FCC ID: 2AOPM-K03

Portable device

According to §15.247(e)(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to KDB447498 D01 General RF Exposure Guidance V06

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] * $[\sqrt{f(GHz)}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

f(GHz) is the RF channel transmit frequency in GHz;

Power and distance are rounded to the nearest mW and mm before calculation;

The result is rounded to one decimal place for comparison;

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. We use 5mm as separation distance to calculated.

Bluetooth DSS:

Transmit Frequency (GHz)	Mode	Measured Power (dBm)	Tune-up power (dBm)	Max tune-up power(dBm)	Result calculation	1g SAR
2.402		-3.18	-3±1	-2	0.1956	3
2.441	GFSK	-2.81	-3±1	-2	0.1972	3
2.48		-2.64	-3±1	-2	0.1987	3
2.402		-0.44	0±1	1	0.3902	3
2.441	π/4-DQPSK	-0.03	0±1	1	0.3934	3
2.48		0.90	0±1	1	0.3965	3
2.402		-0.37	0±1	1	0.3902	3
2.441	8DPSK	0.03	0±1	1	0.3934	3
2.48		0.92	0±1	1	0.3965	3

Bluetooth DTS:

Transmit Frequency (GHz)	Mode	Measured Power (dBm)	Tune-up power (dBm)	Max tune-up	Result	1g SAR
				power(dBm)	calculation	
2.402		-3.33	-3±1	-2	0.1956	3
2.44	GFSK	-3.29	-3±1	-2	0.1971	3
2.48		-2.19	-3±1	-2	0.1987	3

Conclusion: For the max result : $0.3965 \le 3.0$ for 1g SAR, No SAR is required.

Jason chen

Signature:

Date: 2018-3-5

NAME AND TITLE (Please print or type): Jason Chen /Manager

COMPANY (Please print or type): Shenzhen NTEK Testing Technology Co., Ltd./ 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen P.R. China.