

FCC TEST REPORT FCC ID: 2AOQVC300

Product	:	WIFI Smart Socket					
Model Name	:	C300, C301, C302, C303, C304, C305, C306, C307, C308 C309, C310, C311, C312, C313, C314, C315, C316, C317 C318, C319					
Brand	:	N/A					
Report No.	:	PTCDQ03171260601E-FC01					
		Prepared for					
	She	nzhen Xinyixin Technology Co.,Ltd					
Building A17, Fuc	jiao 3rd In	dustrial Zone, Qiaotou, Fuyong, Baoan, Shenzhen, China					
		Prepared by					
C	ongguan	Precise Testing & Certification Corp., Ltd.					
Building D, Baoding Te		Park, Guangming Road 2, Guangming Community, Dongcheng rict, Dongguan, Guangdong, China					

1 TEST RESULT CERTIFICATION

Applicant's name	: Shenzhen Xinyixin Technology Co.,Ltd
Address	: Building A17, Fuqiao 3rd Industrial Zone, Qiaotou, Fuyong, Baoan, Shenzhen, China
Manufacture's name Address	:Shenzhen Xinyixin Technology Co.,Ltd :Building A17, Fuqiao 3rd Industrial Zone, Qiaotou, Fuyong, Baoan, Shenzhen, China
Product name	: WIFI Smart Socket
Model name	: C300, C301, C302, C303, C304, C305, C306, C307, C308, C309, C310, C311, C312, C313, C314, C315, C316, C317, C318, C319
Standards	: FCC CFR47 Part 15 Section 15.247: 2017
Test procedure	: ANSI C63.10:2013
Test Date	: December 22, 2017 to January 03, 2018
Date of Issue	: January 04, 2018
Test Result	: Pass

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

Leo Yang

Leo Yang / Engineer

chim

Chris Du / Manager

Technical Manager:

Contents

Page

			•
1	TEST RESULT CERTIFIC	ATION	2
2	TEST SUMMARY		5
3	GENERAL INFORMATIO	N	6
	3.1	GENERAL DESCRIPTION OF E.U.T.	6
	3.2	CHANNEL LIST	7
	3.3	TEST SITE	8
4	EQUIPMENT DURING TE	ST	8
	4.1	EQUIPMENTS LIST	9
	4.2	MEASUREMENT UNCERTAINTY	11
	4.3	DESCRIPTION OF SUPPORT UNITS	12
5	CONDUCTED EMISSION		13
	5.1	E.U.T. OPERATION	13
	5.2	EUT SETUP	13
	5.3	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	14
	5.4	MEASUREMENT PROCEDURE	14
	5.5	CONDUCTED EMISSION LIMIT	14
	5.6	MEASUREMENT DESCRIPTION	14
	5.7	CONDUCTED EMISSION TEST RESULT	14
6	RADIATED SPURIOUS E	MISSIONS	17
	6.1	EUT OPERATION	17
	6.2	TEST SETUP	18
	6.3	SPECTRUM ANALYZER SETUP	19
	6.4	TEST PROCEDURE	20
	6.5	SUMMARY OF TEST RESULTS	21
7	CONDUCTED SPURIOUS	S EMISSION	25
	7.1	TEST PROCEDURE	25
	7.2	TEST RESULT	25
8	BAND EDGE MEASURE	MENT	31
	8.1	TEST PROCEDURE	31

Report No.: PTCDQ03171260601E-FC01

	8.2	TEST RESULT	32
9	6DB BANDWIDTH MEAS	UREMENT	35
	9.1	Test Procedure	35
	9.2	TEST RESULT	35
10	MAXIMUM PEAK OUTPU	T POWER	41
	10.1	Test Procedure	41
	10.2	TEST RESULT	41
11	POWER SPECTRAL DEN	SITY	47
	11.1	TEST PROCEDURE	47
	11.2	TEST RESULT	47
12	ANTENNA APPLICATION	I	53
	12.1	ANTENNA REQUIREMENT	53
	12.2	RESULT	53
13	TEST SETUP		54
14	EUT PHOTOS		56

2 Test Summary

Test Items	Test Requirement	Result
Conduct Emission	15.207	PASS
Radiated Spurious Emissions	15.205(a) 15.209 15.247(d)	PASS
Conducted Spurious Emission	15.247(d)	PASS
Band edge	15.247(d) 15.205(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Power Spectral Density	15.247(e)	PASS
Antenna Requirement	15.203	PASS
Remark: N/A: Not Applicable		

3 General Information

3.1 General Description of E.U.T.

Product Name	-	WIFI Smart Socket
Model Name	:	C300, C301, C302, C303, C304, C305, C306, C307, C308, C309, C310, C311, C312, C313, C314, C315, C316, C317, C318, C319
Specification	:	802.11b/g/n HT20
Operation Frequency	:	2412-2462MHz
Number of Channel	•	11
Type of Modulation		DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;
Antenna installation	:	Printed PCB Antenna
Antenna Gain	•	3 dBi
Power supply	:	AC 125V/60Hz

3.2 Channel List

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Frequency and Channel list for 802.11 b/g/n (HT20):

Channel	Frequency	Channel Channe	Frequency	Channel	Frequency
Channer	(MHz)		Channel	(MHz)	
1	2412	5	2432	9	2452
2	2417	6	2437	10	2457
3	2422	7	2442	11	2462
4	2427	8	2447		

Test Frequency and Channel for 802.11 b/g/n (HT20):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency	Channel	Frequency	Channel	Frequency
	(MHz)		(MHz)	Charmer	(MHz)
1	2412	6	2437	11	2462

3.3 Test Site

Dongguan Precise Testing & Certification Corp., Ltd. Address: Building D, Baoding Technology Park, Guangming Road2, Dongcheng District, Dongguan, Guangdong, China FCC Registration Number: 790290 A2LA Certificate No.: 4408.01 IC Registration Number: 12191A-1

Test Lab: Shenzhen BCTC Testing Co., Ltd.
Address: BCTC Building & 1-2F, East of B Building, Pengzhou Industrial, Fuyuan 1st Road, Qiaotou Community, Fuyong Street, Bao'an District, Shenzhen, China
FCC Registered No.: 712850
Test items: Radiated Spurious Emission(18GHz to 25GHz)

4 Equipment During Test

4.1 Equipments List

RF Conducted Test

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
MXG Signal Analyzer	Agilent	N9020A	MY56070279	10Hz-30GHz	Apr 07, 2018
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	Oct 09, 2018

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Sep. 03, 2018
Loop Antenna	Schwarzbeck	FMZB 1519	012	9 KHz -30MHz	Aug 31, 2018
Bilog Antenna	SCHWARZBECK	VULB9160	9160-3355	25MHz-2GHz	Aug 31, 2018
Preamplifier (low frequency)	SCHWARZBECK	BBV 9475	9745-0013	1MHz-1GHz	Sep. 03, 2018
Cable	Schwarzbeck	PLF-100	549489	9KHz-3GHz	Sep. 03, 2018
Spectrum Analyzer	Agilent	E4407B	MY45109572	9KHz-40GHz	Oct. 13, 2018
Horn Antenna	SCHWARZBECK	9120D	9120D-1246	1GHz-18GHz	Aug. 31, 2018
Power Amplifier	LUNAR EM	LNA1G18-40	J1010000081	1GHz-26.5GHz	Aug. 31, 2018
Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	Sep. 03, 2018

Radiated Emissions(Test Frequency from 9KHz-18GHz)

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
Spectrum Analyzer	Agilent	E4407B	MY45109572	9KHz-26.5GHz	2018.08.26
Test Receiver	R&S	ESPI	101396	9KHz-7GHz	2018.08.26
Horn Antenna	SCHWARZBECK	BBHA 9170	9170-181	14GHz-40GHz	2018.09.02
Amplifier	SCHWARZBECK	BBV 9721	9721-205	18GHz-40GHz	2018.08.26
RF Cable	R&S	R204	R21X	1GHz-40GHz	2018.08.26
Antenna Connector	Florida RF Labs	N/A	RF01#	N/A	2018.08.26

Radiated Emission (Test Frequency from 18GHz-25GHz)

Conducted Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Sep. 03, 2018
Artificial Mains Network	Rohde&Schwarz	L2-16B	000WX31025	9KHz-300MHz	Sep. 03, 2018
Artificial Mains Network	Rohde&Schwarz	ENV216	101342	9KHz-300MHz	Sep. 03, 2018

4.2 Measurement Uncertainty

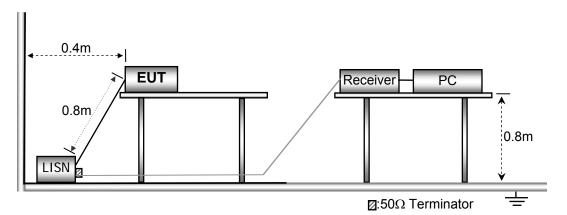
Parameter	Uncertainty
RF output power, conducted	±1.0dB
Power Spectral Density, conducted	±2.2dB
Radio Frequency	± 1 x 10 ⁻⁶
Bandwidth	± 1.5 x 10 ⁻⁶
Time	±2%
Duty Cycle	±2%
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±3%
Conducted Emissions (150kHz~30MHz)	±3.64dB
Radiated Emission(30MHz~1GHz)	±5.03dB
Radiated Emission(1GHz~25GHz)	±4.74dB

4.3 Description of Support Units

Equipment	Model No.	Series No.
N/A	N/A	N/A

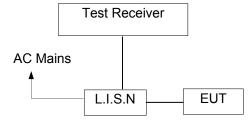
5 Conducted Emission

Test Requirement:	:	FCC CFR 47 Part 15 Section 15.207
Test Method:	:	ANSI C63.10: 2013
Test Result:	:	PASS
Frequency Range:	:	150kHz to 30MHz
Class/Severity:	:	Class B


5.1 E.U.T. Operation

Operating Environment :

Temperature:	:	25.5 °C
Humidity:	:	51 % RH
Atmospheric Pressure:	:	101.2kPa


5.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

5.3 Test SET-UP (Block Diagram of Configuration)

5.4 Measurement Procedure

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

5.5 Conducted Emission Limit

Conducted Emission

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

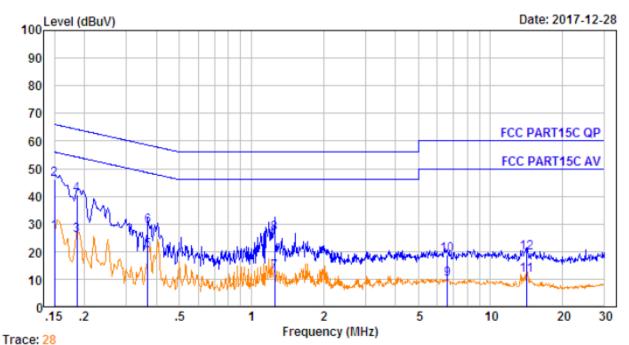
Note:

1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

5.6 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.


5.7 Conducted Emission Test Result

Pass.

Please refer to the following pages.

No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBuV	Emission Le∨el dBuV	Limit dBu∨	Over Limit dB	Remark
1.	0.150	0.21	9.50	17.25	26.96	56.00	-29.04	Average
2.	0.150	0.21	9.50	36.25	45.96	66.00	-20.04	QP
3.	0.186	0.26	9.57	15.88	25.71	54.20	-28.49	Average
4.	0.186	0.26	9.57	30.88	40.71	64.20	-23.49	QP _
5.	0.369	0.39	9.72	10.10	20.21	48.52	-28.31	Average
6.	0.369	0.39	9.72	19.10	29.21	58.52	-29.31	QP -
7.	1.249	0.46	9.83	2.35	12.64	46.00	-33.36	Average
8.	1.249	0.46	9.83	16.35	26.64	56.00	-29.36	QP -
9.	6.627	0.54	9.98	-0.74	9.78	50.00	-40.22	Average
10.	6.627	0.54	9.98	8.26	18.78	60.00	-41.22	QP -
11.	14.138	0.56	10.00	0.85	11.41	50.00	-38.59	Average
12.	14.138	0.56	10.00	8.85	19.41	60.00	-40.59	QP -

Neutral-AC 120V/60Hz

No.	Freq MHz	Cable Loss dB	.AMN Factor dB	Receiver Reading dBu∨	Emission Level dBu∨	Limit dBu∀	Over Limit dB	Remark
1.	0.170	0.24	9.57	19.25	29.06	54.94	-25.88	Average
2.	0.170	0.24	9.57	36.25	46.06	64.94	-18.88	QP -
3.	0.406	0.41	9.77	21.27	31.45	47.73	-16.28	Average
4.	0.406	0.41	9.77	28.27	38.45	57.73	-19.28	QP -
5.	0.885	0.45	9.84	10.76	21.05	46.00	-24.95	Average
6.	0.885	0.45	9.84	18.76	29.05	56.00	-26.95	QP
7.	1.135	0.46	9.86	8.75	19.07	46.00	-26.93	Average
8.	1.135	0.46	9.86	22.75	33.07	56.00	-22.93	QP
9.	2.794	0.47	9.91	5.56	15.94	46.00	-30.06	Average
10.	2.794	0.47	9.91	16.56	26.94	56.00	-29.06	QP -
11.	14.288	0.56	10.07	0.95	11.58	50.00	-38.42	Average
12.	14.288	0.56	10.07	9.95	20.58	60.00	-39.42	QP -

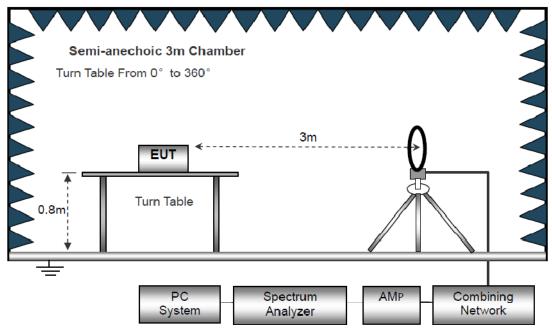
6 Radiated Spurious Emissions

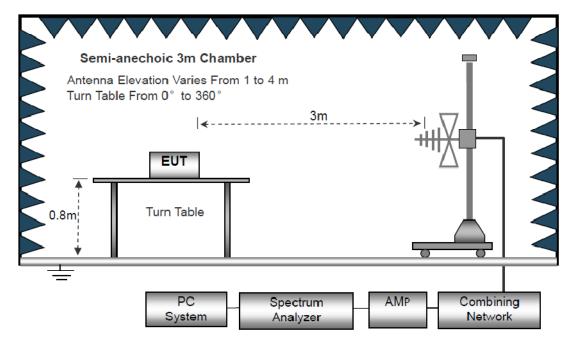
Test Requirement:	:	FCC CFR47 Part 15 Section 15.209 & 15.247
Test Method:	:	ANSI C63.10:2013
Test Result:	:	PASS
Measurement Distance:	:	3m
Limit:	:	See the follow table

	Field Stren	igth	Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

6.1 EUT Operation

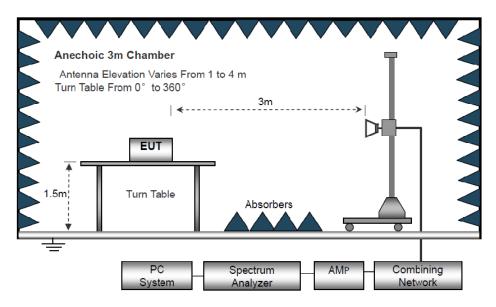
Operating Environment :


Temperature:	:	23.5 °C
Humidity:	:	51.1 % RH
Atmospheric Pressure:	:	101.2kPa


6.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site

The test setup for emission measurement below 30MHz



The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz

6.3 Spectrum Analyzer Setup

Below 30MHz						
IF Bandwidth	:	10kHz	10kHz			
Resolution Bandwidth	:	10kHz				
Video Bandwidth	:	10kHz				
30MHz ~ 1GHz						
Detector	:	РК	QP			
Resolution Bandwidth	:	100kHz	120kHz			
Video Bandwidth	:	300kHz	300kHz			
Above 1GHz	Above 1GHz					
Detector	:	РК	AV			
Resolution Bandwidth	:	1MHz	1MHz			
Video Bandwidth	:	3MHz	10Hz			

6.4 Test Procedure

- 1. The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10-2013.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degree) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
- 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarization and repeat 1) with vertical polarization.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear/ Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.
- 8. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

6.5 Summary of Test Results

Test Frequency: 9KHz-30MHz

Freq.	Ant.Pol.	Emission Level	Limit 3m	Over
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)
				>20

Note:

The amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

Test Frequency: 30MHz ~ 1GHz

Please refer to the following test plots:

5.

6.

480.528

640.611

80	el (dBuV/m)								Date: 2017-1	12-25
70										
50									FCC PART	15.0
0										6dB
10										
30										
20		1						5	In House here	ww
10	walyuside	and the second	and and a state of the state of	2 Mart Mart Martin	3 1944 -	all on getrades to Annot	president and	al south at a low a low		
0 <mark></mark> 30		50		100		200		500		100
				I	Frequency	(MHz)				
No.	Freq MHz	Cable Loss dB	ANT Factor dB/m	Receiver Reading dBuV	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	0∨er Limit dB	Remark	
1. 2.	56.991 114.515	1.64	12.01 11.51	36.59 30.72	30.19 30.44	20.05 1.4.06	40.00 43.50	-19.95 -29.44	QP QP	-

30.94

31.04

21.39

22.75

46.00

46.00

-24.61

-23.25

QP

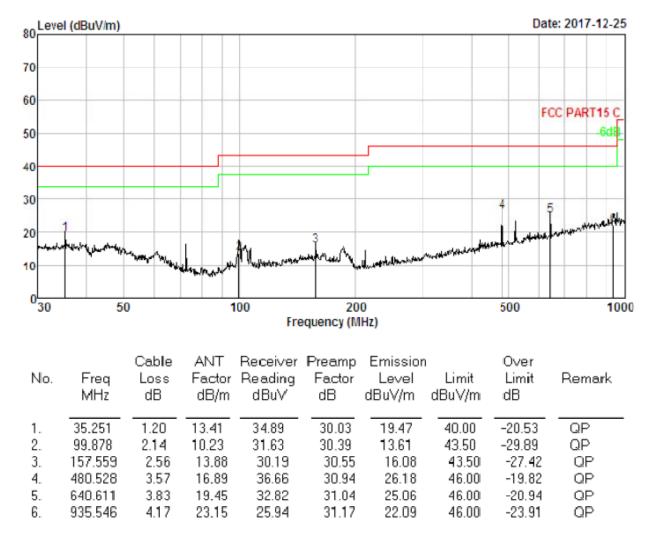
QP

Antenna Polarization: Horizontal

Remark:Emission Level=Reading+Cable Loss+ANT Factor-AMP Factor

3.57 16.89

19.45


3.83

31.87

30.51

Antenna Polarization: Vertical

Remark:Emission Level=Reading+Cable Loss+ANT Factor-AMP Factor

Test Frequency 1GHz-18GHz:

	Low Channel (2412MHz) Worst case 802.11b										
Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin		
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)		
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)				
						(dB)					
4824	30.15	AV	V	29.89	9.04	21.43	47.65	54	-6.35		
4824	29.42	AV	Н	29.89	9.04	21.43	46.92	54	-7.08		
4824	28.35	PK	V	29.89	9.04	21.43	45.85	74	-28.15		
4824	30.05	PK	Н	29.89	9.04	21.43	47.55	74	-26.45		
17026	31.49	AV	V	30.14	8.72	25.83	44.52	54	-9.48		
17026	32.06	AV	Н	30.14	8.72	25.83	45.09	54	-8.91		
17026	29.46	PK	V	30.14	8.72	25.83	42.49	74	-31.51		
17026	30.56	PK	Н	30.14	8.72	25.83	43.59	74	-30.41		

Middle Channel (2437MHz) Worst case 802.11n (HT20)

Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)		
						(dB)			
4874	23.05	AV	V	30.12	10.48	19.34	44.31	54	-9.69
4874	24.62	AV	Н	30.12	10.48	19.34	45.88	54	-8.12
4874	25.12	PK	V	30.12	10.48	19.34	46.38	74	-27.62
4874	24.85	PK	Н	30.12	10.48	19.34	46.11	74	-27.89
16358	29.35	AV	V	29.43	9.58	21.45	46.91	54	-7.09
16358	28.42	AV	Н	29.43	9.58	21.45	45.98	54	-8.02
16358	27.01	PK	V	29.43	9.58	21.45	44.57	74	-29.43
16358	26.68	PK	Н	29.43	9.58	21.45	44.24	74	-29.76

High Channel (2462MHz) Worst case 802.11b

Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin		
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)		
. ,	(dBuV)	· · · ·	· · ·	(dB/m)	(dB)	Gain	(dBuV/m)	· · · ·	· · ·		
	, , , , , , , , , , , , , , , , , , ,			, , , , , , , , , , , , , , , , , , ,	· · /	(dB)	· · · ·				
4924	26.35	AV	V	20.45	8.43	19.48	35.75	54	-18.25		
4924	25.47	AV	Н	20.45	8.43	19.48	34.87	54	-19.13		
4924	24.12	PK	V	20.45	8.43	19.48	33.52	74	-40.48		
4924	22.08	PK	Н	20.45	8.43	19.48	31.48	74	-42.52		
17265	23.65	AV	V	22.35	10.29	20.75	35.54	54	-18.46		
17265	25.18	AV	Н	22.35	10.29	20.75	37.07	54	-16.93		
17265	26.23	PK	V	22.35	10.29	20.75	38.12	74	-35.88		
17265	27.08	PK	Н	22.35	10.29	20.75	38.97	74	-35.03		

Note:

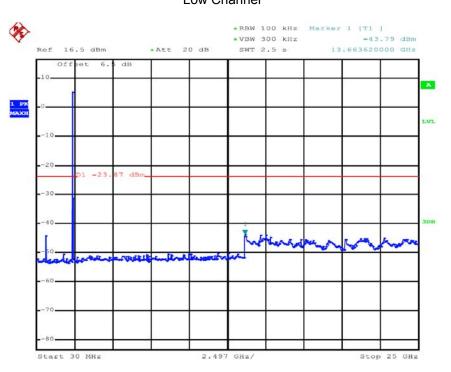
- 1. The testing has been conformed to 10*2462MHz=24620MHz.
- 2. All other emissions more than 30dB below the limit.
- 3. Factor = Antenna Factor + Cable Loss Pre-amplifier. Emission Level = Reading + Factor Margin=Emission Level-Limit
- 4. X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case. **Test Frequency: From 18GHz to 25GHz**

The measurements were more than 20dB below the limit and not reported.

7 Conducted Spurious Emission

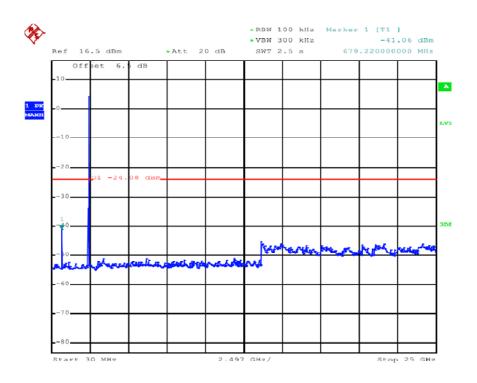
Test Requirement : Test Method : Test Limit :	FCC CFR47 Part 15 Section 15.247 ANSI C63.10:2013 Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.1 Test Procedure


1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

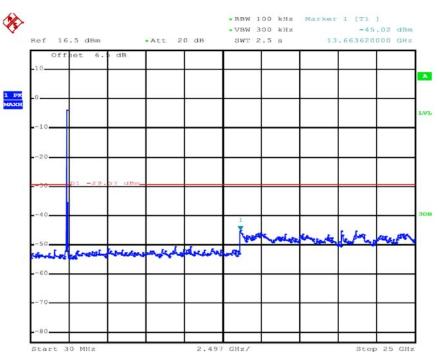
2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

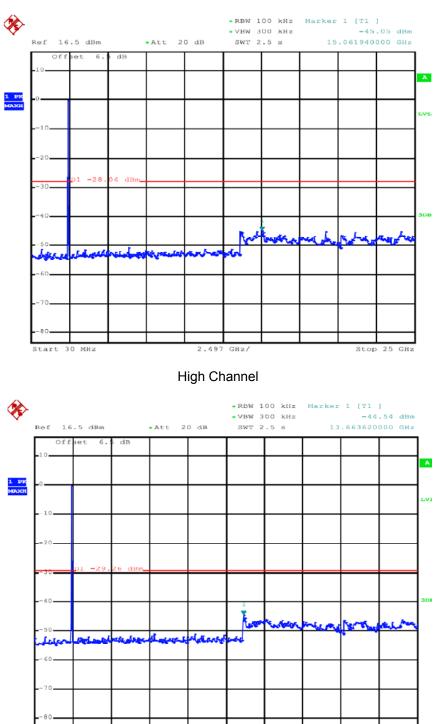
7.2 Test Result



Report No.: PTCDQ03171260601E-FC01

802.11 b Low Channel

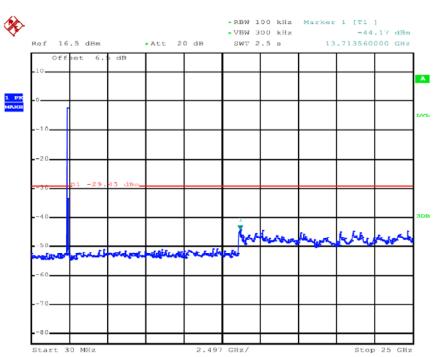

Middle Channel



* • RBW 100 kHz Marker 1 [T1] • VBW 300 kHz -41.74 dBm 679.220000000 MHz Ref 16.5 dBm Att 20 dB SWT 2.5 s Off ж 1 PK LVL 1 -23 75 dBm 14 rth. ALL at lillor ale and ale al 2.497 GHz/ 30 MHz Stop 25 GHz Start 802.11g Low Channel *RBW 100 kHz Marker 1 [T1] • VBW 300 kHz -45.02 dBm Ref 16.5 dBm Att 20 dB SWT 2.5 s 13.663620000 GHz 0f dB

High Channel

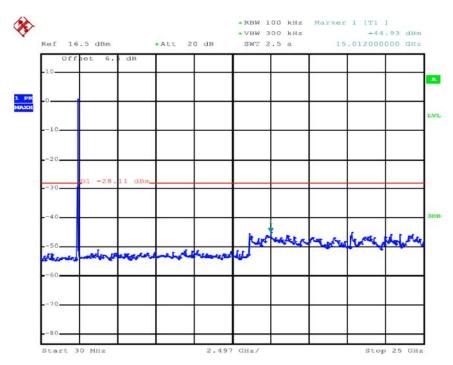
Middle Channel

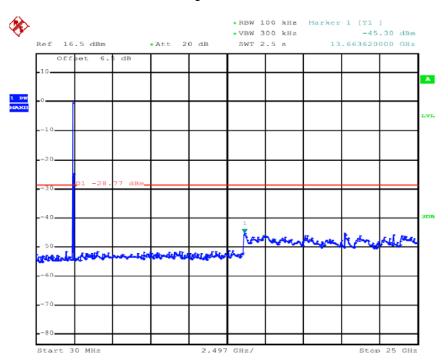

2.497 GHz/

Start 30 MHz

Stop

25 GHz




802.11n-HT20

Low Channel

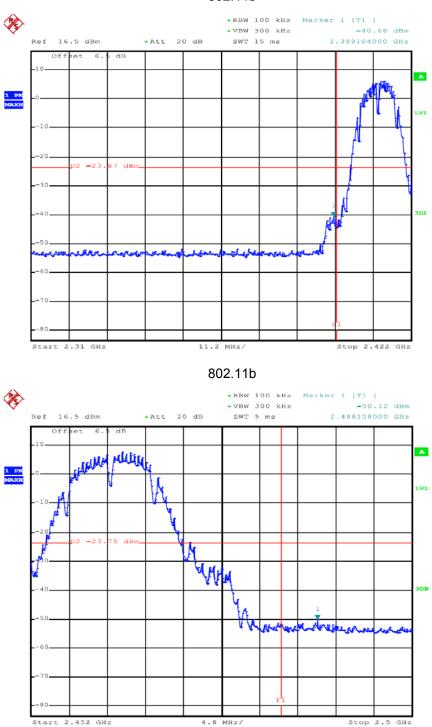
Middle Channel

High Channel

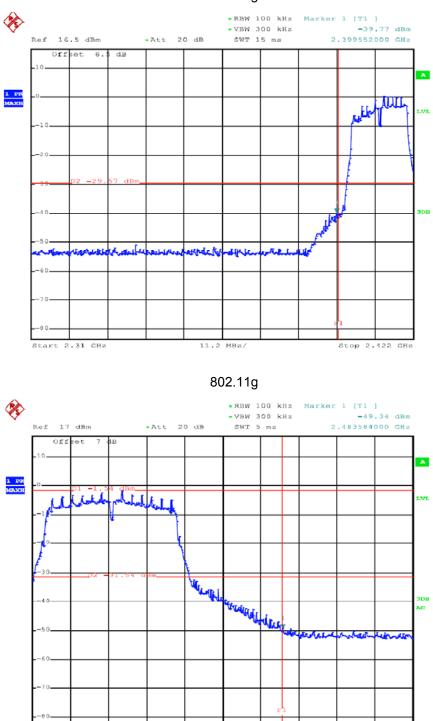
8 Band Edge Measurement

Test Requirement	:	Section 15.247(d) In addition, radiated emissions which fall in the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).
Test Method Test Limit	:	ANSI C63.10:2013, KDB 558074 D01 DTS MEAS GUIDANCE V03R03 Regulation 15.247 (d),In any 100 kHz bandwidth outside the
		frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

8.1 Test Procedure


1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

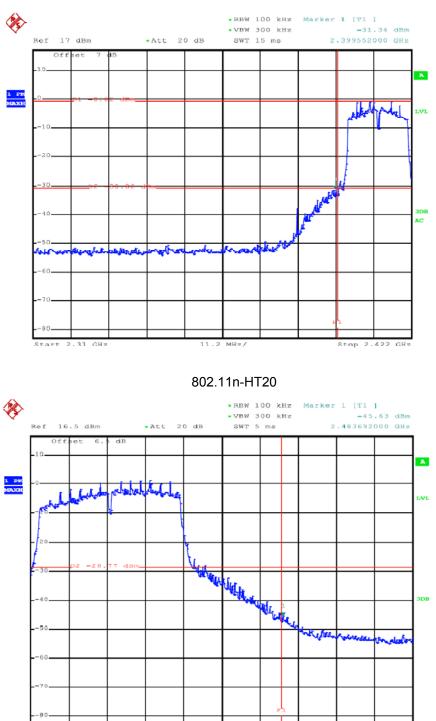
2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold


Report No.: PTCDQ03171260601E-FC01

8.2 Test Result

802.11b

802.11g


4.8 MHz/

Stop 2.5 GHz

Start

2.452 GHz

802.11n-HT20

4.8 MHz/

Stop

2.5 GHz

Start

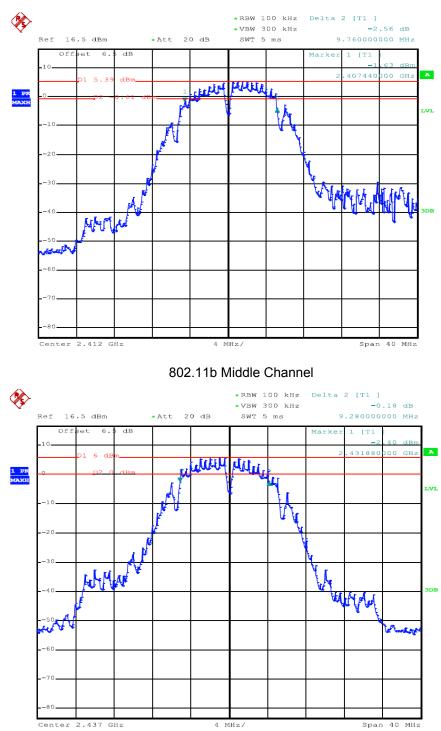
2.452 GHz

9 6dB Bandwidth Measurement

Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit		Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

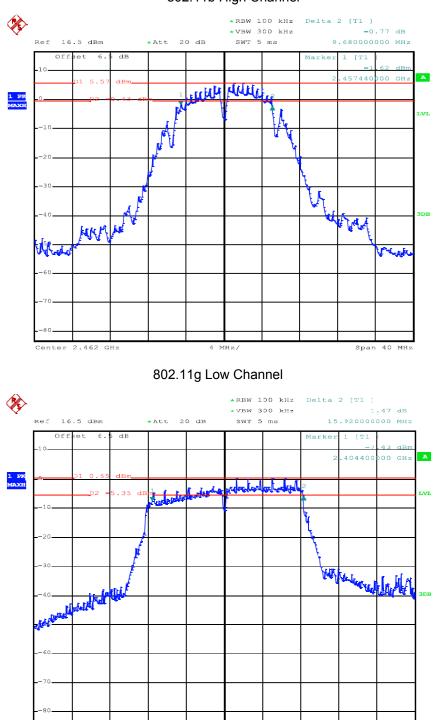
9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;


2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz,

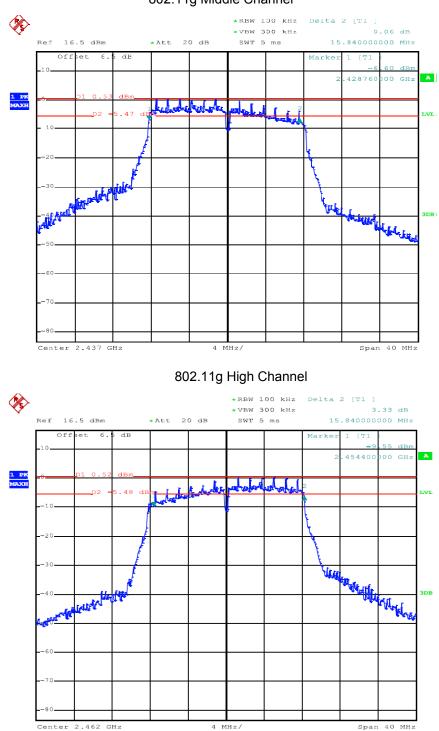
9.2 Test Result

Modulation		Limit			
Modulation	Low Channel	Middle Channel	High Channel		
802.11b	9.76	9.28	9.68	≥500kHz	
802.11g	15.92	15.84	15.84	≥500kHz	
802.11n-HT20	16.48	16.48	16.48	≥500kHz	



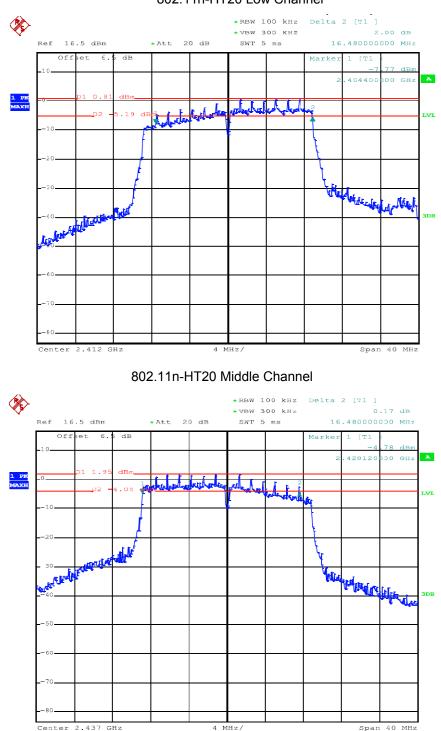
Report No.: PTCDQ03171260601E-FC01

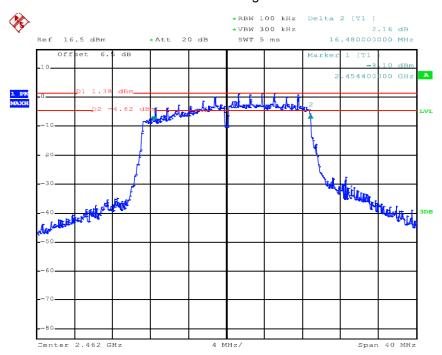
802.11b Low Channel


802.11b High Channel

4 MHz/

Span 40 MHz

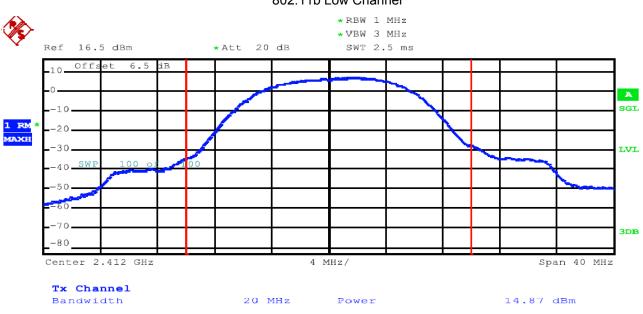

Center 2.412 GHz


802.11g Middle Channel

802.11n-HT20 Low Channel

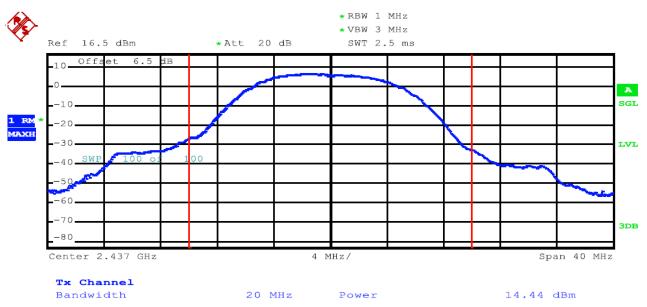
802.11n-HT20 High Channel

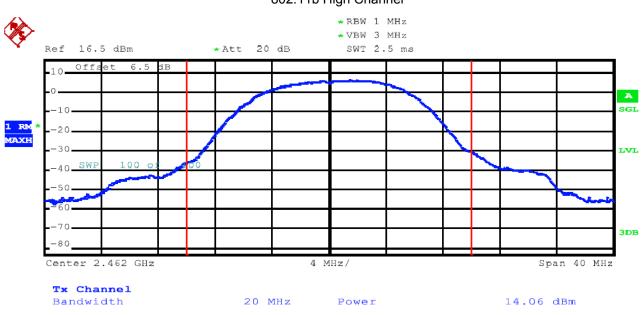
10 Maximum Peak Output Power


Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
928 N alterr limit o		Regulation 15.247 (b)(3), For systems using digital modulation in the 902- 928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.

10.1 Test Procedure

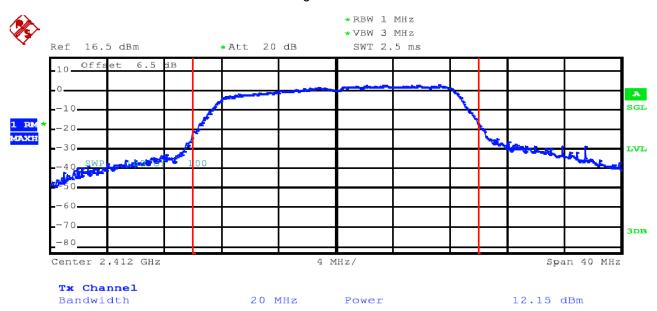
The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

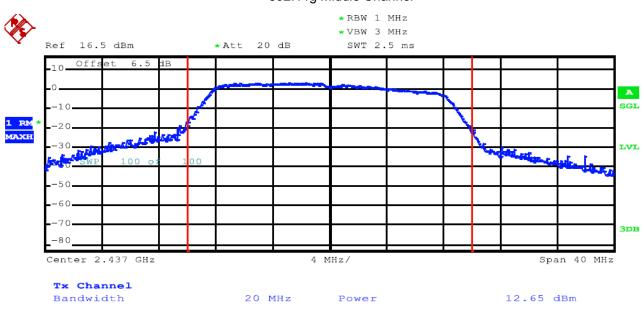

Modulation	Maxin	Limit		
	Low Channel	Middle Channel	High Channel	Linint
802.11b	14.87	14.44	14.06	1W(30dBm)
802.11g	12.15	12.65	13.02	1W(30dBm)
802.11n-HT20	12.23	12.43	13.30	1W(30dBm)



802.11b Low Channel

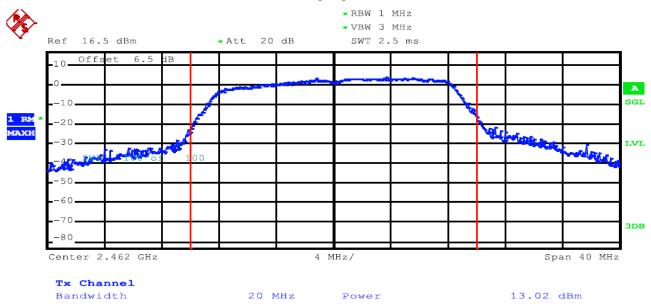
802.11b Middle Channel

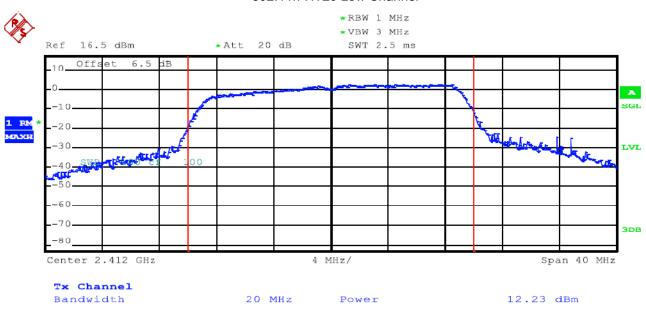




802.11b High Channel

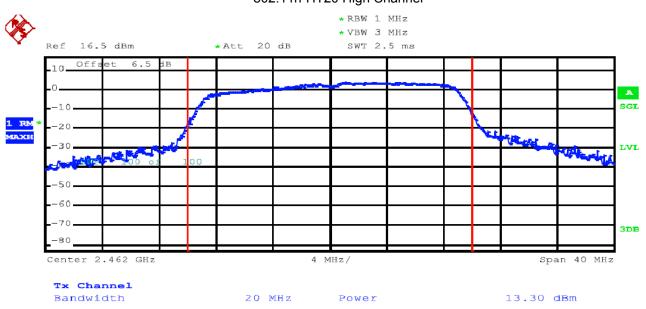
802.11g Low Channel





802.11g Middle Channel

802.11g High Channel



802.11n-HT20 Low Channel

802.11n-HT20 Middle Channel

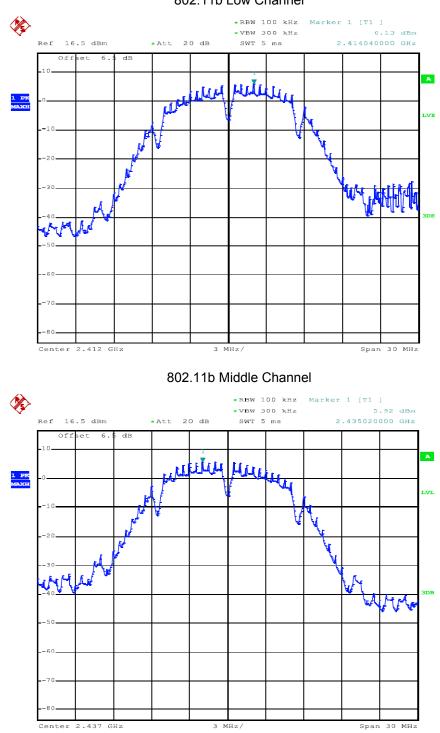
802.11n-HT20 High Channel

11 Power Spectral density

Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247(f) The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

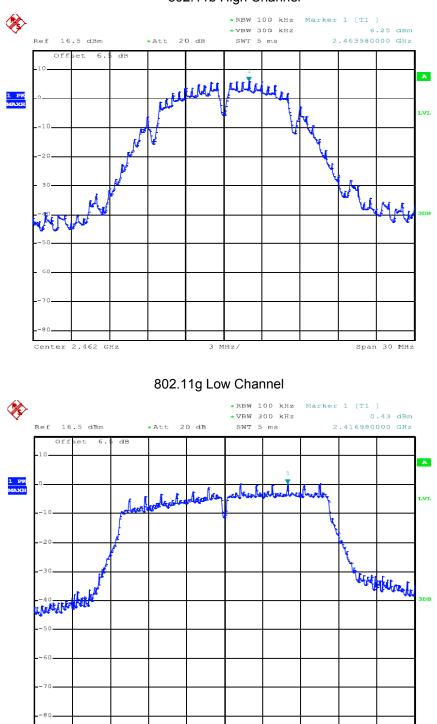
11.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.


2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.

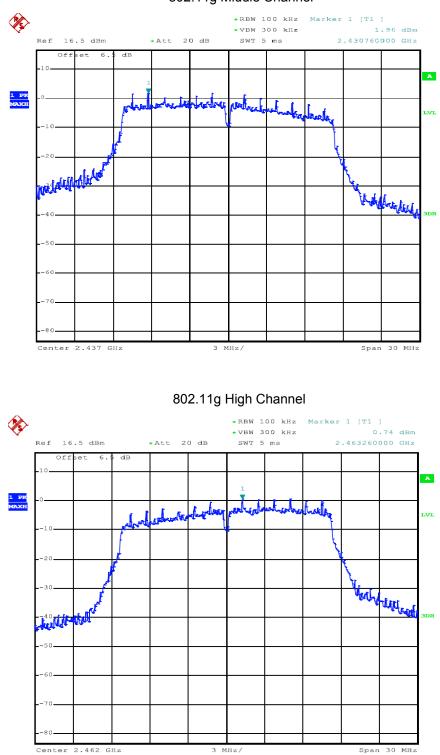
3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.2 Test Result


Modulation	Power	Limit		
	Low Channel	Middle Channel	High Channel	
802.11b	6.13	5.92	6.25	8dBm/3kHz
802.11g	0.43	1.96	0.74	8dBm/3kHz
802.11n-HT20	0.57	1.89	1.23	8dBm/3kHz

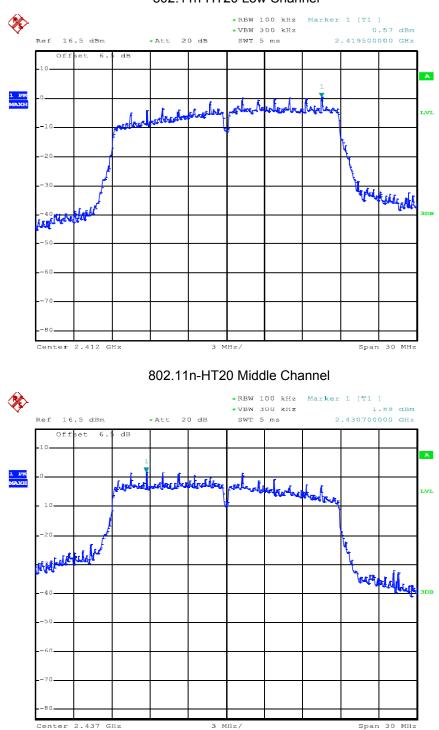
802.11b Low Channel

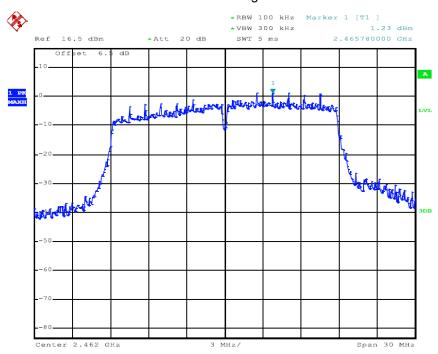
802.11b High Channel


MHz/

3

Span 30 MHz


Center 2.412 GHz


802.11g Middle Channel

802.11n-HT20 Low Channel

802.11n-HT20 High Channel

12 Antenna Application

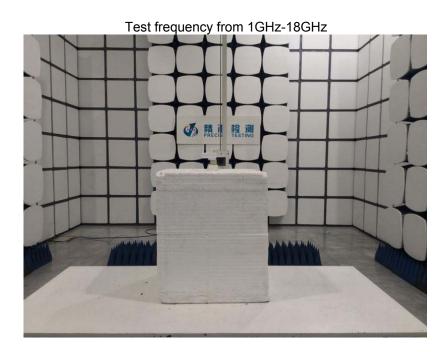
12.1 Antenna Requirement

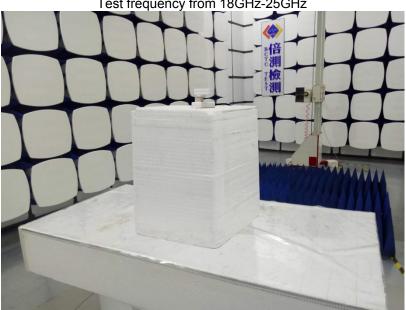
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

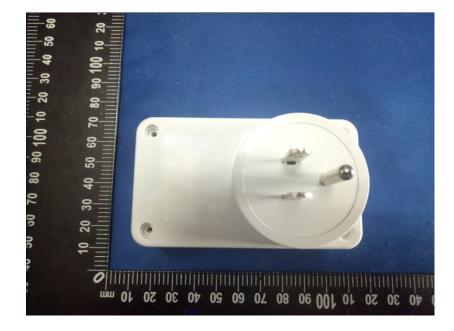
12.2 Result

The EUT'S antenna, permanent attached antenna, is internal antenna. The antenna's gain is 3dBi and meets the requirement.

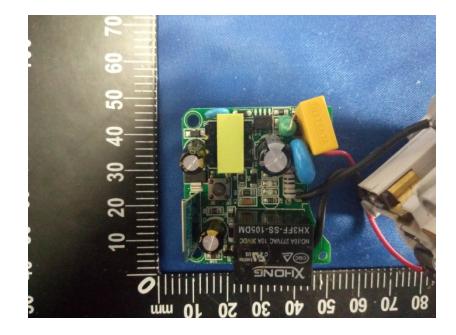
13 Test Setup

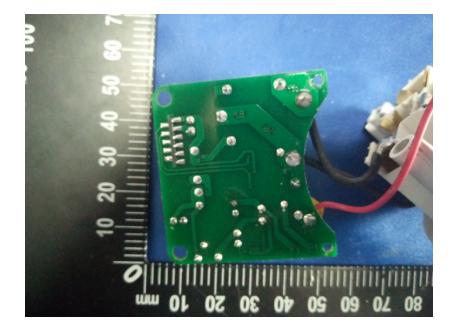

Conducted Emissions

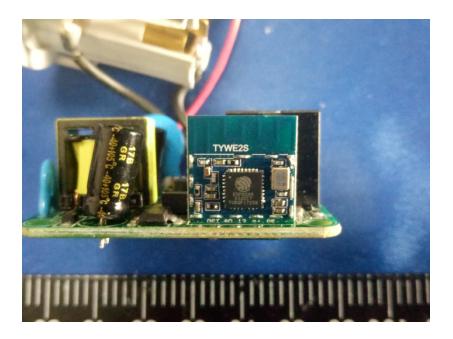

Radiated Spurious Emissions From 30MHz-1000MHz


Radiated Spurious Emissions Test frequency from 18GHz-25GHz

14 EUT Photos







*****THE END REPORT*****