

Global United Technology Services Co., Ltd.

Report No.: GTSL2024020098F01

TEST REPORT

Applicant: Nuvyyo Inc.

Address of Applicant: 555 Legget Drive Tower B Suite 836 Kanata, ON K2K2X3,

Canada

Manufacturer: Nuvyyo Inc.

Address of 555 Legget Drive Tower B Suite 836 Kanata, ON K2K2X3,

Manufacturer: Canada

Factory: Shenzhen Giec Digital Co., Ltd

Address of Factory: 1st&3rd Building, No.26 Puzai Road, Pingdi, Longgang

District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: OTA streamer

Model No.: TF1282B-01-CN, TF1282B-02-CN, TF1282B-AN-01-CN,

TF1282B-AN-02-CN

FCC ID: 2AOR7-TABLO02O

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: September 11, 2023

Date of Test: September 12, 2023-February 26, 2024

Date of report issued: February 26, 2024

Test Result: PASS *

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	February 26, 2024	Original

Prepared By:	Jasan Llu Project Engineer	Date:	February 26, 2024
Check By:	Reviewer	Date:	February 26, 2024

GTS

Report No.: GTSL2024020098F01

3 Contents

		Page
cov	ER PAGE	1
VER	SION	2
All the second		
	얼마를 가지 않는 것이 되는 것이 되었다면 맛이 뭐 보고 있는데 되었다면 맛이 되는데 되었다면 맛이 되었다면 맛이 되었다면 맛이 되었다면 맛이 되었다면 맛이 되었다면 없다면 없다면 없다면 없다면 뭐 뭐 없다면 뭐 뭐 없다면 뭐 뭐 없다면 뭐 뭐 없다면 뭐 요. 뭐 없는데 뭐 없다면 뭐 요. 뭐 없다면 뭐 요. 뭐 없다면 뭐 요. 뭐 없다면 뭐 요. 뭐 요	
5.5		
5.6		
5.7	TEST LOCATION	7
5.8	ADDITIONAL INSTRUCTIONS	7
TES	T INSTRUMENTS LIST	8
TES	T RESULTS AND MEASUREMENT DATA	10
7.1	ANTENNA REQUIREMENT	10
7.2		
7.3		
7.4	CHANNEL BANDWIDTH	15
7.5		
7.6		
7.6.2	Radiated Emission Method	18
TES	T SETUP PHOTO	27
FIIT	CONSTRUCTIONAL DETAILS	27
	VER CON TES GEN 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 TES TES 7.1 7.2 7.3 7.4 7.5 7.6 7.6.2 TES	5.2 TEST MODE 5.3 DESCRIPTION OF SUPPORT UNITS 5.4 DEVIATION FROM STANDARDS 5.5 ABNORMALITIES FROM STANDARD CONDITIONS 5.6 TEST FACILITY 5.7 TEST LOCATION 5.8 ADDITIONAL INSTRUCTIONS TEST INSTRUMENTS LIST TEST RESULTS AND MEASUREMENT DATA 7.1 ANTENNA REQUIREMENT 7.2 CONDUCTED EMISSIONS 7.3 CONDUCTED OUTPUT POWER 7.4 CHANNEL BANDWIDTH 7.5 POWER SPECTRAL DENSITY

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

1. Pass: The EUT complies with the essential requirements in the standard.

2. Test according to ANSI C63.10:2013

Measurement Uncertainty

No.	Item	Measurement Uncertainty		
1	Radio Frequency	±7.25×10 ⁻⁸		
2	Duty cycle	±0.37%		
3	Occupied Bandwidth	±3%		
4	RF conducted power	±0.75dB		
5	RF power density	±3dB		
6	Conducted Spurious emissions	±2.58dB		
7	AC Power Line Conducted Emission	±3.44dB (0.15MHz ~ 30MHz)		
		±3.1dB (9kHz-30MHz)		
	Radiated Spurious emission test	±3.8039dB (30MHz-200MHz)		
8		±3.9679dB (200MHz-1GHz)		
		±4.29dB (1GHz-18GHz)		
		±3.30dB (18GHz-40GHz)		
9	Temperature test	±1°C		
10	Humidity test	±3%		
11	Time	±3%		

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 General Information

5.1 General Description of EUT

Product Name:	OTA streamer
Model No.:	TF1282B-01-CN, TF1282B-02-CN, TF1282B-AN-01-CN, TF1282B-AN-02-CN
Test Model No.:	TF1282B-AN-02-CN
Remark:All above models are	identical in the same PCB layout, interior structure and electrical circuits.
The difference is the accesso	ries.
Test sample(s) ID:	GTSL2024020098-1
Sample(s) Status:	Engineer sample
S/N:	5087B8529BC6
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Data Rate:	LE 1M PHY: 1 Mb/s
	LE 2M PHY: 2 Mb/s
Antenna Type:	Integral Antenna
Antenna Gain:	1.19dBi
Power Supply:	AC ADAPTER 1
	MODEL: TEKA-TC120150US
	INPUT: AC 100-240V, 50/60Hz, 0.5A MAX
	OUTPUT: DC 12.0V, 1.5A
	AC ADAPTER 2
	MODEL: JYSY1588-1201500U
	INPUT: AC 100-240V, 50/60Hz, 0.5A MAX
	OUTPUT: DC 12.0V, 1.5A

Remark:

- 1. Antenna gain information provided by the customer
- 2. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.
- 3. All 2 adapters were tested and passed, only report the worst case adapter 1.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• ISED—Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special test software provided by manufacturer
Power level setup	Default

6 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	June 23, 2021	June 22, 2024	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 14, 2023	April 13, 2024	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 19, 2023	March 18, 2025	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	April 17, 2023	April 16, 2025	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 14, 2023	April 13, 2024	
8	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 13, 2023	Nov.12, 2024	
9	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 14, 2023	April 13, 2024	
10	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 14, 2023	April 13, 2024	
11	Horn Antenna (18- 26.5GHz)	1	UG-598A/U	GTS664	Oct. 29, 2023	Oct. 28, 2024	
12	Horn Antenna (26.5-40GHz)	A.H Systems	SAS-573	GTS665	Oct. 29, 2023	Oct. 28, 2024	
13	FSV·Signal Analyzer (10Hz-40GHz)	Keysight	FSV-40-N	GTS666	March 13, 2023	March 12, 2024	
14	Amplifier		LNA-1000-30S	GTS650	April 14, 2023	April 13, 2024	
15	CDNE M2+M3-16A	HCT	30MHz-300MHz	GTS692	Nov. 08, 2023	Nov.07, 2024	
16	Wideband Amplifier	1	WDA-01004000-15P35	GTS602	April 14, 2023	April 13, 2024	
17	Thermo meter	JINCHUANG	GSP-8A	GTS643	April 19, 2023	April 18, 2024	
18	RE cable 1	GTS	N/A	GTS675	July 31. 2023	July 30. 2024	
19	RE cable 2	GTS	N/A	GTS676	July 31. 2023	July 30. 2024	
20	RE cable 3	GTS	N/A	GTS677	July 31. 2023	July 30. 2024	
21	RE cable 4	GTS	N/A	GTS678	July 31. 2023	July 30. 2024	
22	RE cable 5	GTS	N/A	GTS679	July 31. 2023	July 30. 2024	
23	RE cable 6	GTS	N/A	GTS680	July 31. 2023	July 30. 2024	
24	RE cable 7	GTS	N/A	GTS681	July 31. 2023	July 30. 2024	
25	RE cable 8	GTS	N/A	GTS682	July 31. 2023	July 30. 2024	

Cond	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	July 12, 2022	July 11, 2027		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024		
3	LISN	ROHDE & SCHWARZ	ENV216	GTS226	April 14, 2023	April 13, 2024		
4	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
6	Thermo meter	JINCHUANG	GSP-8A	GTS642	April 19, 2023	April 18, 2024		
7	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 14, 2023	April 13, 2024		
8	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 14, 2023	April 13, 2024		
9	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 14, 2023	April 13, 2024		
10	Antenna end assembly	Weinschel	1870A	GTS560	April 14, 2023	April 13, 2024		

RF Co	RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 14, 2023	April 13, 2024		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024		
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	April 14, 2023	April 13, 2024		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 14, 2023	April 13, 2024		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 14, 2023	April 13, 2024		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 14, 2023	April 13, 2024		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 14, 2023	April 13, 2024		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 14, 2023	April 13, 2024		
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	April 19, 2023	April 18, 2024		
10	EXA Signal Analyzer	Keysight	N9010B	MY60241168	Nov. 03, 2023	Nov. 02, 2024		

Ger	General used equipment:									
Item	em Test Equipment Manufac		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Barometer	KUMAO	SF132	GTS647	April 19, 2023	April 18, 2024				

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

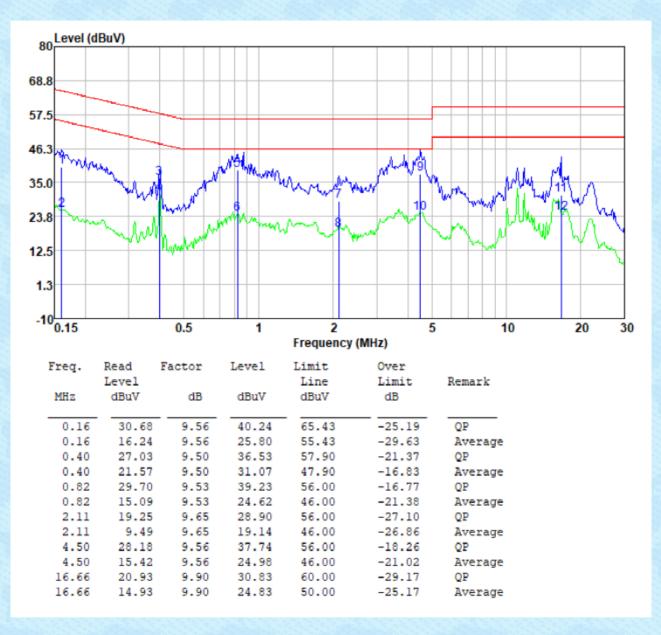
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is integral antenna, reference to the appendix II for details

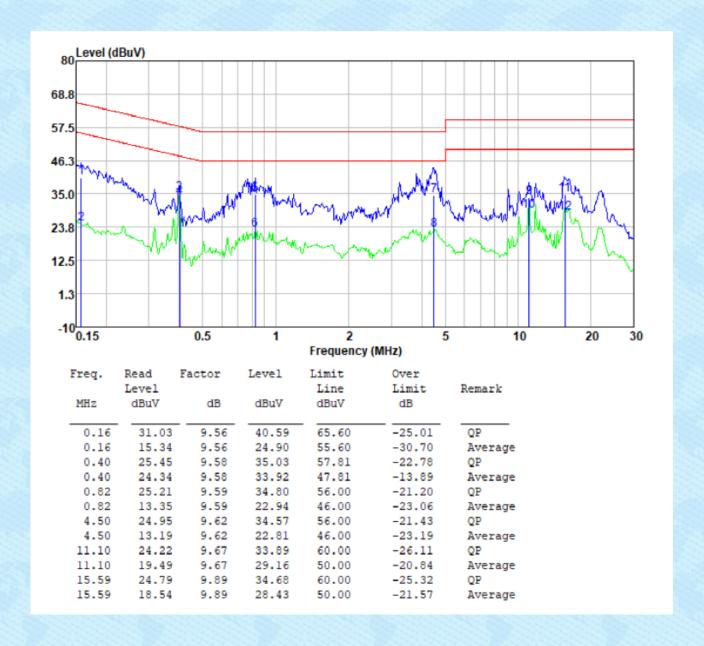
7.2 Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	150KHz to 30MHz							
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto							
Limit:	Limit (dBuV)							
	Prequency range (MHZ) Quasi-peak Average							
	0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46							
	* Decreases with the logarithm	60	50					
Test setup:	Reference Plane							
	Remark E.U.T Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	EMI Receiver	AC power					
Test procedure:	line impedance stabilizatio 50ohm/50uH coupling impedance. 2. The peripheral devices are LISN that provides a 50oh termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to fin	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed 						
Test Instruments:	Refer to section 6.0 for details	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details	3						
Test environment:		nid.: 52%	Press.: 1012mbar					
Test voltage:	AC 120V, 60Hz							
Test results:	Pass							
1 ฮอเ 1ฮอนแอ.	1 000							

GTS

Measurement data

Report No.: GTSL2024020098F01


Pre-scan all test modes, found worst case at 2402MHz@2M, and so only show the test result of it. **Line:**

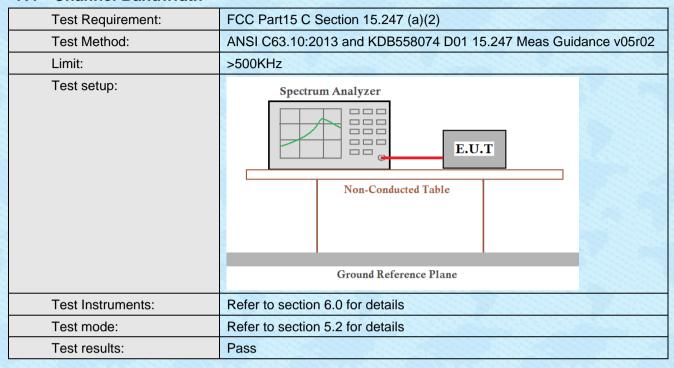
GTS

Neutral:

Report No.: GTSL2024020098F01

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.



7.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02						
Limit:	30dBm						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

7.4 Channel Bandwidth

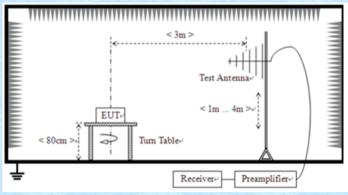
7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02						
Limit:	8dBm/3kHz						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

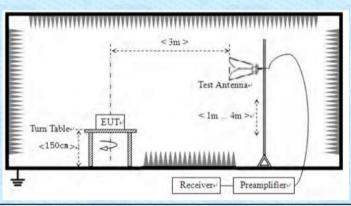
7.6 Spurious Emission in Non-restricted & restricted Bands

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						



7.6.2 Radiated Emission Method


Test Requirement:	FCC Part15 C Section 15 209							
Test Method:	FCC Part15 C Section 15.209 ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency Detector RBW VBW Value							
rtosorror sotup.	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak			
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak			
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak			
		Peak	1MHz	3MHz	Peak			
	Above 1GHz	Peak	1MHz	10Hz	Average			
	Note: For Duty cyc							
Limit:	Frequency	Limit (u\	//m)	Value	Measurement Distance			
	0.009MHz-0.490M	IHz 2400/F(F	(Hz) QI	P/PK/AV	300m			
	0.490MHz-1.705M	IHz 24000/F(KHz)	QP	30m			
	1.705MHz-30MH	lz 30		QP	30m			
	30MHz-88MHz	100		QP				
	88MHz-216MHz	z 150		QP				
	216MHz-960MH	z 200		QP	3m			
	960MHz-1GHz			QP	0			
	Above 1GHz	500		verage				
		5000		Peak				
Test setup:	For radiated emiss	sions from 9kH	z to 30MH	Z				
	< \$0cm >	<3m >	Te lm Receiver	st Antenna				

For radiated emissions from 30MHz to1GHz

For radiated emissions above 1GHz

Test Procedure:

- The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

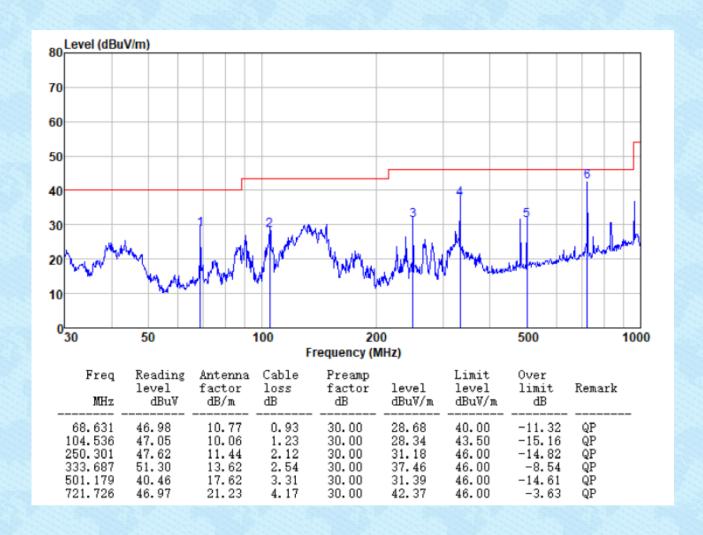
				Report N	o.: GTSL2024	020098F01		
Test Instruments:	Refer to se	Refer to section 6.0 for details						
Test mode:	Refer to se	Refer to section 5.2 for details						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		
Test voltage:	AC 120V,	AC 120V, 60Hz						
Test results:	Pass	Pass						

Measurement data:

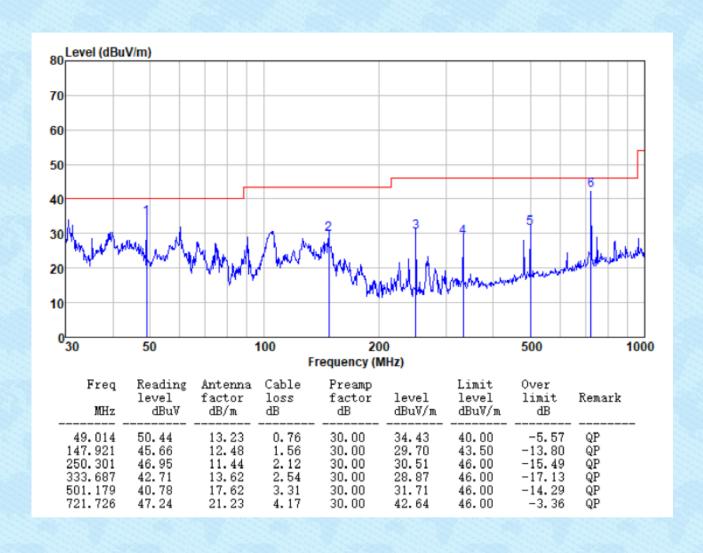
Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case. Both 1MHz and 2MHz bandwidth were tested and passed, only report the worst condition (GFSK_2MHz)

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz


Pre-scan all test modes, found worst case at 2402MHz@2M, and so only show the test result of it.

Horizontal:

Vertical:

■ Above 1GHz

■ Unwanted Emissions in Non-restricted Frequency Bands

Test channel:	Lowest
---------------	--------

Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	36.73	31.78	8.60	32.09	45.02	74.00	-28.98	Vertical
7206.00	31.11	36.15	11.65	32.00	46.91	74.00	-27.09	Vertical
9608.00	31.39	37.95	14.14	31.62	51.86	74.00	-22.14	Vertical
4804.00	41.10	31.78	8.60	32.09	49.39	74.00	-24.61	Horizontal
7206.00	33.12	36.15	11.65	32.00	48.92	74.00	-25.08	Horizontal
9608.00	30.13	37.95	14.14	31.62	50.60	74.00	-23.40	Horizontal

Average value:

Average var				The state of the s				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	25.22	31.78	8.60	32.09	33.51	54.00	-20.49	Vertical
7206.00	19.96	36.15	11.65	32.00	35.76	54.00	-18.24	Vertical
9608.00	19.33	37.95	14.14	31.62	39.80	54.00	-14.20	Vertical
4804.00	29.63	31.78	8.60	32.09	37.92	54.00	-16.08	Horizontal
7206.00	22.15	36.15	11.65	32.00	37.95	54.00	-16.05	Horizontal
9608.00	19.29	37.95	14.14	31.62	39.76	54.00	-14.24	Horizontal

Test channel:				Middle channel					
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4880.00	37.16	31.85	8.67	32.12	45.56	74.00	-28.44	Vertical	
7320.00	31.39	36.37	11.72	31.89	47.59	74.00	-26.41	Vertical	
9760.00	31.65	38.35	14.25	31.62	52.63	74.00	-21.37	Vertical	
4880.00	41.61	31.85	8.67	32.12	50.01	74.00	-23.99	Horizontal	
7320.00	33.45	36.37	11.72	31.89	49.65	74.00	-24.35	Horizontal	
9760.00	30.42	38.35	14.25	31.62	51.40	74.00	-22.60	Horizontal	
Average val	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4880.00	25.58	31.85	8.67	32.12	33.98	54.00	-20.02	Vertical	
7320.00	20.20	36.37	11.72	31.89	36.40	54.00	-17.60	Vertical	
9760.00	19.54	38.35	14.25	31.62	40.52	54.00	-13.48	Vertical	
4880.00	30.03	31.85	8.67	32.12	38.43	54.00	-15.57	Horizontal	
7320.00	22.42	36.37	11.72	31.89	38.62	54.00	-15.38	Horizontal	
9760.00	19.54	38.35	14.25	31.62	40.52	54.00	-13.48	Horizontal	

Test channel		Highest channel						
Peak value:				Trigitost c	TIGHTIOI			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	36.71	31.93	8.73	32.16	45.21	74.00	-28.79	Vertical
7440.00	31.10	36.59	11.79	31.78	47.70	74.00	-26.30	Vertical
9920.00	31.38	38.81	14.38	31.88	52.69	74.00	-21.31	Vertical
4960.00	41.07	31.93	8.73	32.16	49.57	74.00	-24.43	Horizontal
7440.00	33.11	36.59	11.79	31.78	49.71	74.00	-24.29	Horizontal
9920.00	30.11	38.81	14.38	31.88	51.42	74.00	-22.58	Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	25.25	31.93	8.73	32.16	33.75	54.00	-20.25	Vertical
7440.00	19.98	36.59	11.79	31.78	36.58	54.00	-17.42	Vertical
9920.00	19.34	38.81	14.38	31.88	40.65	54.00	-13.35	Vertical
4960.00	29.66	31.93	8.73	32.16	38.16	54.00	-15.84	Horizontal
7440.00	22.17	36.59	11.79	31.78	38.77	54.00	-15.23	Horizontal
9920.00	19.31	38.81	14.38	31.88	40.62	54.00	-13.38	Horizontal

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Unwanted Emissions in Restricted Frequency Bands

Test channel:	Lowest channel
Poak value:	

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	43.81	27.14	2.81	38.64	35.12	74.00	-38.88	Horizontal
2390.00	48.17	27.37	2.91	38.84	39.61	74.00	-34.39	Horizontal
2310.00	44.81	27.14	2.81	38.64	36.12	74.00	-37.88	Vertical
2390.00	48.67	27.37	2.91	38.84	40.11	74.00	-33.89	Vertical

Average value:

Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit	Polarization
	(dBuV)	(dB/m)	(dB)	(dB)			(dB)	
2310.00	33.53	27.14	2.81	38.64	24.84	54.00	-29.16	Horizontal
2390.00	36.82	27.37	2.91	38.84	28.26	54.00	-25.75	Horizontal
2310.00	36.37	27.14	2.81	38.64	27.68	54.00	-26.32	Vertical
2390.00	37.59	27.37	2.91	38.84	29.03	54.00	-24.97	Vertical

Test channel:	Highest channel
---------------	-----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	45.79	27.82	2.99	39.05	37.55	74.00	-36.45	Horizontal
2500.00	46.68	27.70	3.01	39.10	38.29	74.00	-35.71	Horizontal
2483.50	49.14	27.82	2.99	39.05	40.90	74.00	-33.10	Vertical
2500.00	47.74	27.70	3.01	39.10	39.35	74.00	-34.65	Vertical

Average value:

	Average va	iue.							
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
	2483.50	36.15	27.82	2.99	39.05	27.91	54.00	-26.09	Horizontal
	2500.00	37.27	27.70	3.01	39.10	28.88	54.00	-25.12	Horizontal
	2483.50	38.44	27.82	2.99	39.05	30.20	54.00	-23.80	Vertical
	2500.00	37.67	27.70	3.01	39.10	29.28	54.00	-24.72	Vertical

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----