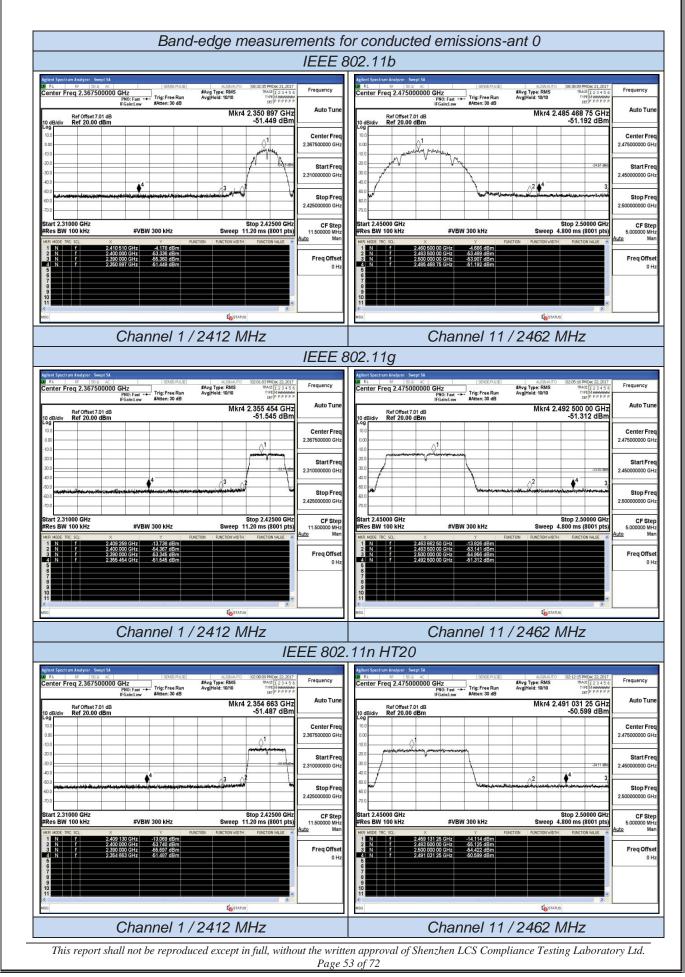
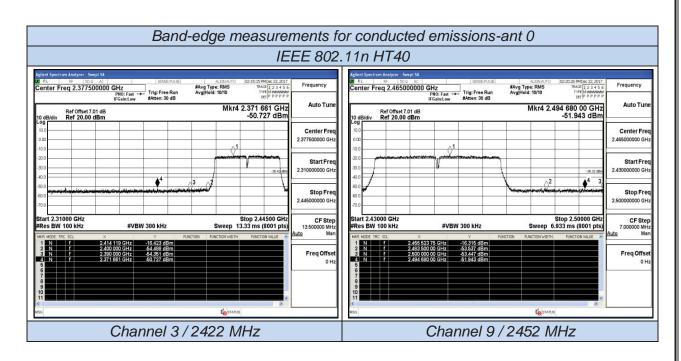
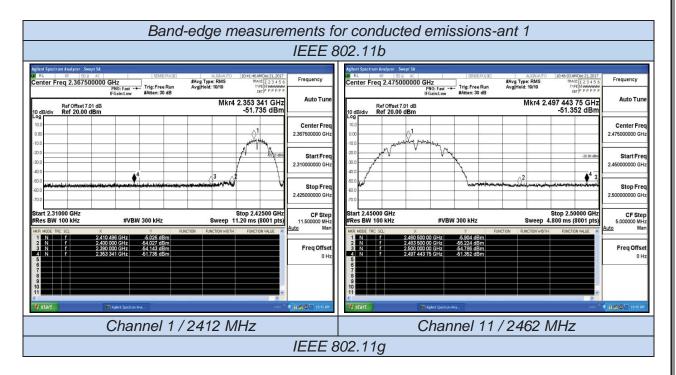
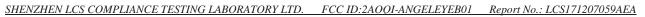
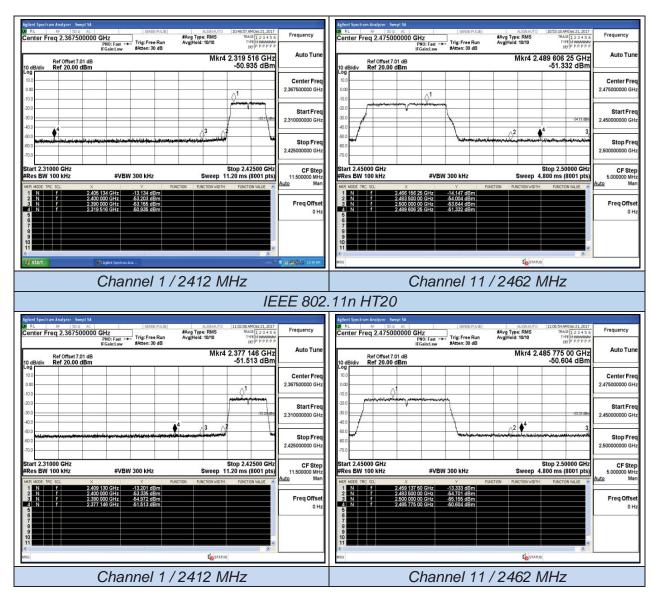

Page 48 of 72

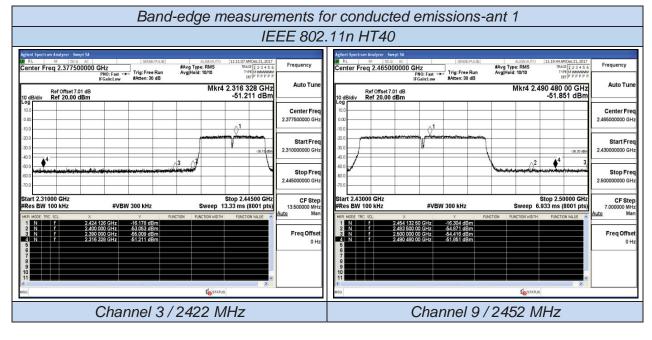












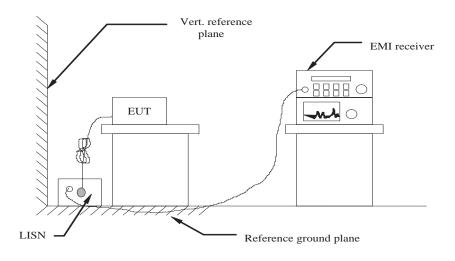
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 54 of 72

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 55 of 72

Band-edge measurements for conducted emissions BT – LE Antenna O	NZHEN LCS COMPLIANCE TESTING LABORATOP	RY LTD.	FCC ID:2AOQI-ANGELEYEB01 Report No.: LCS171207059AEA						
BT - LE Antenna O	Band-edge measurements for conducted emissions								
Vertication accurate a constrained of the second of the s	·								
Image: Control of the control of th	Antenna 0								
Berner Freq 2.31000000 Address tots Berner Freq 2.000000 Address tots Berner Freq 2.0000000 Address tots Berner Freq 2.00000000 Address tots Berner Freq 2.000000000000000000000000000000000000	RL 8E 50.9 AC SENSE-RUISE AUGNALITO 03/08/47 PM/Der 25, 20	17 Frequency							
Bit Ministry Bit Ministry Sector Bit Ministry Sector Sector <t< td=""><td>IFGain:Low #Atten: 30 dB DETP P P P</td><td>P P</td><td></td></t<>	IFGain:Low #Atten: 30 dB DETP P P P	P P							
1 1	dB/div Ref 20.00 dBm -51.575 dBr	m							
Start Free 2100000 0Hz Res 60 100 Ktz 8 VEW 300 K	0								
Stor 2 20100 GHz Stor 2 2010 GHz Stor 2 2010 GHz Stor 2 2010 GHz Stor 2 2010 GHz Stor 2 20100 GHz Stor 2 2010 GHz	10								
Set 23000 GHz Stort 23000 GHz Stort 23000 GHz Stort 23000 GHz Stort 2400 GHz Stort 2300 GHz Stort 2400 GHz Stort 2400 GHz Stort 2400 GHz Stort 200 GHz Stort 200 GHz Stort 200 GHz Stort 1000 GHz Stort 1000 GHz		Stop Freq							
Press BW 100 kHz #VBW 300 kHz Sweep 9.067 ms (8001 pts) Press 0000 hHz Image: State		2.404000000 GHz							
Image: Sector	Res BW 100 kHz #VBW 300 kHz Sweep 9.067 ms (8001 pt:	s) 9.400000 MHz							
Image: Spectrum January Image: Spectrum January Image: Spectrum January Image: Spectrum January Spectrum January Spectrum January <td< td=""><td>N 1 f 2.401 768 GHz -3.380 dBm N 1 f 2.400 000 GHz -5.4177 dBm N 1 f 2.390 000 GHz -5.4399 dBm N 1 f 2.390 200 GHz -5.4399 dBm N 1 f 2.392 392 GHz 5.157 dBm</td><td></td><td></td></td<>	N 1 f 2.401 768 GHz -3.380 dBm N 1 f 2.400 000 GHz -5.4177 dBm N 1 f 2.390 000 GHz -5.4399 dBm N 1 f 2.390 200 GHz -5.4399 dBm N 1 f 2.392 392 GHz 5.157 dBm								
Channel O / 2402 MHz Channel O / 2402 MHz Center Freq 2.489000000 GHz 10 dedidiv Ref 20:00 dBm 10 dedidiv Ref 20:00 dB		0 Hz							
Channel O / 2402 MHz Frequency Prequency Arg forser 7 or dis Mkr4 2.498 500 50 GHz Center Freq		2							
Separation Andyzer, Swept SA ALIONATIO OS122 (SPM0)C 53,0007 PR0: Fare Fire Fir									
Mit Image Operation Operatio									
Ref Offset 7 01 dB Mkr4 2.498 509 50 GHz 10 dB/dw -51.320 dBm 00 - 01 - 02 - 03 - 04 - 05 - 06 - 07 - 08 - 09 - 00 - 01 - 02 - 03 - 04 - 05 - 06 - 07 - 08 - 09 - 01 - 02 - 03 - 04 - 05 - 06 - 07 - 08 - 09 - 01 - 02 - 03 - 04 - 05 - 06 - 07 - 08 - 09 - 01 - 02 - 03 - <td< td=""><td>in1 spectrum Antigrer - Swep SA Int pr S SG a AC SPICE PLASE ALGYNA/TO 031216PM0e2 25,20 inter Freq 2.489000000 GHz FNG FM - FT Free Run AvgHold: 1010 TV PM/www.</td><td>Frequency</td><td></td></td<>	in1 spectrum Antigrer - Swep SA Int pr S SG a AC SPICE PLASE ALGYNA/TO 031216PM0e2 25,20 inter Freq 2.489000000 GHz FNG FM - FT Free Run AvgHold: 1010 TV PM/www.	Frequency							
Control Center Freq 00 1 248000000 GHz 00 299 db 31817 Freq 00 2 43 00 43 43 00 43 43 00 1 43 00 1 1	Bef Offset 7.01 dB Mkr4 2.498 509 50 GH	z Auto Tune							
100 100 100 200 100 100 300 100 100 400 100 100 400 100 100 400 100 100 400 100 100 400 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	9 00 51	Center Freq							
	10 M								
800 ANT Stop Freq	10 N N A								
	10 m m man and a second a second and a second a se								
Start 2.47800 GHz Stop 2.50000 GHz Stop 2.50000 GHz CF Step	art 2.47800 GHz Stop 2.50000 GH	CF Step							
	BIMODE TECHNOL EINCTION VILLE	2.200000 MHz							
1 N I F 2409 240 0 GHz -3402 dBm 2 N 1 I 2433 500 00 GHz -5338 dBm	II 1 1 2450 000 00 0714 594000 98m N 1 f 2450 000 06Hz 4322 dBm N 1 f 2498 509 50 GHz 451,320 dBm								
	>	×							
Channel 39 / 2480 MHz									

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 56 of 72

5.7. Power line conducted emissions


5.7.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range	Limits (dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

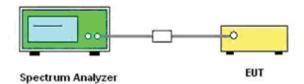
* Decreasing linearly with the logarithm of the frequency

5.7.2 Block Diagram of Test Setup

5.7.3 Test Results

PASS.

The test data please refer to following page.


AC Conducted Emission of power adapter @ AC 240V/50Hz @ IEEE 802.11b (worst case)

5.8. Restrict-band band-edge measurements for radiated emissions

5.8.1 Standard Applicable

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.8.2. Test Setup Layout

5.8.3. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of Spectrum Analyzer.

5.8.4. Test Procedures

According to KDB 558074 D01 for Antenna-port conducted measurement. Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to an EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=1/B for AV detector.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.
- 6. Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 12.2.2, 12.2.3, and 12.2.4 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- 7. Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
- Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).
- 9. For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- 10. Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

E = EIRP – 20log D + 104.77=EIRP+95.23

Where:

E = electric field strength in $dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 59 of 72

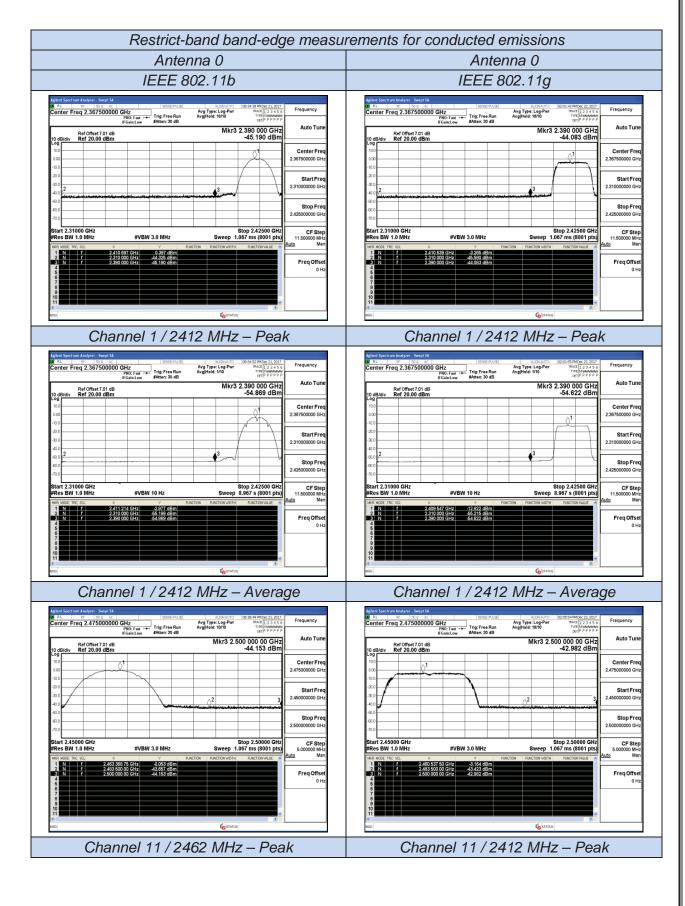
- 11. Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.
- 12. Per KDB662911 D01 section b) In cases where a combination of conducted measurements and cabinet radiated measurements are permitted to demonstrate compliance with absolute radiated out-of-band and spurious limits (e.g., KDB Publications 558074 for DTS and 789033 for U-NII), the conducted measurements must be combined with directional gain to compute the radiated levels of the out-of-band and spurious emissions as described in this section.
- 13. Compare the resultant electric field strength level to the applicable regulatory limit.
- 14. Perform radiated spurious emission test duress until all measured frequencies were complete.

	IEEE 802.11b											
Frequency	Con	Conducted Power (dBm)			Antenna Gain (dBi)		Directional Reflection (dBuV/m)		Convert Radiated E Level At 3m (dBuV/m)		Limit	Mariliat
(MHz)	Antenna 0	Antenna 1	Sum	Antenna 0	Antenna 1	Gain (dBi)	Factor (dB)	Antenna 0	Antenna 1	Sum	(dBuV/m)	Verdict
2310.000	-44.33	-45.75	-/-	2.00	2.00	-/-	0.00	52.87	51.45	-/-	74.00	PASS
2310.000	-55.20	-55.18	-/-	2.00	2.00	-/-	0.00	42.00	42.02	-/-	54.00	PASS
2390.000	-45.19	-45.53	-/-	2.00	2.00	-/-	0.00	52.01	51.67	-/-	74.00	PASS
2390.000	-54.87	-54.87	-/-	2.00	2.00	-/-	0.00	42.33	42.33	-/-	54.00	PASS
2483.500	-43.66	-44.39	-/-	2.00	2.00	-/-	0.00	53.54	52.81	-/-	74.00	PASS
2483.500	-54.61	-54.72	-/-	2.00	2.00	-/-	0.00	42.59	42.48	-/-	54.00	PASS
2500.000	-44.15	-44.33	-/-	2.00	2.00	-/-	0.00	53.05	52.87	-/-	74.00	PASS
2500.000	-54.51	-54.55	-/-	2.00	2.00	-/-	0.00	42.69	42.65	-/-	54.00	PASS

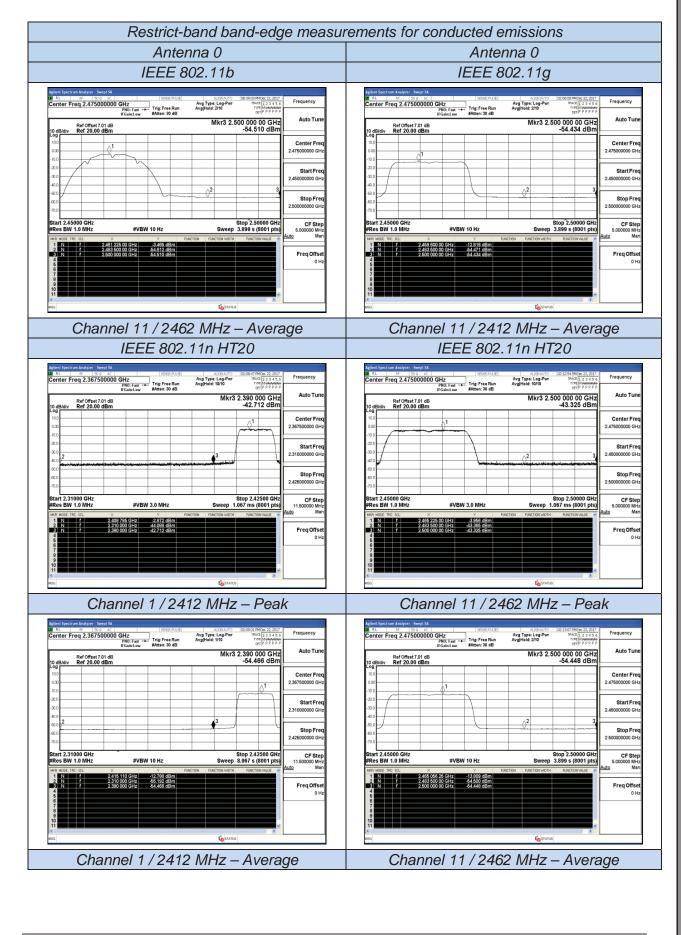
5.8.5 Test Results

	IEEE 802.11g											
Frequency	Con	nducted Powe (dBm)	۶r		na Gain IBi)	Directional	Ground Reflection	Convert R	Convert Radiated E Level At 3m (dBuV/m)		Limit	Mandat
(MHz)	Antenna 0	Antenna 1	Sum	Antenna 0	Antenna 1	Gain (dBi)	Factor (dB)	Antenna 0	Antenna 1	Sum	(dBuV/m)	Verdict
2310.000	-45.58	-44.49	-/-	2.00	2.00	-/-	0.00	51.62	52.71	-/-	74.00	PASS
2310.000	-55.22	-55.18	-/-	2.00	2.00	-/-	0.00	41.98	42.02	-/-	54.00	PASS
2390.000	-44.08	-43.74	-/-	2.00	2.00	-/-	0.00	53.12	53.46	-/-	74.00	PASS
2390.000	-54.62	-54.54	-/-	2.00	2.00	-/-	0.00	42.58	42.66	-/-	54.00	PASS
2483.500	-43.42	-43.10	-/-	2.00	2.00	-/-	0.00	53.78	54.10	-/-	74.00	PASS
2483.500	-54.47	-54.52	-/-	2.00	2.00	-/-	0.00	42.73	42.68	-/-	54.00	PASS
2500.000	-42.98	-44.54	-/-	2.00	2.00	-/-	0.00	54.22	52.66	-/-	74.00	PASS
2500.000	-54.43	-54.45	-/-	2.00	2.00	-/-	0.00	42.77	42.75	-/-	54.00	PASS

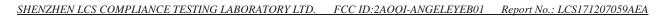
	IEEE 802.11n HT20															
Frequency	Conducted Power Antenna Gain (dBm) (dBi) Directional Reflection				Directional		Directional Reflection (0					Convert Radiated E Level At 3m (dBuV/m)		vel At 3m	Limit	N
(MHz)	Antenna 0	Antenna 1	Sum	Antenna 0	Antenna 1	Gain (dBi)	Factor (dB)	Antenna 0	Antenna 1	Sum	(dBuV/m)	Verdict				
2310.000	-44.09	-44.04	-41.05	2.00	2.00	5.01	0.00	53.11	53.16	59.16	74.00	PASS				
2310.000	-55.19	-55.23	-52.20	2.00	2.00	5.01	0.00	42.01	41.97	48.01	54.00	PASS				
2390.000	-42.71	-45.80	-40.98	2.00	2.00	5.01	0.00	54.49	51.40	59.23	74.00	PASS				
2390.000	-54.47	-54.51	-51.48	2.00	2.00	5.01	0.00	42.73	42.69	48.73	54.00	PASS				
2483.500	-43.37	-42.00	-39.62	2.00	2.00	5.01	0.00	53.83	55.20	60.59	74.00	PASS				
2483.500	-54.50	-54.50	-51.49	2.00	2.00	5.01	0.00	42.70	42.70	48.72	54.00	PASS				
2500.000	-43.33	-43.08	-40.19	2.00	2.00	5.01	0.00	53.87	54.12	60.02	74.00	PASS				
2500.000	-54.45	-54.46	-51.44	2.00	2.00	5.01	0.00	42.75	42.74	48.77	54.00	PASS				

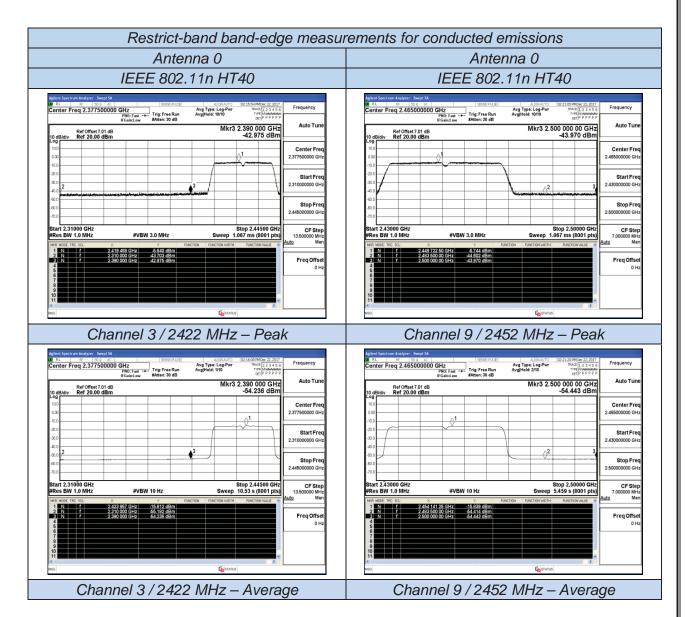

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 60 of 72

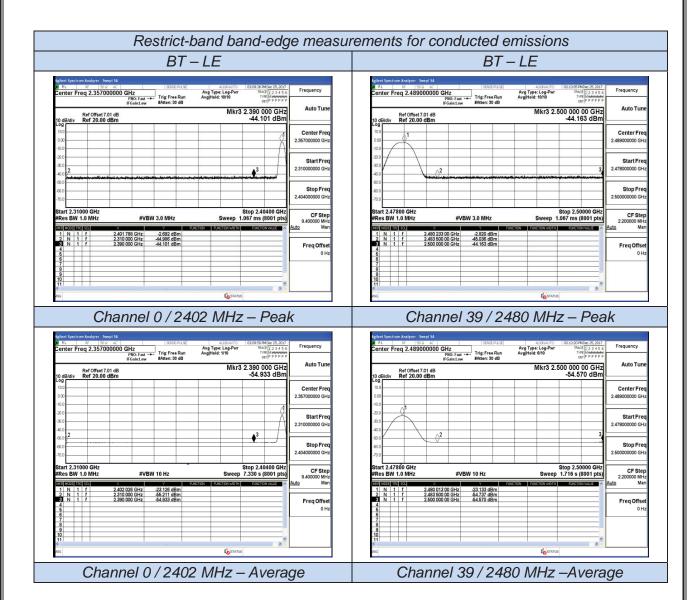
	IEEE 802.11n HT40											
Frequency	Conducted Power (dBm)		er		na Gain IBi)	Directional	Ground Reflection	Convert Radiated E Level At 3m (dBuV/m)		Limit	Marilat	
(MHz)	Antenna 0	Antenna 1	Sum	Antenna 0	Antenna 1	Gain (dBi)	Factor (dB)	Antenna 0	Antenna 1	Sum	(dBuV/m)	Verdict
2310.000	-43.70	-44.35	-41.00	2.00	2.00	5.01	0.00	53.50	52.85	59.21	74.00	PASS
2310.000	-55.19	-55.21	-52.19	2.00	2.00	5.01	0.00	42.01	41.99	48.02	54.00	PASS
2390.000	-42.98	-44.13	-40.51	2.00	2.00	5.01	0.00	54.22	53.07	59.70	74.00	PASS
2390.000	-54.24	-54.23	-51.22	2.00	2.00	5.01	0.00	42.96	42.97	48.99	54.00	PASS
2483.500	-44.60	-42.58	-40.46	2.00	2.00	5.01	0.00	52.60	54.62	59.75	74.00	PASS
2483.500	-54.41	-54.42	-51.40	2.00	2.00	5.01	0.00	42.79	42.78	48.81	54.00	PASS
2500.000	-43.97	-42.59	-40.22	2.00	2.00	5.01	0.00	53.23	54.61	59.99	74.00	PASS
2500.000	-54.44	-54.49	-51.45	2.00	2.00	5.01	0.00	42.76	42.71	48.76	54.00	PASS

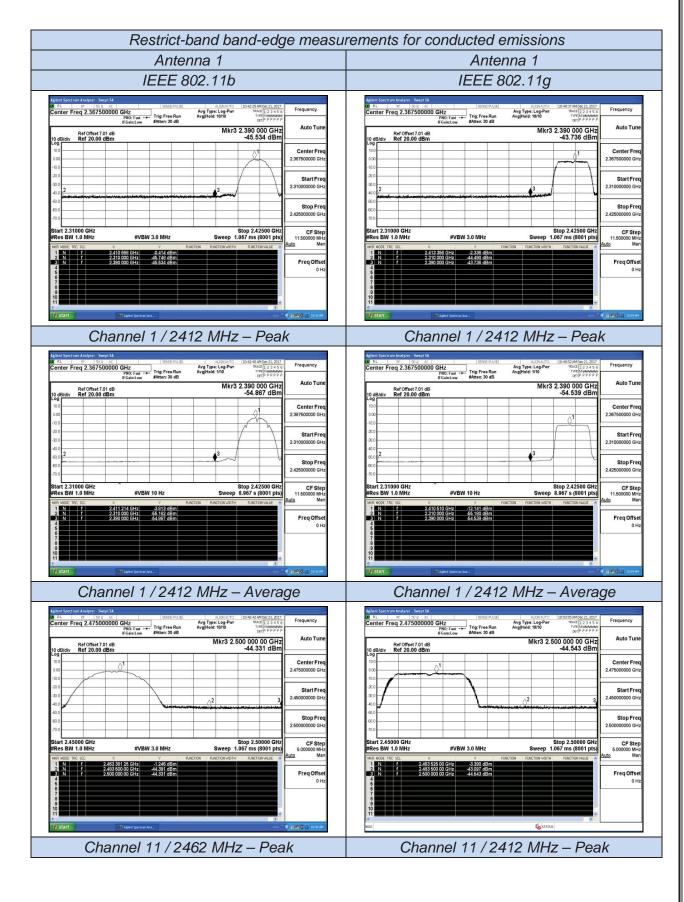

	BT – LE										
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Convert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict				
2310.000	-44.99	2.00	0.00	52.21	Peak	74.00	PASS				
2310.000	-55.21	2.00	0.00	41.99	Average	54.00	PASS				
2390.000	-44.10	2.00	0.00	53.10	Peak	74.00	PASS				
2390.000	-54.93	2.00	0.00	42.27	Average	54.00	PASS				
2483.500	-45.04	2.00	0.00	52.16	Peak	74.00	PASS				
2483.500	-54.74	2.00	0.00	42.46	Average	54.00	PASS				
2500.000	-44.16	2.00	0.00	53.04	Peak	74.00	PASS				
2500.000	-54.57	2.00	0.00	42.63	Average	54.00	PASS				

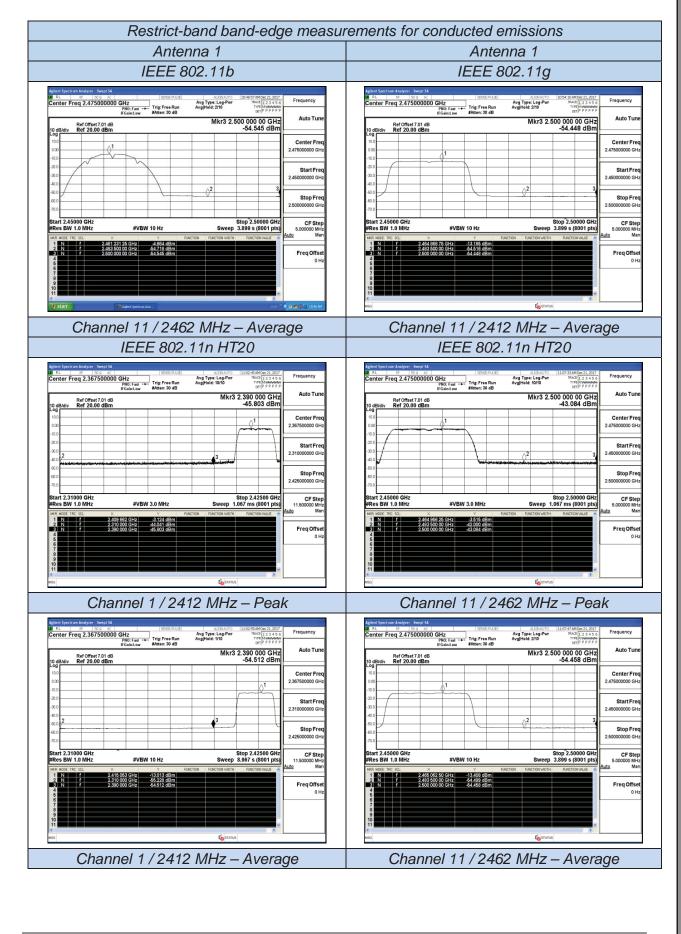
Remark:

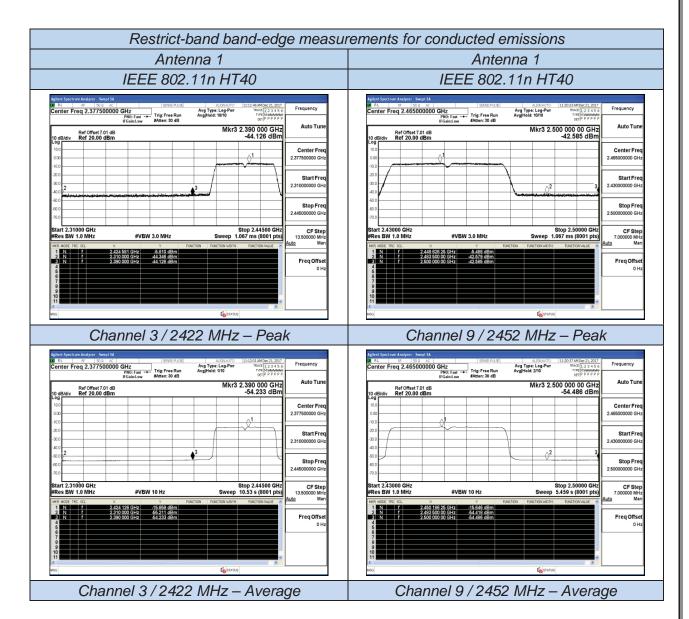

- 1. Measured Band-edge measurement for radiated at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;
- 4. "---"means that the fundamental frequency not for 15.209 limits requirement.
- 5. No need measure Average values if Peak values meets Average limits;
- 6. Please refer to following plots;




This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 62 of 72


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 63 of 72




This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 65 of 72

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 66 of 72

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 67 of 72

5.9. Antenna Requirements

5.9.1 Standard Applicable

According to antenna requirement of §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4) (1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

5.9.2 Antenna Connected Construction

5.9.2.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.9.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 2.0dBi, and the antennas are two PIFA antennas connect to PCB board and no consideration of replacement. Please see EUT photo for details. The sample support 2 antennas, antenna 0 can transmit both WLAN and Bluetooth while antenna 1 can only transmit WLAN.

5.9.2.3. Results: Compliance.

Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Conducted power refers ANSI C63.10:2013 Output power test procedure for DTS devices. Radiated power refers to ANSI C63.10:2013 Radiated emissions tests.

Measurement parameters

Measurement parameter						
Detector:	Peak					
Sweep Time:	Auto					
Resolution bandwidth:	1MHz					
Video bandwidth:	3MHz					
Trace-Mode:	Max hold					

Limits

FCC	ISED					
Antenna Gain						
6 dBi						

Note: The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal WLAN devices, the IEEE 802.11b mode is used.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 69 of 72

Antenna 0

T _{nom}	V _{nom}	Lowest Channel 2412 MHz	Middle Channel 2437 MHz	Highest Channel 2462 MHz	
Conducted power [dBm] Measured with DSSS modulation		3.452	3.217	3.348	
Radiated power [dBm] Measured with DSSS modulation		5.238	4.943	4.969	
Gain [dBi] Calculated		1.786	1.726	1.621	
M	easurement unce	ertainty	± 1.6 dB (cond.) / ± 3.8 dB (rad.)		

T _{nom}	V _{nom}	Lowest Channel 2402 MHz	Middle Channel 2440 MHz	Highest Channel 2480 MHz	
Conducted power [dBm] Measured with GFSK modulation		-2.616	-2.684	-2.733	
Measu	oower [dBm] ired with iodulation	-0.896	-0.892	-1.097	
Gain [dBi	Gain [dBi] Calculated		1.792	1.636	
М	easurement unce	ertainty	± 1.6 dB (cond.) / ± 3.8 dB (rad.)		

Antenna 1

T _{nom}	V _{nom}	Lowest Channel 2412 MHz	Middle Channel 2437 MHz	Highest Channel 2462 MHz	
Measu DSSS m	Conducted power [dBm] Measured with DSSS modulation		3.078	3.285	
Measu	oower [dBm] ired with iodulation	5.313	4.902	4.987	
Gain [dBi]	Gain [dBi] Calculated		1.824	1.702	
M	easurement unce	ertainty	± 1.6 dB (cond.) / ± 3.8 dB (rad.)		

6. LIST OF MEASURING EQUIPMENTS

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1	Power Meter	R&S	NRVS	100444	2017-06-17	2018-06-16
2	Power Sensor	R&S	NRV-Z81	100458	2017-06-17	2018-06-16
3	Power Sensor	R&S	NRV-Z32	10057	2017-06-17	2018-06-16
4	EPM Series Power Meter	Agilent	E4419B	MY45104493	2017-06-17	2018-06-16
5	E-SERIES AVG POWER SENSOR	Agilent	E9301H	MY41495234	2017-06-17	2018-06-16
6	ESA-E SERIES SPECTRUM ANALYZER	Agilent	E4407B	MY41440754	2017-11-18	2018-11-17
7	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2017-06-17	2018-06-16
8	SPECTRUM ANALYZER	R&S	FSP	100503	2017-06-17	2018-06-16
9	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2017-06-17	2018-06-16
10	Positioning Controller	MF	MF-7082	/	2017-06-17	2018-06-16
11	EMI Test Software	AUDIX	E3	N/A	2017-06-17	2018-06-16
12	EMI Test Receiver	ROHDE & SCHWARZ	ESR 7	101181	2017-06-17	2018-06-16
13	AMPLIFIER	QuieTek	QTK-A2525G	CHM10809065	2017-11-18	2018-11-17
14	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2017-06-23	2018-06-22
15	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2017-05-02	2018-05-01
16	Horn Antenna	EMCO	3115	6741	2017-06-23	2018-06-22
17	Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	2017-06-10	2018-06-09
18	RF Cable-R03m	Jye Bao	RG142	CB021	2017-06-17	2018-06-16
19	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2017-06-17	2018-06-16
20	TEST RECEIVER	R&S	ESCI	101142	2017-06-17	2018-06-16
21	RF Cable-CON	UTIFLEX	3102-26886-4	CB049	2017-06-17	2018-06-16
22	10dB Attenuator	SCHWARZBECK	MTS-IMP136	261115-001-003 2	2017-06-17	2018-06-16
23	Artificial Mains	R&S	ENV216	101288	2017-06-17	2018-06-16

7. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separate file for test setup photos.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separate file for exterior photos of eut.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separate file for interior photos of eut.

-----THE END OF REPORT------