

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191. China

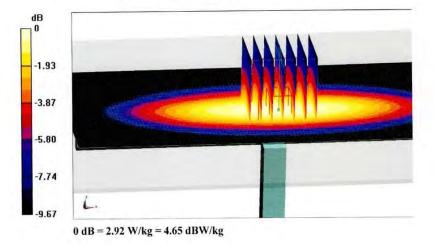
 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.cn

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China

Date: 06.26.2017

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1055 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1

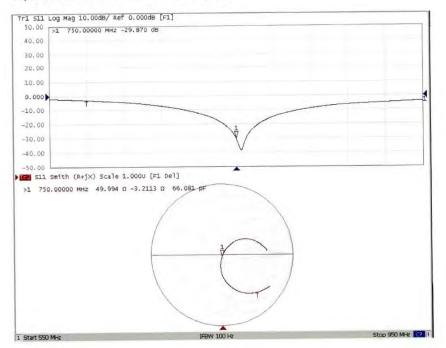

Medium parameters used: f = 750 MHz; σ = 0.979 S/m; ϵ_r = 54.64; ρ = 1000 kg/m³ Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(9.8, 9.8, 9.8); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection) •
- Electronics: DAE4 Sn1331; Calibrated: 1/19/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.18 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.30 W/kg SAR(1 g) = 2.2 W/kg; SAR(10 g) = 1.47 W/kg Maximum value of SAR (measured) = 2.92 W/kg


Certificate No: Z17-97079

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: Z17-97079

Page 8 of 8

	<u>L</u> <u>s</u> p	eag	中国认可国际互认
Add: No.51 Xueyua Tel: +86-10-623046 E-mail: ettl@chinat	an Road, Haidian Dist 533-2079 Fax: +8	TION LABORATORY rict, Beijing, 100191, China 86-10-62304633-2504	校准 CALIBRATII CNAS L057
	untek	www.chinattl.cn Certificate No: Z1	7-97080
CALIBRATION CI	EDTIFICAT		
CALIBRATION CI	ERTIFICAT		1. S 2 2.
Object	D835V2	2 - SN: 4d187	
Calibration Procedure(s)	FD-Z11	-003-01	
		ion Procedures for dipole validation kits	
Calibration date:	June 26	3, 2017	
pages and are part of the ca All calibrations have been humidity<70%.		he closed laboratory facility: environment	temperature(22±3) [®] C a
Calibration Equipment used	(M&TE critical fo	or calibration)	
Calibration Equipment used			Scheduled Calibration
Calibration Equipment used	ID #	Cal Date(Calibrated by, Certificate No.)	
Calibration Equipment used	ID#	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809)	Sep-17
Calibration Equipment used Primary Standards Power Meter NRVD	ID # 102083 100595	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809)	
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5	ID # 102083 100595	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809)	Sep-17 Sep-17
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4	ID # 102083 100595 SN 3617	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 23-Jan-17(SPEAG,No.EX3-3617_Jan17) 19-Jan-17(CTTL-SPEAG,No.Z17-97015)	Sep-17 Sep-17 Jan-18 Jan-18
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4	ID # 102083 100595 SN 3617 SN 1331	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 23-Jan-17(SPEAG,No.EX3-3617_Jan17) 19-Jan-17(CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.)	Sep-17 Sep-17 Jan-18 Jan-18 Scheduled Calibration
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards	ID # 102083 100595 SN 3617 SN 1331 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 23-Jan-17(SPEAG,No.EX3-3617_Jan17) 19-Jan-17(CTTL-SPEAG,No.Z17-97015)	Sep-17 Sep-17 Jan-18 Jan-18
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ID # 102083 100595 SN 3617 SN 1331 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 23-Jan-17(SPEAG,No.EX3-3617_Jan17) 19-Jan-17(CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285)	Sep-17 Sep-17 Jan-18 Jan-18 Scheduled Calibration Jan-18 Jan-18
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	ID # 102083 100595 SN 3617 SN 1331 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 23-Jan-17(SPEAG,No.EX3-3617_Jan17) 19-Jan-17(CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285) Function	Sep-17 Sep-17 Jan-18 Jan-18 Scheduled Calibration Jan-18
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ID # 102083 100595 SN 3617 SN 1331 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 23-Jan-17(SPEAG,No.EX3-3617_Jan17) 19-Jan-17(CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285)	Sep-17 Jan-18 Jan-18 Scheduled Calibration Jan-18 Jan-18
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	ID # 102083 100595 SN 3617 SN 1331 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 23-Jan-17(SPEAG,No.EX3-3617_Jan17) 19-Jan-17(CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285) Function	Sep-17 Sep-17 Jan-18 Jan-18 Scheduled Calibration Jan-18 Jan-18
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	ID # 102083 100595 SN 3617 SN 1331 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 23-Jan-17(SPEAG,No.EX3-3617_Jan17) 19-Jan-17(CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285) Function SAR Test Engineer	Sep-17 Sep-17 Jan-18 Jan-18 Scheduled Calibration Jan-18 Jan-18
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C Calibrated by: Reviewed by:	ID # 102083 100595 SN 3617 SN 1331 ID # MY49071430 MY46110673 Name Zhao Jing Lin Hao	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 23-Jan-17(SPEAG,No.EX3-3617_Jan17) 19-Jan-17(CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285) Function SAR Test Engineer SAR Test Engineer	Sep-17 Sep-17 Jan-18 Jan-18 Scheduled Calibratio Jan-18 Jan-18 Signature

Certificate No: Z17-97080

F.4 835 MHz Dipole

Page 1 of 8

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

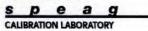
- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.


The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97080

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

Temperature	Permittivity	Conductivity
22.0 °C	41.5	0.90 mho/m
(22.0 ± 0.2) °C	41.3 ± 6 %	0.91 mho/m ± 6 %
<1.0 °C		
-	(22.0 ± 0.2) °C	(22.0 ± 0.2) °C 41.3 ± 6 %

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.47 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.75 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.59 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.30 mW /g ± 18.7 % (k=2)

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.37 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.53 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.56 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.27 mW /g ± 18.7 % (k=2)

Certificate No: Z17-97080

Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.6Ω- 2.63jΩ	
Return Loss	- 30.4dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.7Ω- 3.45jΩ
Return Loss	- 24.9dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.501 ns
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z17-97080

Page 4 of 8

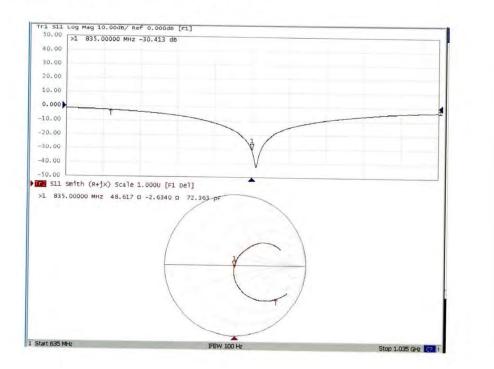
In Collaboration with	
S D E a g	
CALIBRATION LABORATORY	
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn	
DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China	Date: 06.26.2017
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4	4d187
Communication System: UID 0, CW; Frequency: 835 MHz; Du	
Medium parameters used: $f = 835$ MHz; $\sigma = 0.914$ S/m; $\varepsilon_r = 41$.25; $\rho = 1000 \text{ kg/m}^3$
Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-200	7)
DASY5 Configuration:	/)
 Probe: EX3DV4 - SN3617; ConvF(9.73, 9.73, 9.73)); Calibrated: 1/23/2017;
 Sensor-Surface: 1.4mm (Mechanical Surface Detection) 	tion)
 Electronics: DAE4 Sn1331; Calibrated: 1/19/2017 	
 Phantom: Triple Flat Phantom 5.1C; Type: QD 000 	
 Measurement SW: DASY52, Version 52.10 (0); SE (7417) 	EMCAD X Version 14.6.10
(7417)	
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0:	Measurement grid: dx=5mm.
dy=5mm, dz=5mm	2
Reference Value = 55.82V/m; Power Drift = 0.02 dB	
Peak SAR (extrapolated) = 3.84 W/kg	
SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.59 W/kg	
Maximum value of SAR (measured) = 3.36 W/kg	
dB	
-2.18	
-4.36	
-6.53	THE REAL PROPERTY AND ADDRESS OF

Certificate No: Z17-97080

-8.71

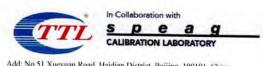
-10.89

L


0 dB = 3.36 W/kg = 5.26 dBW/kg

Page 5 of 8

Impedance Measurement Plot for Head TSL



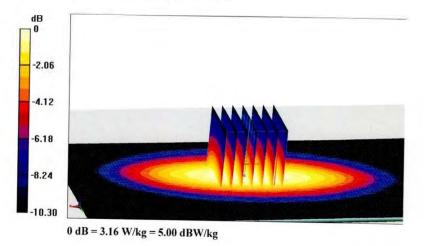
Certificate No: Z17-97080

Page 6 of 8

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China

Date: 06.26.2017

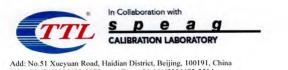
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d187 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.962$ S/m; $\varepsilon_r = 54.86$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

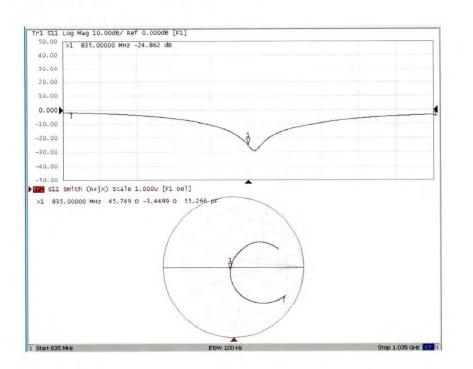

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(9.64, 9.64, 9.64); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 1/19/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.58 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.59 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.56 W/kg


Maximum value of SAR (measured) = 3.16 W/kg


Certificate No: Z17-97080

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: Z17-97080

Page 8 of 8

		ation with	中国认可
11	CALIBRAT	ION LABORATORY	NAS校准
Add: No.51 Xueyua	n Road. Haidian Dist	rict, Beijing, 100191, China	CALIBRATIO
Tel; ±86-10-623046 E-mail: cttl@chinatt	33-2079 Fax: +1	86-10-62304633-2504	CNAS L0570
1.	intek		7-97103
CALIBRATION CE	RTIFICAT	E	
Object	D1750	10 ON 1100	
Object	D1750V	/2 - SN: 1130	
Calibration Procedure(s)	ED 711	-2-003-01	-
		tion Procedures for dipole validation kits	
Calibration date:	July 1, 2	2017	
pages and are part of the ce All calibrations have been	ertificate.	the closed laboratory facility: environment	temperature(22±3)°C and
pages and are part of the ce All calibrations have been humidity<70%.	ertificate.		temperature(22±3)℃ and
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used	ertificate.		temperature(22±3)℃ and Scheduled Calibration
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used	conducted in t	or calibration)	
All calibrations have been humidity<70%. Calibration Equipment used <u>Primary Standards</u> Power Meter NRVD Power sensor NRV-Z5	conducted in t (M&TE critical fo ID # 102083 100595	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809)	Scheduled Calibration Sep-17 Sep-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 ReferenceProbe EX3DV4	ertificate. conducted in 1 (M&TE critical for ID # 102083 100595 SN 7433	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 26-Sep-16(SPEAG,No.EX3-7433_Sep16)	Scheduled Calibration Sep-17 Sep-17 Sep-17
All calibrations have been humidity<70%. Calibration Equipment used <u>Primary Standards</u> Power Meter NRVD Power sensor NRV-Z5	conducted in t (M&TE critical fo ID # 102083 100595	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809)	Scheduled Calibration Sep-17 Sep-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 ReferenceProbe EX3DV4	ertificate. conducted in 1 (M&TE critical for ID # 102083 100595 SN 7433	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 26-Sep-16(SPEAG,No.EX3-7433_Sep16)	Scheduled Calibration Sep-17 Sep-17 Sep-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 ReferenceProbe EX3DV4 DAE4	ertificate. conducted in 1 (M&TE critical for ID # 102083 100595 SN 7433 SN 1331	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 26-Sep-16(SPEAG,No.EX3-7433_Sep16) 19-Jan-17(CTTL-SPEAG,No.Z17-97015)	Scheduled Calibration Sep-17 Sep-17 Sep-17 Jan-18
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 ReferenceProbe EX3DV4 DAE4 Secondary Standards	Conducted in 1 (M&TE critical for ID # 102083 100595 SN 7433 SN 1331 ID #	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 26-Sep-16(SPEAG,No.EX3-7433_Sep16) 19-Jan-17(CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Sep-17 Sep-17 Sep-17 Jan-18 Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ertificate. conducted in 1 (M&TE critical for ID # 102083 100595 SN 7433 SN 1331 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 26-Sep-16 (SPEAG,No.EX3-7433_Sep16) 19-Jan-17 (CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285)	Scheduled Calibration Sep-17 Sep-17 Sep-17 Jan-18 Scheduled Calibration Jan-18 Jan-18
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ertificate. conducted in 1 (M&TE critical for 102083 100595 SN 7433 SN 1331 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 26-Sep-16 (SPEAG,No.EX3-7433_Sep16) 19-Jan-17 (CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285) Function	Scheduled Calibration Sep-17 Sep-17 Sep-17 Jan-18 Scheduled Calibration Jan-18
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ertificate. conducted in 1 (M&TE critical for ID # 102083 100595 SN 7433 SN 1331 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 26-Sep-16 (SPEAG,No.EX3-7433_Sep16) 19-Jan-17 (CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285)	Scheduled Calibration Sep-17 Sep-17 Sep-17 Jan-18 Scheduled Calibration Jan-18 Jan-18
Pages and are part of the cer All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C Calibrated by:	ertificate. conducted in 1 (M&TE critical for 102083 100595 SN 7433 SN 1331 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 26-Sep-16 (SPEAG,No.EX3-7433_Sep16) 19-Jan-17 (CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285) Function	Scheduled Calibration Sep-17 Sep-17 Sep-17 Jan-18 Scheduled Calibration Jan-18 Jan-18
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ertificate. conducted in 1 (M&TE critical for 102083 100595 SN 7433 SN 1331 ID # MY49071430 MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 26-Sep-16(SPEAG,No.EX3-7433_Sep16) 19-Jan-17(CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285) Function SAR Test Engineer	Scheduled Calibration Sep-17 Sep-17 Sep-17 Jan-18 Scheduled Calibration Jan-18 Jan-18

Certificate No: Z17-97103

F.5 1750 MHz Dipole

Page 1 of 8

	* In Collabora	ation with	
	TTT S P	eag	
	CALIBRATI	ON LABORATORY	
	1 Xueyuan Road, Haidian Distri 0-62304633-2079 Fax: +8	ict, Beijing, 100191, China 6-10-62304633-2504	
		vww.chinattl.cn	
-			
Glossary:			
TSL	tissue simulating	g liquid	
ConvF	sensitivity in TS		
N/A	not applicable or		

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held
- devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97103

Page 2 of 8

Measurement Conditions

ASY system configuration, as far as r	ot given on page 1.	
DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

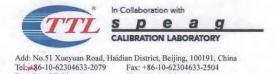
	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.5 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.17 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	36.9 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.94 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	19.8 mW /g ± 20.4 % (k=2)

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.1 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		


SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.25 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	36.7 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	4.94 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	19.7 mW /g ± 20.4 % (k=2)

Certificate No: Z17-97103

Page 3 of 8

Http://www.chinattl.cn Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

E-mail: cttl@chinattl.com

Impedance, transformed to feed point	48.6Ω- 1.40jΩ
Return Loss	- 33.9dB

Antenna Parameters with Body TSL

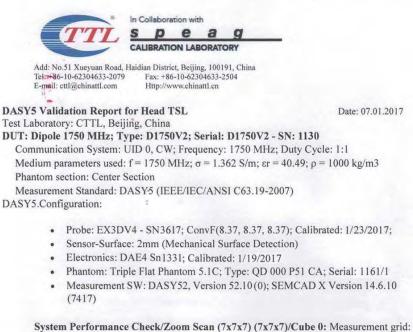
Impedance, transformed to feed point	46.0Ω+ 0.61jΩ
Return Loss	- 27.5dB

General Antenna Parameters and Design

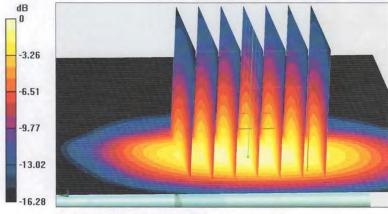
Electrica	al Delay (one direction)	1.318 ns	
LICOLIIO	ar Belay (one direction)	1.010 113	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.


Additional EUT Data

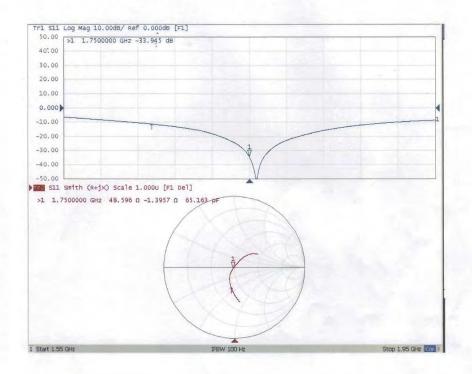
Manufactured by	SPEAG	
-----------------	-------	--


Certificate No: Z17-97103

Page 4 of 8

dx=5mm, dy=5mm, dz=5mm Reference Value = 47.11V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 16.4W/kgSAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.94 W/kg Maximum value of SAR (measured) = 13.0 W/kg

0 dB = 13.0 W/kg = 11.14 dBW/kg


Certificate No: Z17-97103

Page 5 of 8

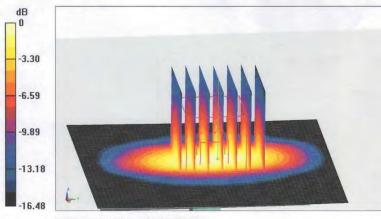
Impedance Measurement Plot for Head TSL

Certificate No: Z17-97103

Page 6 of 8

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT, Diracle 1750 MHz, Turce D1750V2; Seviel Date: 07.01.2017

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1130 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

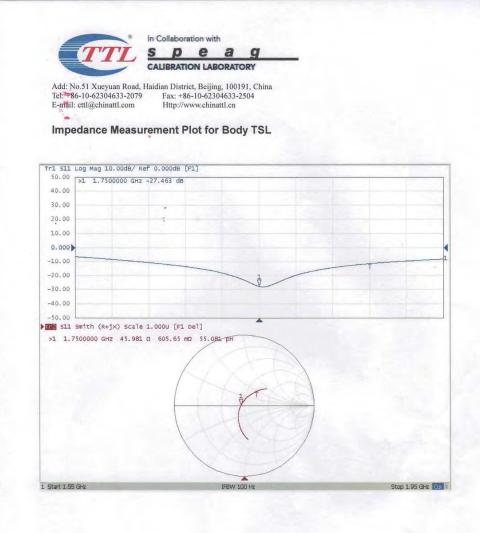

Medium parameters used: f = 1750 MHz; $\sigma = 1.505 \text{ S/m}$; $\varepsilon_r = 53.06$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Measurement Standard: DASÝ5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(8.18, 8.18, 8.18); Calibrated: 1/23/2017;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 1/19/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10(0); SEMCAD X Version 14.6.10 (7417)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.11 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 16.4 W/kg

SAR(1 g) = 9.25 W/kg; SAR(10 g) = 4.94 W/kg Maximum value of SAR (measured) = 13.1 W/kg


0 dB = 13.1 W/kg = 11.17 dBW/kg

Certificate No: Z17-97103

Page 7 of 8

Certificate No: Z17-97103

Page 8 of 8

Certificate No: Z17-97081

Page 1 of 8

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97081

Page 2 of 8