

Global United Technology Services Co., Ltd.

Report No.: GTS201806000120F01

FCC Report (Bluetooth)

Applicant: Wi-linktech Communication Technologies (Shanghai) Co., Ltd

Address of Applicant: Room217, 518Bibo Road, Pudong New District, Shanghai

Manufacturer/Factory: Wi-linktech Communication Technologies (Shanghai) Co., Ltd

Address of Room217, 518Bibo Road, Pudong New District, Shanghai

Manufacturer:

Factory: Jiashi Communication Co., Ltd

Address of Factory: Building1, Shangkeng industry, Shangkeng north road, Chang

ping Town, Dongguan City, Guangdong Prov, PRC.

Equipment Under Test (EUT)

Product Name: BT 4.2 single

Model No.: WLT8266BM

FCC ID: 2AOO6WLT8266BM

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: June 05, 2018

Date of Test: June 05-June 07, 2018

Date of report issued: June 07, 2018

Test Result: PASS *

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	June 07, 2018	Original

Prepared By:	Trankly	Date:	June 07, 2018	
	Project Engineer			
Check By:	Andy wa	Date:	June 07, 2018	
	Reviewer			

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	!SION	2
3		NTENTS	
4		T SUMMARY	
5		VERAL INFORMATION	
J			
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	TEST FACILITY	
	5.5 5.6	TEST LOCATIONADDITIONAL INSTRUCTIONS	
6	TES	T INSTRUMENTS LIST	9
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	Power Spectral Density	
	7.6	BAND EDGES	
	7.6.		
	7.6.2		
	7.7	Spurious Emission	_
	7.7.		
	7.7.2		
8	TES	T SETUP PHOTO	40
9	EUT	CONSTRUCTIONAL DETAILS	42

Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard. Remark: Test according to ANSI C63.4:2014 and ANSI C63.10:2013.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)			
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)			
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)			
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)			
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of	95%.			

5 General Information

5.1 General Description of EUT

Product Name:	BT 4.2 single
Model No.:	WLT8266BM
Serial No.:	V2.3
Test sample(s) ID:	GTS201806000120-1
Sample(s) Status	Engineer sample
Hardware:	V2.3
Software:	V1.0
Operation Frequency:	2402MHz-2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	3dBi
Power Supply:	DC 3.3V

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
•			. !	•	. !	• !	• !
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency	
The lowest channel	2402MHz	
The middle channel	2442MHz	
The Highest channel	2480MHz	

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
Apple	PC	A1278	C1MN99ERDTY3

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Additional Instructions

EUT Software Settings:

Mode	Special software is used. The software provided by client to enable the EUT under transmission
	condition continuously at specific channel frequencies individually.

Power level setup in software				
Test Software Name	EMI_TEST_v1.1			
Mode	Channel	Frequency (MHz)	Soft Set	
GFSK	CH01	2402		
	CH21	2442	TX level : default	
	CH40	2480		

Run Software

6

EMI Test Software

Thermo meter

Report No.: GTS201806000120F01

6 Test Instruments list

Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 03 2015	July 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June 28 2017	June 27 2018
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 28 2017	June 27 2018
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 28 2017	June 27 2018
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 28 2017	June 27 2018
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 28 2017	June 27 2018
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
9	Coaxial Cable	GTS	N/A	GTS213	June 28 2017	June 27 2018
10	Coaxial Cable	GTS	N/A	GTS211	June 28 2017	June 27 2018
11	Coaxial cable	GTS	N/A	GTS210	June 28 2017	June 27 2018
12	Coaxial Cable	GTS	N/A	GTS212	June 28 2017	June 27 2018
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 28 2017	June 27 2018
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 28 2017	June 27 2018
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 28 2017	June 27 2018
16	Band filter	Amindeon	82346	GTS219	June 28 2017	June 27 2018
17	Power Meter	Anritsu	ML2495A	GTS540	June 28 2017	June 27 2018
18	Power Sensor	Anritsu	MA2411B	GTS541	June 28 2017	June 27 2018
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	June 28 2017	June 27 2018
Con	ducted Emission:					
Ite	m Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019
2		R&S	ESCI 7	GTS552	June 28 2017	June 27 2018
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 28 2017	June 27 2018
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June 28 2017	June 27 2018
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A

Gen	General used equipment:							
Ite m	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Barometer	ChangChun	DYM3	GTS257	June 28 2017	June 27 2018		

E3

TA328

N/A

GTS233

N/A

June 28 2017

AUDIX

KTJ

N/A

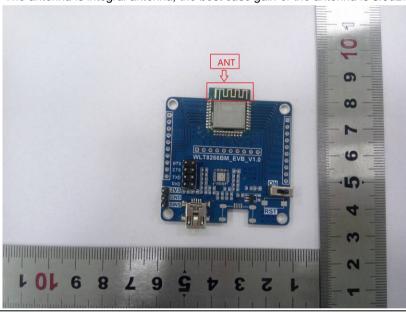
June 27 2018

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

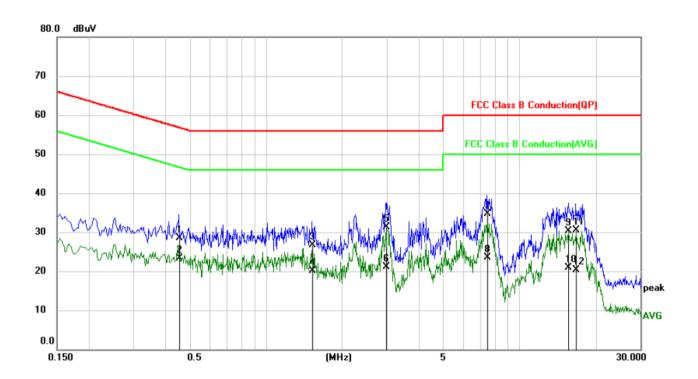
The antenna is integral antenna, the best case gain of the antenna is 3.0dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto				
Limit:	Ereguenay range (MHz) Limit (dBuV)					
	Frequency range (MHz)	Average				
	0.15-0.5	56 to 46*				
	0.5-5	56	46			
	5-30 * Decreases with the logarithm	60	50			
Test setup:	Reference Plane	i or the frequency.				
	AUX Equipment Test table/Insulation plane Remark EU.T Equipment Under Test LISN: Line impedence Stabilization Network Test table height=0.8m					
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2009 on conducted measurement. 					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement data

Line:


EUT: BT 4.2 single Probe: L1

Model: WLT8266BM Power Source: AC120V/60Hz

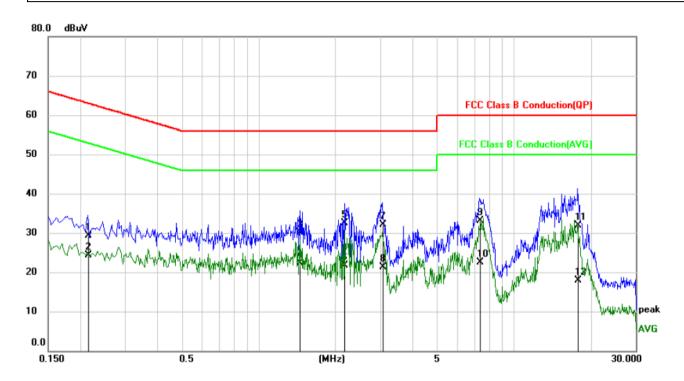
Mode: BLE mode Test by: Bill

Temp./Hum.(%H): 26℃/60%RH

Note:

			Reading	Correct	Measure-			
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.4540	18.55	10.04	28.59	56.80	-28.21	QP
2	*	0.4540	13.18	10.04	23.22	46.80	-23.58	AVG
3		1.5260	16.89	9.83	26.72	56.00	-29.28	QP
4		1.5260	10.36	9.83	20.19	46.00	-25.81	AVG
5		2.9739	21.49	9.80	31.29	56.00	-24.71	QP
6		2.9739	11.25	9.80	21.05	46.00	-24.95	AVG
7		7.4859	24.90	9.76	34.66	60.00	-25.34	QP
8		7.4859	13.78	9.76	23.54	50.00	-26.46	AVG
9		15.5979	20.50	9.82	30.32	60.00	-29.68	QP
10		15.5979	11.16	9.82	20.98	50.00	-29.02	AVG
11		16.6779	20.77	9.81	30.58	60.00	-29.42	QP
12		16.6779	10.49	9.81	20.30	50.00	-29.70	AVG

Neutral:


EUT: BT 4.2 single Probe: N

Model: WLT8266BM Power Source: AC120V/60Hz

Mode: BT mode Test by: Bill

Temp./Hum.(%H): 26℃/60%RH

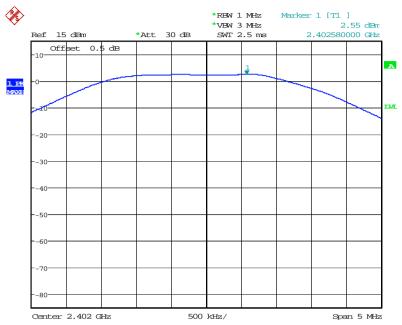
Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.2140	19.33	9.96	29.29	63.05	-33.76	QP
2		0.2140	14.39	9.96	24.35	53.05	-28.70	AVG
3		1.4500	20.08	10.01	30.09	56.00	-25.91	QP
4		1.4500	12.30	10.01	22.31	46.00	-23.69	AVG
5	*	2.1740	22.44	9.99	32.43	56.00	-23.57	QP
6		2.1740	11.77	9.99	21.76	46.00	-24.24	AVG
7		3.0579	22.14	9.98	32.12	56.00	-23.88	QP
8		3.0579	11.40	9.98	21.38	46.00	-24.62	AVG
9		7.3420	23.16	9.95	33.11	60.00	-26.89	QP
10		7.3420	12.62	9.95	22.57	50.00	-27.43	AVG
11		17.8300	21.79	10.03	31.82	60.00	-28.18	QP
12		17.8300	7.88	10.03	17.91	50.00	-32.09	AVG

Notes:

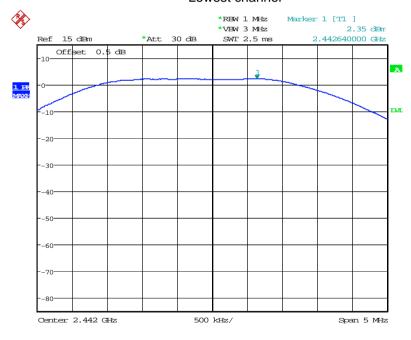
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + Correct factor
- 4. Correct factor = LISN Factor + Cable Loss
- 5. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Output Power

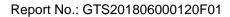

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data

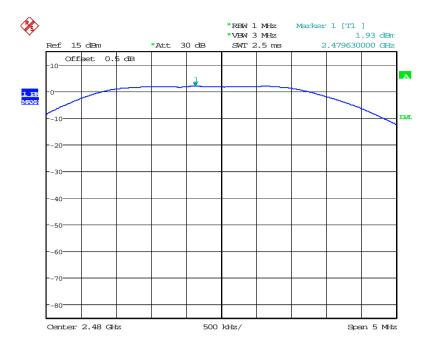
Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	2.55		
Middle	2.35	30.00	Pass
Highest	1.93		



Test plot as follows:


Date: 5.JUN.2018 17:20:22

Lowest channel



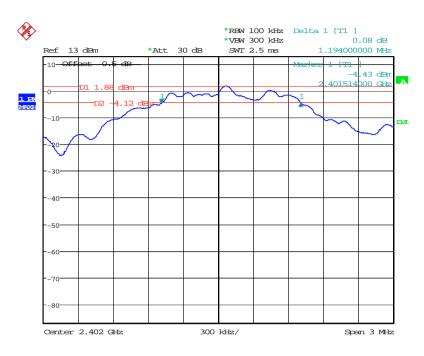
Date: 5.JUN.2018 17:23:32

Middle channel

Date: 5.JUN.2018 17:22:41

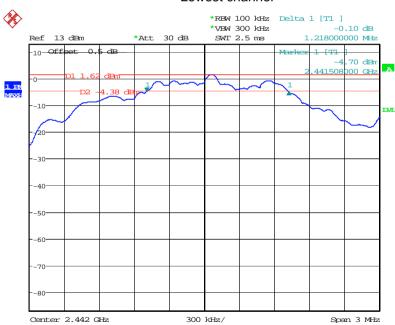
Highest channel

7.4 Channel Bandwidth

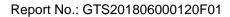

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

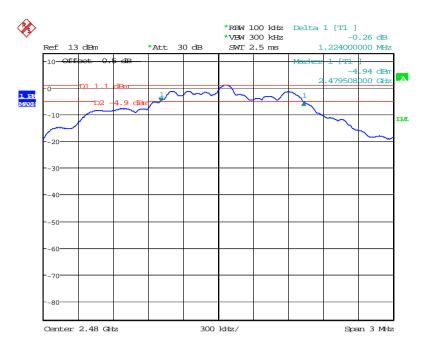
Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result	
Lowest	1.194			
Middle	1.218	>500	Pass	
Highest	1.224			



Test plot as follows:


Date: 5.JUN.2018 17:27:59

Lowest channel



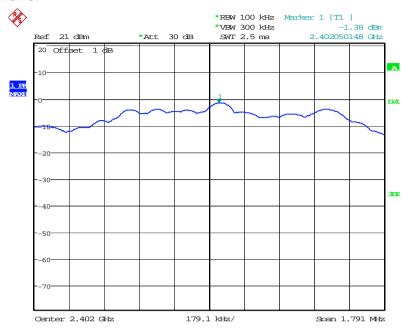
Date: 5.JUN.2018 17:33:31

Middle channel

Date: 5.JUN.2018 17:35:18

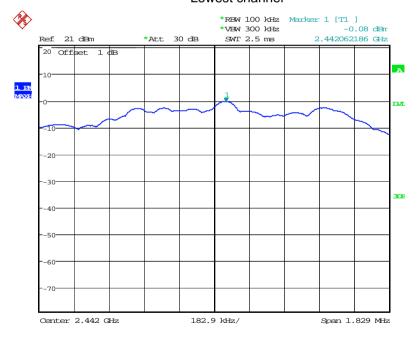
Highest channel

7.5 Power Spectral Density

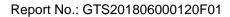

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04		
Limit:	8dBm/3kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

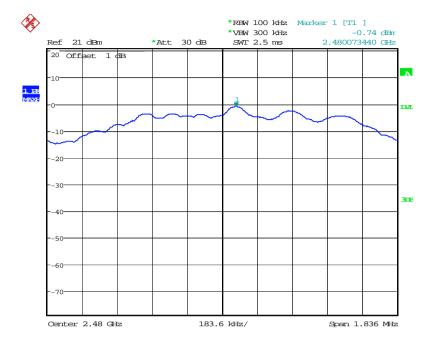
Test channel	Power Spectral Density (dBm)	Limit(dBm/3kHz)	Result	
Lowest	-1.38			
Middle	-0.08	8.00	Pass	
Highest	-0.74			



Test plot as follows:


Date: 21.JUN.2018 10:28:13

Lowest channel

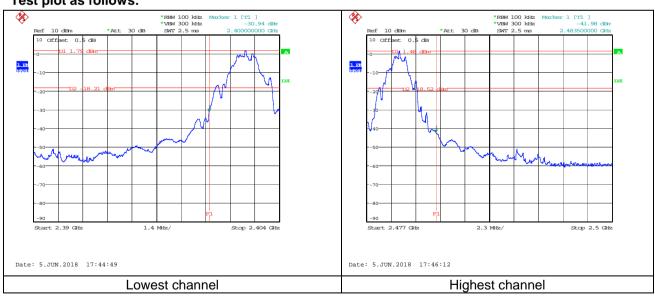


Date: 21.JUN.2018 10:30:40

Middle channel

Date: 21.JUN.2018 10:34:45

Highest channel



7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer Non-Conducted Table Cround Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Test plot as follows:

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205				
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	All of the restrict 2500MHz) data		tested, only	the worst ba	nd's (2310MHz to		
Test site:	Measurement D	istance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
•		Peak	1MHz	3MHz	Peak		
	Above 1GHz	RMS	1MHz	3MHz	Average		
Limit:	Freque	1	Limit (dBuV/	·	Value		
	Above 1	CH-	54.0	0	Average		
	Above	GHZ	74.0	0	Peak		
	Turn Table ~ <150cm >			Antenna- Am >- Preamplifie	r.··		
Test Procedure:	determine th 2. The EUT wa antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota the maximun 5. The test-rece Specified Ba 6. If the emissio the limit spec of the EUT w have 10dB m peak or aver sheet. 7. The radiatior And found th	t a 3 meter care position of the set 3 meters che was mount height is varietermine the mad vertical polant. Spected emissing antenna was trable was turner reading. Siever system with a level of the sified, then test could be report hargin would be age method as a measurement.	mber. The tall he highest race away from the ed on the top ed from one neaximum value rizations of the on, the EUT tuned to heigh ed from 0 decreas set to Pearlaximum Hole EUT in peak ting could be red. Otherwise re-tested on a specified arts are performoning which is a specified arts are performance of the could be re-tested on	ble was rotated attion. The interference of a variable of a variable of the field some antenna and was arranged hits from 1 magrees to 360 at Detect Furd Mode. The mode was 10 stopped and the emission of the mission of the mode was 10 stopped and the mode was 10 stopped and the mode was 10 stopped and the mission of the mission of the mission of the mode was 10 stopped and the mission of the m	ed 360 degrees to be-receiving e-height antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find action and DdB lower than the peak values ons that did not ing peak, quasi-		
Test Instruments:	Refer to section			/i.i.			
Test mode:	Refer to section 5.2 for details						
Lest mode:	L Leiel in Seriii						

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Test channel: Lowest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	55.81	-15.05	40.76	74.00	-33.24	Horizontal
2400.00	76.34	-15.01	61.33	74.00	-12.67	Horizontal
2390.00	53.69	-15.05	38.64	74.00	-35.36	Vertical
2400.00	73.21	-15.01	58.20	74.00	-15.80	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	44.26	-15.05	29.21	54.00	-24.79	Horizontal
2400.00	58.41	-15.01	43.40	54.00	-10.60	Horizontal
2390.00	47.07	-15.05	32.02	54.00	-21.98	Vertical
2400.00	55.39	-15.01	40.38	54.00	-13.62	Vertical

Test channel: Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	72.18	-14.68	57.50	74.00	-16.50	Horizontal
2500.00	54.37	-14.60	39.77	74.00	-34.23	Horizontal
2483.50	63.25	-14.68	48.57	74.00	-25.43	Vertical
2500.00	53.03	-14.60	38.43	74.00	-35.57	Vertical

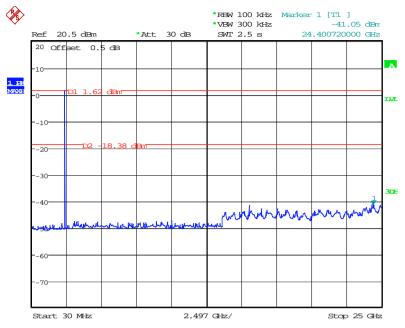
Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	53.17	-14.68	38.49	54.00	-15.51	Horizontal
2500.00	47.05	-14.60	32.45	54.00	-21.55	Horizontal
2483.50	44.12	-14.68	29.44	54.00	-24.56	Vertical
2500.00	45.48	-14.60	30.88	54.00	-23.12	Vertical

Remark:

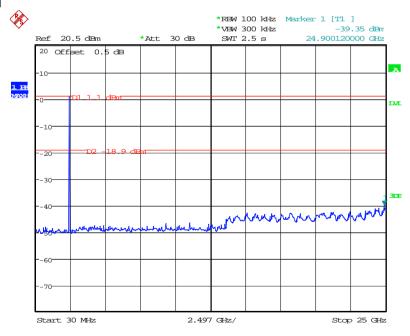
- 1. Final Level =Receiver Read level + Correct factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Correct factor= Antenna Factor + Cable Loss Preamplifier Factor

7.7 Spurious Emission

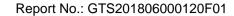

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

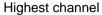
Test plot as follows:

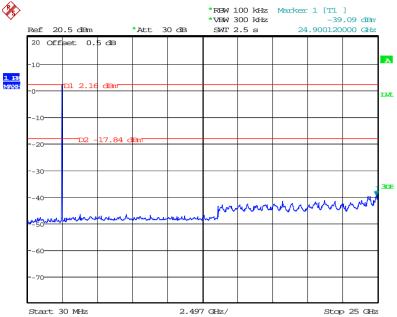

Lowest channel

Date: 5.JUN.2018 19:52:16

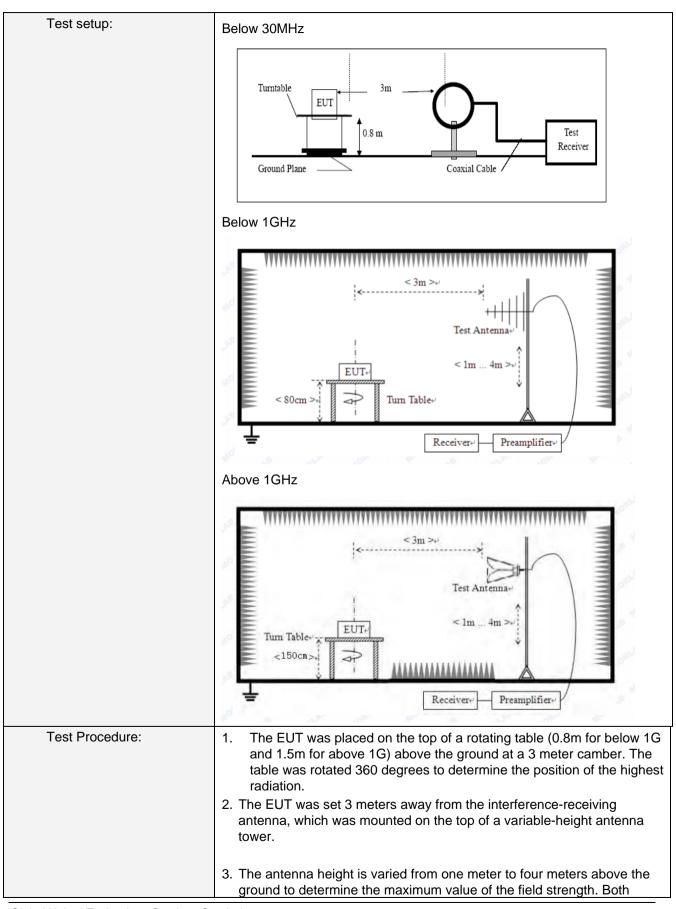

30MHz~25GHz

Middle channel




Date: 5.JUN.2018 19:51:18

30MHz~25GHz


Date: 5.JUN.2018 19:49:46

30MHz~25GHz

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 25GHz	9kHz to 25GHz						
Test site:	Measurement Distar	Measurement Distance: 3m						
Receiver setup:	Frequency	De	etector	RB\	N	VBW	Value	
	9KHz-150KHz	Qua	asi-peak	200l	Hz (600Hz	Quasi-peak	
	150KHz-30MHz	Qua	asi-peak	9KF	lz 3	30KHz	Quasi-peak	
	30MHz-1GHz	Qua	asi-peak	100K	Hz 3	00KHz	Quasi-peak	
	Above 1GHz		Peak	1MF	lz :	3MHz	Peak	
	Above 1GHz		Peak	1MF	Ηz	10Hz	Average	
Limit:	Frequency		Limit	`	m @3m	,	Remark	
(Field strength of the fundamental signal)	2400MHz-2483.5	MHz	94.0				Average Value Peak Value	
Limit: (Spurious Emissions)	Frequency		Limit (uV/m)		Value		Measurement Distance	
	0.009MHz-0.490M	lHz	2400/F(KHz)		Hz) QP		300m	
	0.490MHz-1.705M	lHz	24000/F(KHz)		QF	•	300m	
	1.705MHz-30MH	lz	30		QP		30m	
	30MHz-88MHz		100		QF)		
	88MHz-216MHz	Z	150		QP			
	216MHz-960MH	z	200		QF)	3m	
	960MHz-1GHz		500		QF)	Sili	
	Above 1GHz		500		Avera	age		
	Above IGHZ		5000			ak		
Limit: (band edge)	Emissions radiated of harmonics, shall be fundamental or to the whichever is the less	attenu e gen	lated by at eral radiate	least 5	50 dB b	elow th	e level of the	

	horizontal and vertical polarizations of the antenna are set to make the
	measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data

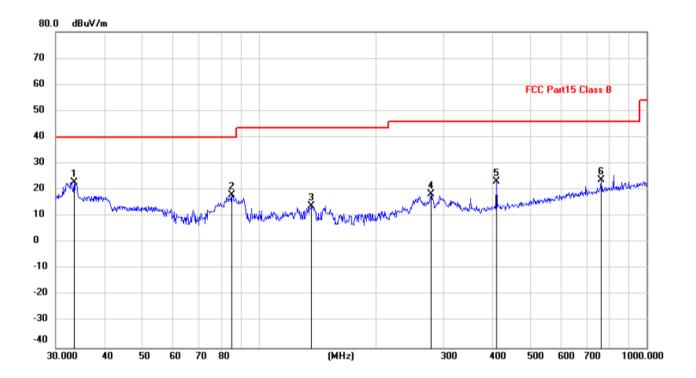
■ 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

Horizontal:

EUT: BT 4.2 single Polarziation: Horizontal


Model: WLT8266BM Power Source: AC120V/60Hz

Mode: BLE mode Test by: Bill

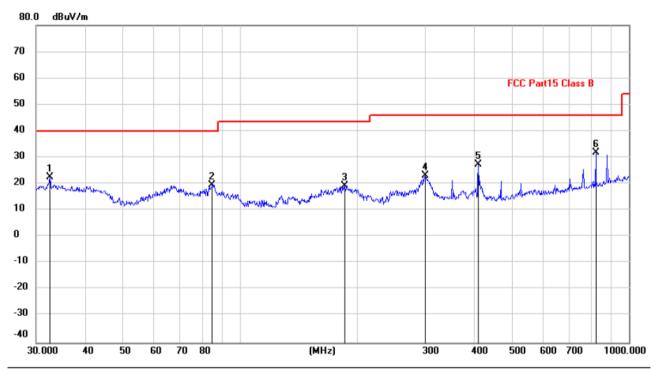
mode. Bill mode rest by.

Temp./Hum.(%H): 26℃/60%RH

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	33.4448	55.89	-33.09	22.80	40.00	-17.20	QP
2		85.2980	56.98	-39.04	17.94	40.00	-22.06	QP
3		136.9390	49.30	-35.41	13.89	43.50	-29.61	QP
4		278.0668	53.76	-35.54	18.22	46.00	-27.78	QP
5		410.3824	55.47	-32.17	23.30	46.00	-22.70	QP
6		763.3757	49.05	-25.39	23.66	46.00	-22.34	QP

Vertical:


EUT: BT 4.2 single Polarziation: Vertical

Model: WLT8266BM Power Source: AC120V/60Hz

Mode: BLE mode Test by: Bill

Temp./Hum.(%H): 26℃/60%RH

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		32.5197	55.51	-33.00	22.51	40.00	-17.49	QP
2		84.9993	58.62	-39.03	19.59	40.00	-20.41	QP
3		186.4407	57.33	-38.05	19.28	43.50	-24.22	QP
4		300.3672	58.15	-34.96	23.19	46.00	-22.81	QP
5		410.3824	59.51	-32.17	27.34	46.00	-18.66	QP
6	*	821.7103	56.62	-24.79	31.83	46.00	-14.17	QP

74.00

■ Above 1GHz

Test channel:

	=					
Peak value:						
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	58.12	-7.43	50.69	74.00	-23.31	Vertical
7206.00	57.48	-2.42	55.06	74.00	-18.94	Vertical
9608.00	57.09	-2.38	54.71	74.00	-19.29	Vertical
12010.00	*			74.00		Vertical
14412.00	*			74.00		Vertical
4804.00	59.89	-7.43	52.46	74.00	-21.54	Horizontal
7206.00	58.78	-2.42	56.36	74.00	-17.64	Horizontal
9608.00	57.43	-2.38	55.05	74.00	-18.95	Horizontal
12010.00	*			74.00		Horizontal

Lowest

Average value:

14412.00

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	48.56	-7.43	41.13	54.00	-12.87	Vertical
7206.00	47.74	-2.42	45.32	54.00	-8.08	Vertical
9608.00	47.08	-2.38	44.70	54.00	-9.30	Vertical
12010.00	*			54.00		Vertical
14412.00	*			54.00		Vertical
4804.00	49.87	-7.43	42.44	54.00	-11.56	Horizontal
7206.00	48.51	-2.42	46.09	54.00	-7.91	Horizontal
9608.00	46.85	-2.38	44.47	54.00	-9.53	Horizontal
12010.00	*			54.00		Horizontal
14412.00	*			54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level +Correct factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Horizontal

Test channe	l:		Middle			
Peak value:			1			
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	58.82	-7.49	51.33	74.00	-22.67	Vertical
7326.00	57.13	-2.40	54.73	74.00	-19.27	Vertical
9768.00	58.23	-2.38	55.85	74.00	-18.15	Vertical
12210.00	*			74.00		Vertical
14652.00	*			74.00		Vertical
4884.00	59.76	-7.49	52.27	74.00	-21.73	Horizontal
7326.00	58.84	-2.40	56.44	74.00	-17.56	Horizontal
9768.00	57.73	-2.38	55.35	74.00	-18.65	Horizontal
12210.00	*			74.00		Horizontal
14652.00	*			74.00		Horizontal
Average val	ue:		1			
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	50.03	-7.49	42.54	54.00	-11.46	Vertical
7326.00	48.91	-2.40	46.51	54.00	-7.49	Vertical
9768.00	48.34	-2.38	45.96	54.00	-8.04	Vertical
12210.00	*			54.00		Vertical
14652.00	*			54.00		Vertical
4884.00	49.38	-7.49	41.89	54.00	-12.11	Horizontal
7326.00	47.46	-2.40	45.06	54.00	-8.94	Horizontal
9768.00	49.23	-2.38	46.85	54.00	-7.15	Horizontal
12210.00	*			54.00		Horizontal

54.00

Remark:

14652.00

- 4. Final Level =Receiver Read level +Correct factor
- 5. "*", means this data is the too weak instrument of signal is unable to test.
- 6. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Horizontal

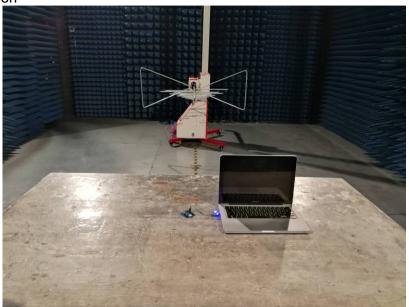
Test channel:	Highest				

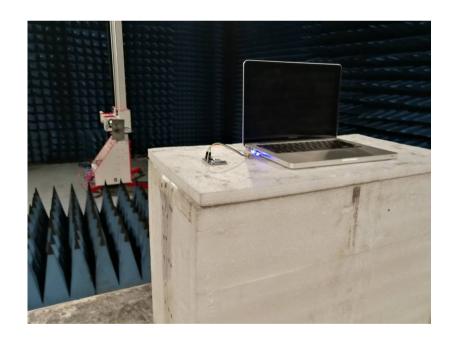
Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	58.97	-7.47	51.5	74.00	-22.50	Vertical
7440.00	58.23	-2.45	55.78	74.00	-18.22	Vertical
9920.00	58.64	-2.37	56.27	74.00	-17.73	Vertical
12400.00	*			74.00		Vertical
14880.00	*			74.00		Vertical
4960.00	58.87	-7.47	51.40	74.00	-22.60	Horizontal
7440.00	57.95	-2.45	55.50	74.00	-18.50	Horizontal
9920.00	58.03	-2.37	55.66	74.00	-18.34	Horizontal
12400.00	*			74.00		Horizontal
14880.00	*			74.00		Horizontal

Average value:

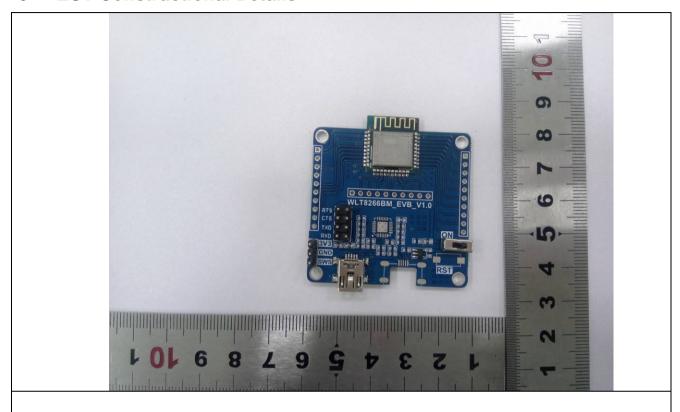
Average value.							
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	48.58	-7.47	41.11	54.00	-12.89	Vertical	
7440.00	48.92	-2.45	46.47	54.00	-7.53	Vertical	
9920.00	48.34	-2.37	45.97	54.00	-8.03	Vertical	
12400.00	*			54.00		Vertical	
14880.00	*			54.00		Vertical	
4960.00	50.23	-7.47	42.76	54.00	-11.24	Horizontal	
7440.00	48.72	-2.45	46.27	54.00	-7.73	Horizontal	
9920.00	47.18	-2.37	44.81	54.00	-54.00	Horizontal	
12400.00	*			54.00		Horizontal	
14880.00	*			54.00		Horizontal	

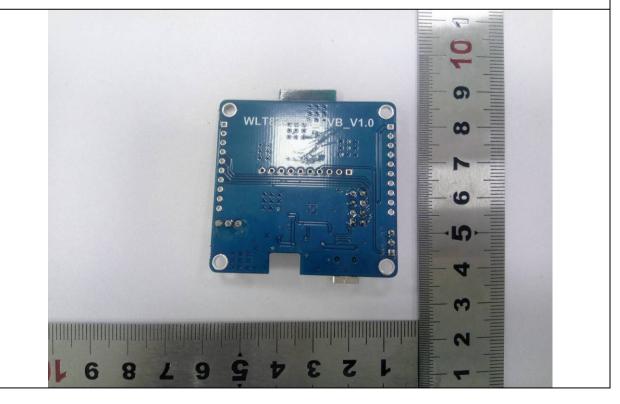

Remark:

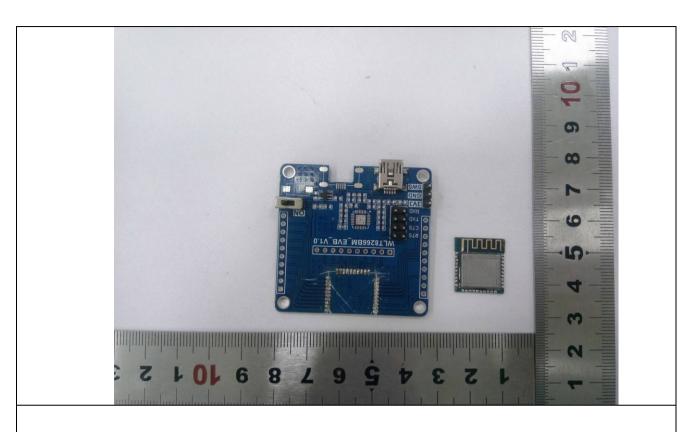

- 1. Final Level =Receiver Read level + Correct factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor

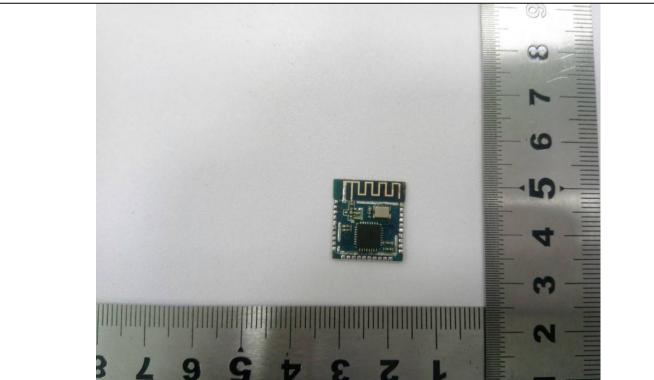
8 Test Setup Photo

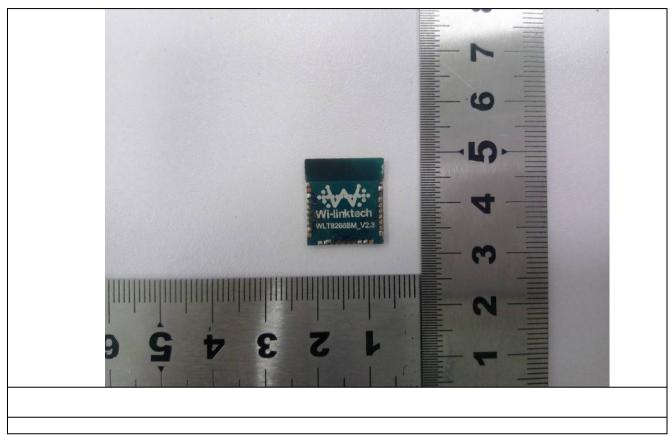
Radiated Emission




Conducted Emission




9 EUT Constructional Details



-----End-----