5.35 GHz nall not exc se 5.25-5.3 5 GHz ba operation in rnatively m on the 5.15-5 5.725 GHz	band: all emissions eed an EIRP of -27 band: all emissions eed an EIRP of -27 B5 GHz band that and must meet all the 5.15-5.25 GHz eet an out-of-band 5.25 GHz band. band: all emissions eed an EIRP of -27				
Test Procedure:	a. The EUT was ground at a 3 determine the b. The EUT was antenna, whi tower. c. The antenna the ground to Both horizon make the me d. For each sus case and the meters and the degrees to fire. The test-rece Specified Balf. If the emission the limit specified by the EUT with the specified by the specified by the EUT with the specified by the EUT with the specified by the sp	s meter cambe e position of t is set 3 meters ch was moun height is vari determine that and vertical asurement. pected emiss in the antenna- me rotable tab and the maxim eiver system variable tab and the maxim eiver system variable tab	er. The table he highest ras away from ted on the to ed from one he maximum al polarization was turned was turned was turned was set to Perental to the ed to the ed to the ed to the ed to the ed. Otherwipe re-tested	was rotate adiation. the interference op of a varial meter to fo value of the ns of the are was arran to heights find from 0 de- eak Detect I old Mode. k mode was e stopped a ise the emis-	ur meters above e field strength. Intenna are set to ged to its worst rom 1 meter to 4 egrees to 360				

	sheet.
Test setup:	For radiated emissions above 1GHz Test Antennae < 1m 4m > e Receivere Preamplifiere Receivere Preamplifiere
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remarks:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows: E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data:

Both 2 antennas were tested and compliance, only worst condition(ANT 1) report.									
Worse case	mode:	8	02.11a	Test Freque	ency:	5180N	5180MHz		
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V		
5150	50.50	-3.63	46.87	68.20	-21.33	peak	Н		
5150	46.17	-3.63	42.54	54.00	-11.46	AVG	Н		
5150	52.09	-3.63	48.46	68.20	-19.74	peak	V		
5150	45.52	-3.63	41.89	54.00	-12.11	AVG	V		
Worse case	mode:	8	02.11a	Test Freque	ency:	5240N	ЛHz		
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V		
5350	49.01	-3.59	45.42	68.20	-22.78	peak	Н		
5350	45.52	-3.59	41.93	54.00	-12.07	AVG	Н		
5350	50.64	-3.59	47.05	68.20	-21.15	peak	V		
5350	44.21	-3.59	40.62	54.00	-13.38	AVG	V		
Worse case	mode:	8	02.11n	Test Freque	ency:	5180N	ЛHz		
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V		
5150	49.76	-3.63	46.13	68.20	-22.07	peak	Н		
5150	46.38	-3.63	42.75	54.00	-11.25	AVG	Н		
5150	52.20	-3.63	48.57	68.20	-19.63	peak	V		
5150	44.95	-3.63	41.32	54.00	-12.68	AVG	V		
Worse case			02.11n		est Frequency:		ЛНz		
Frequency (MHz)	Meter Reading	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol.		
	(dBµV)		\				H/V		
5350	49.22	-3.59	45.63	68.20	-22.57	peak	H/V H		
5350 5350		-3.59 -3.59		68.20 54.00	-22.57 -12.03	peak AVG			
	49.22		45.63				Н		
5350	49.22 45.56	-3.59	45.63 41.97	54.00	-12.03	AVG	H		
5350 5350	49.22 45.56 49.86 44.19	-3.59 -3.59 -3.59	45.63 41.97 46.27	54.00 68.20	-12.03 -21.93 -13.40	AVG peak	H H V V		
5350 5350 5350	49.22 45.56 49.86 44.19	-3.59 -3.59 -3.59	45.63 41.97 46.27 40.60	54.00 68.20 54.00	-12.03 -21.93 -13.40	AVG peak AVG	H H V V		
5350 5350 5350 Worse case Frequency	49.22 45.56 49.86 44.19 mode: Meter Reading	-3.59 -3.59 -3.59 80 Factor	45.63 41.97 46.27 40.60 02.11ac Emission Level	54.00 68.20 54.00 Test Freque	-12.03 -21.93 -13.40 ency:	AVG peak AVG 5180N Detector	H H V V V MHz Ant. Pol.		
5350 5350 5350 Worse case Frequency (MHz)	49.22 45.56 49.86 44.19 mode: Meter Reading (dBµV)	-3.59 -3.59 -3.59 80 Factor (dB)	45.63 41.97 46.27 40.60 02.11ac Emission Level (dBµV/m)	54.00 68.20 54.00 Test Freque Limits (dBµV/m)	-12.03 -21.93 -13.40 ency: Over (dB)	AVG peak AVG 5180N Detector Type	H V V //Hz Ant. Pol. H/V		
5350 5350 5350 Worse case Frequency (MHz) 5150	49.22 45.56 49.86 44.19 mode: Meter Reading (dBµV) 50.49	-3.59 -3.59 -3.59 80 Factor (dB) -3.63	45.63 41.97 46.27 40.60 22.11ac Emission Level (dBµV/m) 46.86	54.00 68.20 54.00 Test Freque Limits (dBµV/m) 68.20	-12.03 -21.93 -13.40 ency: Over (dB) -21.34	AVG peak AVG 5180N Detector Type peak	H V V //Hz Ant. Pol. H/V H		
5350 5350 5350 Worse case Frequency (MHz) 5150 5150	49.22 45.56 49.86 44.19 mode: Meter Reading (dBµV) 50.49 46.16	-3.59 -3.59 -3.59 80 Factor (dB) -3.63 -3.63	45.63 41.97 46.27 40.60 2.11ac Emission Level (dBµV/m) 46.86 42.53	54.00 68.20 54.00 Test Frequence Limits (dBµV/m) 68.20 54.00	-12.03 -21.93 -13.40 ency: Over (dB) -21.34 -11.47	AVG peak AVG 5180N Detector Type peak AVG	H H V V MHz Ant. Pol. H/V H		
5350 5350 5350 Worse case Frequency (MHz) 5150 5150 5150	49.22 45.56 49.86 44.19 mode: Meter Reading (dBµV) 50.49 46.16 52.09 45.52	-3.59 -3.59 -3.59 80 Factor (dB) -3.63 -3.63 -3.63	45.63 41.97 46.27 40.60 2.11ac Emission Level (dBµV/m) 46.86 42.53 48.46 41.89	54.00 68.20 54.00 Test Frequence Limits (dBµV/m) 68.20 54.00 68.20 54.00	-12.03 -21.93 -13.40 ency: Over (dB) -21.34 -11.47 -19.74 -12.11	AVG peak AVG 5180N Detector Type peak AVG peak	H H V V MHz Ant. Pol. H/V H V V		
5350 5350 5350 Worse case Frequency (MHz) 5150 5150 5150	49.22 45.56 49.86 44.19 mode: Meter Reading (dBµV) 50.49 46.16 52.09 45.52	-3.59 -3.59 -3.59 80 Factor (dB) -3.63 -3.63 -3.63	45.63 41.97 46.27 40.60 02.11ac Emission Level (dBµV/m) 46.86 42.53 48.46	54.00 68.20 54.00 Test Freque Limits (dBµV/m) 68.20 54.00 68.20	-12.03 -21.93 -13.40 ency: Over (dB) -21.34 -11.47 -19.74 -12.11	AVG peak AVG 5180N Detector Type peak AVG peak AVG	H H V V MHz Ant. Pol. H/V H V V MHz Ant. Pol.		
5350 5350 5350 Worse case Frequency (MHz) 5150 5150 5150 Worse case Frequency	49.22 45.56 49.86 44.19 mode: Meter Reading (dBµV) 50.49 46.16 52.09 45.52 mode: Meter Reading	-3.59 -3.59 -3.59 80 Factor (dB) -3.63 -3.63 -3.63 -3.63 Factor	45.63 41.97 46.27 40.60 02.11ac Emission Level (dBµV/m) 46.86 42.53 48.46 41.89 02.11ac Emission Level	54.00 68.20 54.00 Test Freque Limits (dBµV/m) 68.20 54.00 68.20 54.00 Test Freque Limits	-12.03 -21.93 -13.40 ency: Over (dB) -21.34 -11.47 -19.74 -12.11 ency: Over	AVG peak AVG 5180N Detector Type peak AVG peak AVG peak AVG Detector	H H V V MHz Ant. Pol. H/V H V V MHz Ant.		

GTS

010								
					Report No.: GT	S20230901	09F03	
5350	45.51	-3.59	41.92	54.00	-12.08	AVG	Н	
5350	50.64	-3.59	47.05	68.20	-21.15	peak	V	
5350	44.20	-3.59	40.61	54.00	-13.39	AVG	V	
Worse case r	mode:	802.1	11n(HT40)	Test Fre	equency:	5190	00MHz	
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits Over (dBµV/m)		Detector Type	Ant. Pol. H/V	
5150	49.75	-3.63	46.12	68.20	-22.08	peak	H	
5150	46.37	-3.63	42.74	54.00	-11.26	AVG	Н	
5150	52.20	-3.63	48.57	68.20	-19.63	peak	V	
5150	44.94	-3.63	41.31	54.00	-12.69	AVG	V	
Worse case r	mode:	802.1	11n(HT40)	Test Fre	equency:	5230	MHz	
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V	
5350	49.19	-3.45	45.74	68.20	-22.46	peak	Н	
5350	45.54	-3.45	42.09	54.00	-11.91	AVG	Н	
5350	49.85	-3.45	46.40	68.20	-21.80	peak	V	
5350	44.17	-3.45	40.72	54.00	-13.28	AVG	V	
Worse case r	mode:	802.11	lac(VHT40)	Test Fre	equency:	5190	MHz	
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V	
5150	49.30	-3.63	45.67	68.20	-22.53	peak	Н	
5150	45.41	-3.63	41.78	54.00	-12.22	AVG	Н	
5150	51.55	-3.63	47.92	68.20	-20.28	peak	V	
5150	44.51	-3.63	40.88	54.00	-13.12	AVG	V	
Worse case r	node:	802.11	lac(VHT40)	Test Fre	equency:	5230	MHz	
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V	
5350	48.35	-3.59	44.76	68.20	-23.44	peak	Н	
5350	45.01	-3.59	41.42	54.00	-12.58	AVG	Н	
5350	49.54	-3.59	45.95	68.20	-22.25	peak	V	
5350	43.48	-3.59	39.89	54.00	-14.11	AVG	V	
Worse case r	node:	802.11	lac(VHT80)	Test Fre	equency:	5210	MHz	
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V	
5150	48.63	-3.63	45.00	68.20	-23.20	peak	Н	
5150	42.44	-3.63	38.81	54.00	-15.19	AVG	Н	
5150	49.78	-3.63	46.15	68.20	-22.05	peak	V	
5150	43.04	-3.63	39.41	54.00	-14.59	AVG	V	
5350	49.04	-3.59	45.45	68.20	-22.75	peak	Н	
5350	41.42	-3.59	37.83	54.00	-16.17	AVG	Н	
5350	50.56	-3.59	46.97	68.20	-21.23	peak	V	
5050	44.00	0.50	40.00	54.00	40.00	11/0		

Global United Technology Services Co., Ltd.

44.39

5350

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

-3.59

40.80

54.00

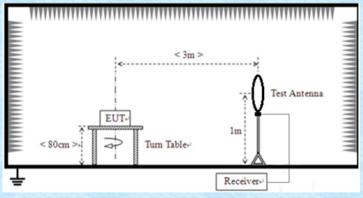
AVG

-13.20

٧

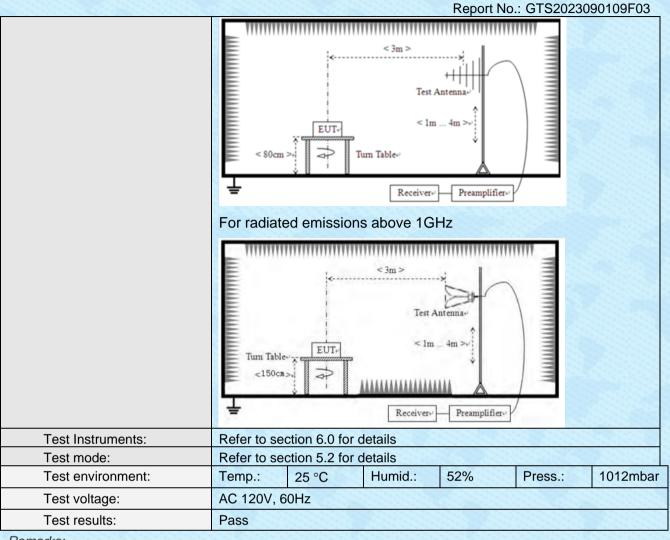
7.8 Radiated Emission

Total Dan January	500 D-145 O		45 000	145.005				
Test Requirement :	FCC Part15 C Section 15.209 and 15.205 ANSI C63.10: 2013							
Test Method :			3					
Test Frequency Range:	9kHz to 40GHz							
Test site:	Measurement I							
Receiver setup:	Frequency		Detector	RBW	VBW	Value		
	9kHz-150KH		Quasi-peak	200Hz	1kHz	Quasi-peak Value		
	150kHz-30MH		Quasi-peak	9kHz	30kHz	Quasi-peak Value		
	30MHz-1GH	Z	Quasi-peak Peak	120KHz 1MHz	300KHz 3MHz	Quasi-peak Value Peak Value		
	Above 1GHz	Z	AV	1MHz	3MHz	Average Value		
Limit:			710	TIVITIZ	OWITIZ	7tvolage value		
Liiiit.	Frequency (MHz)	Field	d strength (microvo	lts/meter)	Measuremen	nt distance (meters)		
	0.009-0.490	_	0/F(kHz)			300		
	0.490-1.705 1.705-30.0	30	00/F(kHz)			30 30		
	30-88	100	**			3		
	88-216	150°				3		
	216-960 Above 960	200°				3		
	Above 960	500			19/19/19/19/19/19/19/19/19/19/19/19/19/1			
Test Procedure:	the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below: 1>.Below 1GHz test procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst							
	 case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower that the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions the did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then report in a data sheet. 2>.Above 1GHz test procedure: 1. On the test site as test setup graph above, the EUT shall be placed as 							



- the 0.8m support on the turntable and in the position closest to normal use as declared by the provider.
- The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
- 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
- 6. Remove the transmitter and replace it with a substitution antenna
- 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- 8. Repeat step 7 with both antennas horizontally polarized for each test frequency.
- 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:
 EIRP(dBm) = Pg(dBm) cable loss (dB) + antenna gain (dBi)

Pg is the generator output power into the substitution antenna.


Test setup:

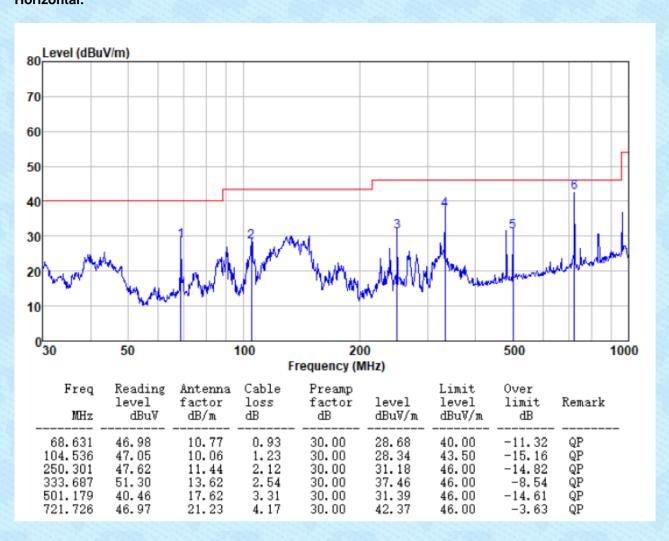
For radiated emissions from 9kHz to 30MHz

For radiated emissions from 30MHz to1GHz

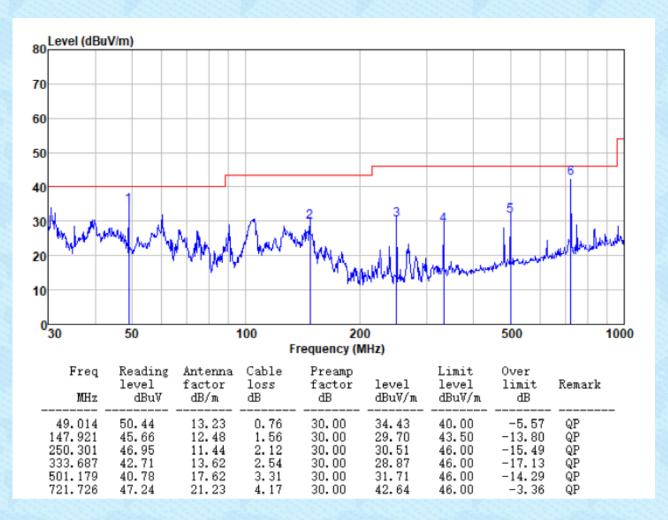
Remarks:

- 1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- Both 2 antennas were tested and compliance, only worst condition(ANT 1) report.

Measurement Data:


9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


30MHz~1GHz

Pre-scan all test modes, found worst case at 802.11a 5180MHz(ANT 1), and so only show the test result of it. **Horizontal:**

Vertical:

Above 1GHz:

	802.1	11a(HT20)			Test Frequency: 5180MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10360	36.15	38.96	8.27	35.64	47.74	68.20	-20.46	Vertical	
15540	34.14	38.40	10.57	35.35	47.76	68.20	-20.44	Vertical	
10360	35.36	38.96	8.27	35.64	46.95	68.20	-21.25	Horizontal	
15540	31.72	38.40	10.57	35.35	45.34	68.20	-22.86	Horizontal	
10360	28.65	38.96	8.27	35.64	40.24	54.00	-13.76	Vertical	
15540	26.99	38.40	10.57	35.35	40.61	54.00	-13.39	Vertical	
10360	26.44	38.96	8.27	35.64	38.03	54.00	-15.97	Horizontal	
15540	26.52	38.40	10.57	35.35	40.14	54.00	-13.86	Horizontal	

	802.1	1a(HT20)			Test Frequency: 5200MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10400	36.02	39.01	8.29	35.67	47.65	68.20	-20.55	Vertical	
15600	34.19	38.30	10.62	35.36	47.75	68.20	-20.45	Vertical	
10400	35.77	39.01	8.29	35.67	47.40	68.20	-20.80	Horizontal	
15600	29.81	38.30	10.62	35.36	43.37	68.20	-24.83	Horizontal	
10400	29.52	39.01	8.29	35.67	41.15	54.00	-12.85	Vertical	
15600	28.24	38.30	10.62	35.36	41.80	54.00	-12.20	Vertical	
10400	24.83	39.01	8.29	35.67	36.46	54.00	-17.54	Horizontal	
15600	25.54	38.30	10.62	35.36	39.10	54.00	-14.90	Horizontal	

	802.1	11a(HT20)			Tes	t Frequency:	5240MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480	36.65	39.15	8.32	35.78	48.34	68.20	-19.86	Vertical
15720	33.14	38.00	10.72	35.37	46.49	68.20	-21.71	Vertical
10480	33.28	39.15	8.32	35.78	44.97	68.20	-23.23	Horizontal
15720	33.34	38.00	10.72	35.37	46.69	68.20	-21.51	Horizontal
10480	27.29	39.15	8.32	35.78	38.98	54.00	-15.02	Vertical
15720	25.09	38.00	10.72	35.37	38.44	54.00	-15.56	Vertical
10480	25.72	39.15	8.32	35.78	37.41	54.00	-16.59	Horizontal
15720	22.47	38.00	10.72	35.37	35.82	54.00	-18.18	Horizontal

GTS

Report No.: GTS2023090109F03

	802.1	11n(HT20)			Tes	t Frequency:	5180MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360	35.99	39.20	8.34	35.82	47.71	68.20	-20.49	Vertical
15540	34.61	37.90	10.77	35.38	47.90	68.20	-20.30	Vertical
10360	35.98	39.20	8.34	35.82	47.70	68.20	-20.50	Horizontal
15540	29.86	37.90	10.77	35.38	43.15	68.20	-25.05	Horizontal
10360	28.23	39.20	8.34	35.82	39.95	54.00	-14.05	Vertical
15540	25.79	37.90	10.77	35.38	39.08	54.00	-14.92	Vertical
10360	24.08	39.20	8.34	35.82	35.80	54.00	-18.20	Horizontal
15540	24.16	37.90	10.77	35.38	37.45	54.00	-16.55	Horizontal

	802.1	11n(HT20)			Tes	t Frequency:	5200MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400	36.93	38.96	8.27	35.64	48.52	68.20	-19.68	Vertical
15600	32.15	38.40	10.57	35.35	45.77	68.20	-22.43	Vertical
10400	33.00	38.96	8.27	35.64	44.59	68.20	-23.61	Horizontal
15600	33.90	38.40	10.57	35.35	47.52	68.20	-20.68	Horizontal
10400	30.13	38.96	8.27	35.64	41.72	54.00	-12.28	Vertical
15600	28.46	38.40	10.57	35.35	42.08	54.00	-11.92	Vertical
10400	27.43	38.96	8.27	35.64	39.02	54.00	-14.98	Horizontal
15600	22.64	38.40	10.57	35.35	36.26	54.00	-17.74	Horizontal

	802.1	1n(HT20)			Tes	t Frequency:	5240MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480	33.74	39.15	8.32	35.78	45.43	68.20	-22.77	Vertical
15720	33.24	38.00	10.72	35.37	46.59	68.20	-21.61	Vertical
10480	32.93	39.15	8.32	35.78	44.62	68.20	-23.58	Horizontal
15720	29.17	38.00	10.72	35.37	42.52	68.20	-25.68	Horizontal
10480	28.29	39.15	8.32	35.78	39.98	54.00	-14.02	Vertical
15720	27.92	38.00	10.72	35.37	41.27	54.00	-12.73	Vertical
10480	24.57	39.15	8.32	35.78	36.26	54.00	-17.74	Horizontal
15720	25.78	38.00	10.72	35.37	39.13	54.00	-14.87	Horizontal

	802.1	1ac(HT20)			Tes	t Frequency:	5180MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360	34.02	38.96	8.27	35.64	45.61	68.20	-22.59	Vertical
15540	34.79	38.40	10.57	35.35	48.41	68.20	-19.79	Vertical
10360	32.64	38.96	8.27	35.64	44.23	68.20	-23.97	Horizontal
15540	33.04	38.40	10.57	35.35	46.66	68.20	-21.54	Horizontal
10360	26.85	38.96	8.27	35.64	38.44	54.00	-15.56	Vertical
15540	24.52	38.40	10.57	35.35	38.14	54.00	-15.86	Vertical
10360	24.99	38.96	8.27	35.64	36.58	54.00	-17.42	Horizontal
15540	22.29	38.40	10.57	35.35	35.91	54.00	-18.09	Horizontal

	802.1	1ac(HT20)			Tes	t Frequency:	5200MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400	36.92	39.01	8.29	35.67	48.55	68.20	-19.65	Vertical
15600	33.50	38.30	10.62	35.36	47.06	68.20	-21.14	Vertical
10400	33.42	39.01	8.29	35.67	45.05	68.20	-23.15	Horizontal
15600	33.84	38.30	10.62	35.36	47.40	68.20	-20.80	Horizontal
10400	29.46	39.01	8.29	35.67	41.09	54.00	-12.91	Vertical
15600	27.95	38.30	10.62	35.36	41.51	54.00	-12.49	Vertical
10400	24.20	39.01	8.29	35.67	35.83	54.00	-18.17	Horizontal
15600	26.70	38.30	10.62	35.36	40.26	54.00	-13.74	Horizontal

	A A A A A A A A A							
	802.1	1ac(HT20)			Tes	t Frequency:	5240MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480	32.45	39.15	8.32	35.78	44.14	68.20	-24.06	Vertical
15720	33.26	38.00	10.72	35.37	46.61	68.20	-21.59	Vertical
10480	34.13	39.15	8.32	35.78	45.82	68.20	-22.38	Horizontal
15720	33.98	38.00	10.72	35.37	47.33	68.20	-20.87	Horizontal
10480	27.22	39.15	8.32	35.78	38.91	54.00	-15.09	Vertical
15720	27.39	38.00	10.72	35.37	40.74	54.00	-13.26	Vertical
10480	23.57	39.15	8.32	35.78	35.26	54.00	-18.74	Horizontal
15720	24.81	38.00	10.72	35.37	38.16	54.00	-15.84	Horizontal

GTS

Report No.: GTS2023090109F03

	802.1	11n(HT40)			Tes	t Frequency:	5190MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380	37.44	39.01	8.28	35.67	49.06	68.20	-19.14	Vertical
15570	32.81	38.30	10.60	35.36	46.35	68.20	-21.85	Vertical
10380	34.01	39.01	8.28	35.67	45.63	68.20	-22.57	Horizontal
15570	30.71	38.30	10.60	35.36	44.25	68.20	-23.95	Horizontal
10380	26.87	39.01	8.28	35.67	38.49	54.00	-15.51	Vertical
15570	26.26	38.30	10.60	35.36	39.80	54.00	-14.20	Vertical
10380	27.59	39.01	8.28	35.67	39.21	54.00	-14.79	Horizontal
15570	25.24	38.30	10.60	35.36	38.78	54.00	-15.22	Horizontal

	802.1	11n(HT40)			Tes	t Frequency:	5230MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460	36.18	39.11	8.31	35.75	47.85	68.20	-20.35	Vertical
15690	33.30	38.10	10.70	35.37	46.73	68.20	-21.47	Vertical
10460	32.99	39.11	8.31	35.75	44.66	68.20	-23.54	Horizontal
15690	30.85	38.10	10.70	35.37	44.28	68.20	-23.92	Horizontal
10460	29.99	39.11	8.31	35.75	41.66	54.00	-12.34	Vertical
15690	28.99	38.10	10.70	35.37	42.42	54.00	-11.58	Vertical
10460	24.98	39.11	8.31	35.75	36.65	54.00	-17.35	Horizontal
15690	27.24	38.10	10.70	35.37	40.67	54.00	-13.33	Horizontal

	802.1	1ac(HT40)			Tes	t Frequency:	5190MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380	33.48	39.01	8.28	35.67	45.10	68.20	-23.10	Vertical
15570	30.70	38.30	10.60	35.36	44.24	68.20	-23.96	Vertical
10380	32.40	39.01	8.28	35.67	44.02	68.20	-24.18	Horizontal
15570	32.07	38.30	10.60	35.36	45.61	68.20	-22.59	Horizontal
10380	26.38	39.01	8.28	35.67	38.00	54.00	-16.00	Vertical
15570	26.78	38.30	10.60	35.36	40.32	54.00	-13.68	Vertical
10380	28.01	39.01	8.28	35.67	39.63	54.00	-14.37	Horizontal
15570	26.37	38.30	10.60	35.36	39.91	54.00	-14.09	Horizontal

	802.1	1ac(HT40)			Tes	t Frequency:	5230MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460	33.84	39.11	8.31	35.75	45.51	68.20	-22.69	Vertical
15690	34.27	38.10	10.70	35.37	47.70	68.20	-20.50	Vertical
10460	31.55	39.11	8.31	35.75	43.22	68.20	-24.98	Horizontal
15690	32.77	38.10	10.70	35.37	46.20	68.20	-22.00	Horizontal
10460	28.84	39.11	8.31	35.75	40.51	54.00	-13.49	Vertical
15690	27.37	38.10	10.70	35.37	40.80	54.00	-13.20	Vertical
10460	23.84	39.11	8.31	35.75	35.51	54.00	-18.49	Horizontal
15690	23.75	38.10	10.70	35.37	37.18	54.00	-16.82	Horizontal

	802.1	1ac(HT80)			Tes	t Frequency:	5210MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420	36.55	39.06	8.29	35.71	48.19	68.20	-20.01	Vertical
15630	33.63	38.20	10.65	35.36	47.12	68.20	-21.08	Vertical
10420	34.77	39.06	8.29	35.71	46.41	68.20	-21.79	Horizontal
15630	33.69	38.20	10.65	35.36	47.18	68.20	-21.02	Horizontal
10420	29.31	39.06	8.29	35.71	40.95	54.00	-13.05	Vertical
15630	27.58	38.20	10.65	35.36	41.07	54.00	-12.93	Vertical
10420	25.20	39.06	8.29	35.71	36.84	54.00	-17.16	Horizontal
15630	26.86	38.20	10.65	35.36	40.35	54.00	-13.65	Horizontal

Notes:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.

7.9 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)	FCC Part15 C Section 15.407(g)					
Test Method:	ANSI C63.10:2013, FCC Part 2.1055,						
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified						
Test Procedure:		The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.					
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on A	Temperature Chamber EUT Variable Power Supply Antenna connector					
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Measurement Data:

All antennas have test, only the worst case ANT 1 report.

Test Condition	Test Mode	Test Frequency [MHz]	Ant	Result [ppm]	Limit [ppm]	Verdict
NTNV Carrier	5180	1	-8.63	<=20	PASS	
		5190	1	-7.32	<=20	PASS
	Corrier	5200	1	-9.54	<=20	PASS
	Carrier	5210	1	-2.37	<=20	PASS
		5230	1	1.91	<=20	PASS
		5240	1	-9.90	<=20	PASS

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

---END---