

FCC Radio Test Report

FCC ID:2AOO6-WLT3266

This report concerns: Original Grant

Project No. : 2006H014

Equipment: Dual mode BT5.0 module

Brand Name : N/A

Test Model : WLT3266 Series Model : N/A

Applicant: Wi-linktech Communication Technologies(Shanghai) Co.,Ltd.Address: Room 217, 518 Bibo Road, Pudong New Area, Shanghai, ChinaManufacturer: Wi-linktech Communication Technologies(Shanghai) Co.,Ltd.Address: Room 217, 518 Bibo Road, Pudong New Area, Shanghai, China

Date of Receipt : Jun. 26, 2020

Date of Test : Jun. 26, 2020~Jul. 04, 2020

Issued Date : Jul. 10, 2020

Report Version : R00

Test Sample: Engineering Sample No.: SH20200609292 for Radiated;

SH20200609293 for Conducted.

Standard(s) : FCC Part15, Subpart C (15.247)

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by: Allen Wei

Approved by: Ryan Wang

IAC-MRA ACCREDITED

Certificate # 5123.03

Add: No. 29, Jintang Road, Tangzhen Industry Park, Pudong New Area, Shanghai 201210, China

TEL: +86-021-61765666 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	5
1 . SUMMARY OF TEST RESULTS	6
1.1 TEST FACILITY	7
1.2 MEASUREMENT UNCERTAINTY	7
1.3 TEST ENVIRONMENT CONDITIONS	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF EUT	8
2.2 DESCRIPTION OF TEST MODES	10
2.3	11
PARAMETERS OF TEST SOFTWARE	11
2.4 SUPPORT UNITS	11
3 . RADIATED EMISSION TEST	12
3.1 LIMIT	12
3.2 TEST PROCEDURE	13
3.3 DEVIATION FROM TEST STANDARD	13
3.4 TEST SETUP	14
3.5 EUT OPERATING CONDITIONS	16
3.6 TEST RESULT - 30 MHZ TO 1000 MHZ	16
3.7 TEST RESULT - ABOVE 1000 MHZ	16
4 . BANDWIDTH TEST	17
4.1 LIMIT	17
4.2 TEST PROCEDURE	17
4.3 DEVIATION FROM STANDARD	17
4.4 TEST SETUP	17
4.5 EUT OPERATION CONDITIONS	17
4.6 TEST RESULTS	17
5 . MAXIMUM OUTPUT POWER	18
5.1 LIMIT	18
5.2 TEST PROCEDURE	18
5.3 DEVIATION FROM STANDARD	18
5.4 TEST SETUP	18
5.5 EUT OPERATION CONDITIONS	18
5.6 TEST RESULTS	18

Table of Contents	Page
6. CONDUCTED SPURIOUS EMISSION	19
6.1 LIMIT	19
6.2 TEST PROCEDURE	19
6.3 DEVIATION FROM STANDARD	19
6.4 TEST SETUP	19
6.5 EUT OPERATION CONDITIONS	19
6.6 TEST RESULTS	19
7 . POWER SPECTRAL DENSITY TEST	20
7.1 LIMIT	20
7.2 TEST PROCEDURE	20
7.3 DEVIATION FROM STANDARD	20
7.4 TEST SETUP	20
7.5 EUT OPERATION CONDITIONS	20
7.6 TEST RESULTS	20
8 . MEASUREMENT INSTRUMENTS LIST	21
9 . EUT TEST PHOTO	23
APPENDIX A - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	25
APPENDIX B - RADIATED EMISSION - ABOVE 1000 MHZ	28
APPENDIX C - BANDWIDTH	41
APPENDIX D - MAXIMUM OUTPUT POWER	43
APPENDIX E - CONDUCTED SPURIOUS EMISSION	45
APPENDIX F - POWER SPECTRAL DENSITY	47

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Jul. 10, 2020

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

	FCC Part15, Subpart C (15.247)					
Standard(s) Section	Standard(s) Section Test Item Test Result Judgment Rema					
15.207	AC Power Line Conducted Emissions APPENDIX A N/A		N/A			
15.247(d) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	PASS			
15.247(a)(2)	Bandwidth	APPENDIX E	PASS			
15.247(b)(3)	Maximum Output Power	APPENDIX F	PASS			
15.247(d)	Conducted Spurious Emission	APPENDIX G	PASS			
15.247(e)	Power Spectral Density	APPENDIX H	PASS			
15.203	Antenna Requirement		PASS			

Note:

- (1) "N/A" denotes test is not applicable to this device.
- (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No. 29, Jintang Road, Tangzhen Industry Park, Pudong New Area, Shanghai 201210, China

BTL's Test Firm Registration Number for FCC: 476765

BTL's Designation Number for FCC: CN1241

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2))

The BTL measurement uncertainty as below table:

A. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
		9 KHz~30 MHz	V	3.79
		9 KHz~30 MHz	Τ	3.57
		30 MHz~200 MHz	V	4.04
		30 MHz~200 MHz	Τ	3.76
SH-CB01	CISPR	200 MHz~1,000 MHz	V	4.24
311-0601	CISER	200 MHz~1,000 MHz	Τ	3.84
		1 GHz~18 GHz	V	4.46
		1 GHz~18 GHz	Τ	4.40
		18 GHz~40 GHz	V	3.95
		18 GHz~40 GHz	Τ	3.95

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
Radiated Emissions-30 MHz to 1GHz	24°C	58%	DC 3.6V	Forest Li
Radiated Emissions-Above 1000 MHz	24°C	58%	DC 3.6V	Forest Li
Bandwidth	22°C	55%	DC 3.6V	Forest Li
Maximum Output Power & e.i.r.p.	22°C	55%	DC 3.6V	Forest Li
Conducted Spurious Emission	22°C	55%	DC 3.6V	Forest Li
Power Spectral Density	22°C	55%	DC 3.6V	Forest Li

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Dual mode BT5.0 module
Brand Name	N/A
Test Model	WLT3266
Series Model	N/A
Model Difference(s)	N/A
Software Version	V1.0
Hardware Version	V1.3
Power Source	Supplied from PC USB port.
Power Rating	3.6V
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Technology	GFSK
Bit Rate of Transmitter	1Mbps
Max. Output Power	-1.26 dBm (0.0007 W) For 1Mbps
Max. e.i.r.p.	1.74 dBm (0.0015 W) For 1Mbps

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

Channel	Frequency	Channel	Frequency
Channel	(MHz)	Charmer	(MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

3. Table for Filed Antenna:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	PCB	N/A	3

2.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description
Mode 1	TX 2402MHz_CH00_1Mbps
Mode 2	TX 2440MHz_CH19_1Mbps
Mode 3	TX 2480MHz_CH39_1Mbps

Following mode(s) as (were) found to be the worst case(s) and selected for the final test.

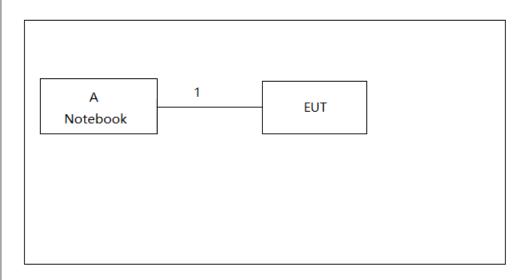
Radiated emissions test - Below 1GHz		
Final Test Mode Description		
Mode 2	TX Mode Channel 39 _1Mbps	

Radiated emissions test - Above 1GHz		
Mode 1	TX 2402MHz_CH00_1Mbps	
Mode 2	TX 2440MHz_CH19_1Mbps	
Mode 3	TX 2480MHz_CH39_1Mbps	

Conducted test		
Mode 1	TX 2402MHz_CH00_1Mbps	
Mode 2	TX 2440MHz_CH19_1Mbps	
Mode 3	TX 2480MHz_CH39_1Mbps	

Note:

- (1) The measurements are performed at the high, middle, low available channels.
- (2) For radiated emission above 1 GHz test, 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (3) The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.


2.3

PARAMETERS OF TEST SOFTWARE

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of BT LE

Test Software	BK32xx RF Test_V1.8.2		
Frequency (MHz)	2402	2440	2480
Parameters(1Mbps)	3	3	3

2.3.1 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
Α	Notebook	Lenovo	#P152014	N/A

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	USB	NO	NO	1.2m

3. RADIATED EMISSION TEST

3.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	(dBuV/m at 3 m)	
Frequency (Wiriz)	Peak	Average
Above 1000	74	54

Note:

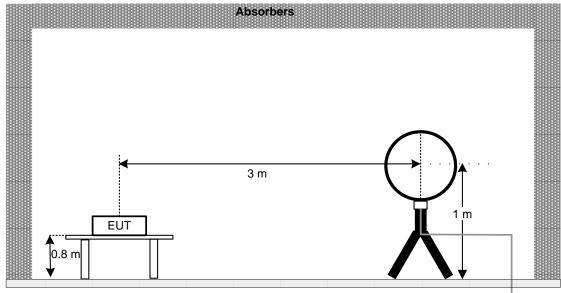
- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	RBW 1 MHz VBW 3 MHz peak detector for Pk value
(Emission in restricted band)	RMS detector for AV value

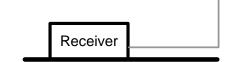
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector

3.2 TEST PROCEDURE

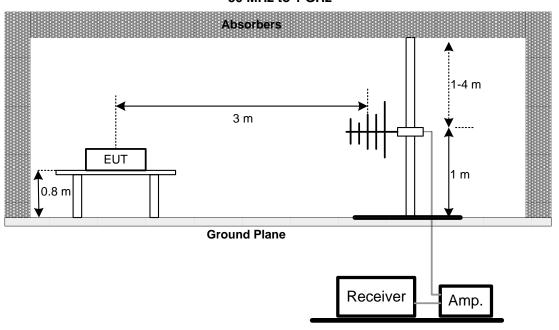
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item –EUT Test Photos.


3.3 DEVIATION FROM TEST STANDARD

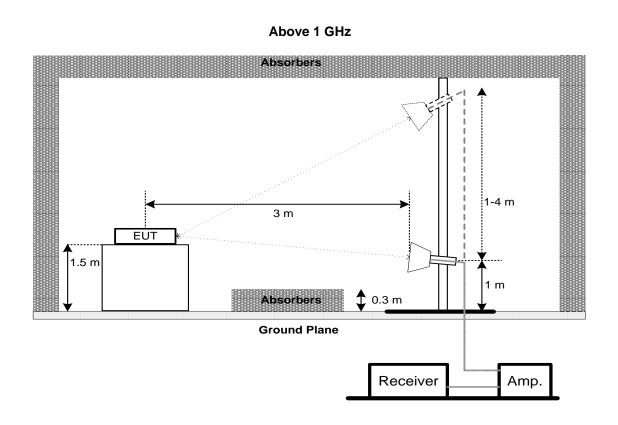
No deviation



3.4 TEST SETUP


9 kHz-30 MHz

Ground Plane



30 MHz to 1 GHz

Page 14 of 48

3.5 EUT OPERATING CONDITION	ONS
-----------------------------	-----

The EUT was programmed to be in continuously transmitting mode.

3.6 TEST RESULT - 30 MHz TO 1000 MHz

Please refer to the APPENDIX A.

3.7 TEST RESULT - ABOVE 1000 MHz

Please refer to the APPENDIX B.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Page 16 of 48

4. BANDWIDTH TEST

4.1 LIMIT

FCC Part15, Subpart C (15.247)			
Section	Test Item	Limit	
15.247(a)(2)	Bandwidth	>= 500 kHz (6 dB bandwidth)	

4.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100 kHz, VBW=300 kHz, Sweep time = 2.5 ms.

4.3 DEVIATION FROM STANDARD

No deviation.

4.4 TEST SETUP

4.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

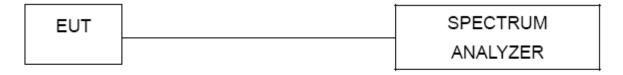
4.6 TEST RESULTS

Please refer to the APPENDIX C.

5. MAXIMUM OUTPUT POWER

5.1 LIMIT

FCC Part15, Subpart C (15.247)			
Section Test Item Limit			
15.247(b)(3)	Maximum Output Power	1 watt or 30 dBm	


5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The maximum conducted output power was performed in accordance with method 11.9.1.1 (for peak power) or 11.9.2.2 (for AVG power) of ANSI C63.10-2013.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

6. CONDUCTED SPURIOUS EMISSION

6.1 LIMIT

For FCC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100 kHz, VBW=300 kHz, Sweep time = 10 ms.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

7. POWER SPECTRAL DENSITY TEST

7.1 LIMIT

FCC Part15, Subpart C (15.247)					
Section	Limit				
15.247(e)	Power Spectral Density	8 dBm (in any 3 kHz)			

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW=3 kHz, VBW=10 kHz, Sweep time = auto.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

8. MEASUREMENT INSTRUMENTS LIST

	AC Power Line Conducted Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Line Impedance Stabilisation Network	Schwarzbeck	NNLK 8121	8121-822	Mar. 28, 2021		
2	TWO-LINE V-NETWORK	R&S	ENV216	101340	Nov. 19, 2020		
3	Test Cable	emci	EMCRG400-BM-N M-10000	170628	Apr. 16, 2021		
4	EMI Test Receiver	R&S	ESCI	100082	Mar. 28, 2021		
5	50Ω Terminator	SHX	TF2-1G-A	17051602	Mar. 28, 2021		
6	50Ω coaxial switch	Anritsu	MP59B	6201750902	Mar. 28, 2021		
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		

	Radiated Emissions - 9 kHz to 30 MHz						
Item	Item Kind of Equipment Manufacturer Type No. Serial No. Calibrated of the Control						
1	Loop Antenna	EMCI	EMCI LPA600	275	Mar. 28, 2021		
2	EMI Test Receiver	R&S	ESCI	100082	Mar. 28, 2021		
3	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		

	Radiated Emissions - 30 MHz to 1 GHz							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	719	Mar. 28, 2021			
2	Pre-Amplifier	emci	EMC9135	980400	Mar. 28, 2021			
3	MXE EMI Receiver	Keysight	N9038A	MY57150106	Mar. 28, 2021			
4	Test Cable	emci	EMC104-SM-SM-7 000	170330	Apr. 16, 2021			
5	Test Cable	emci	EMC104-SM-SM-1 000	170331	Apr. 16, 2021			
6	Test Cable	emci	EMC104-SM-NM-3 500	170621	Apr. 16, 2021			
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A			

	Radiated Emissions - Above 1 GHz							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Double-Ridged Waveguide Horn Antenna	ETS-Lindgren	9120D	00206960	Mar. 28, 2021			
2	Pre-Amplifier	emci	EMC012645SE	980421	Mar. 28, 2021			
3	EXA Spectrum Analyzer	Keysight	N9010A	MY56480545	Mar. 28, 2021			
4	Test Cable	emci	EMC104-SM-SM-7 000	170330	Apr. 16, 2021			
5	Test Cable	emci	EMC104-SM-SM-1 000	170331	Apr. 16, 2021			
6	Test Cable	emci	EMC104-SM-NM-3 500	170621	Apr. 16, 2021			
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A			
8	MXE EMI Receiver	Keysight	N9038A	MY57150106	Mar. 28, 2021			
9	Double-Ridged Waveguide Horn Antenna	ETS-Lindgren	3116C	00203919	Mar. 28, 2021			
10	Pre-Amplifier	emci	EMC184045SE	980409	Mar. 28, 2021			
11	EXA Spectrum Analyzer	Keysight	N9010A	MY56480579	Mar. 28, 2021			
12	Test Cable	emci	EMC102-KM-KM-8 00	170654	Apr. 16, 2021			
13	Test Cable	emci	Super Reliable-40G-SS11- 7000	W0030860001	Apr. 16, 2021			
14	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A			

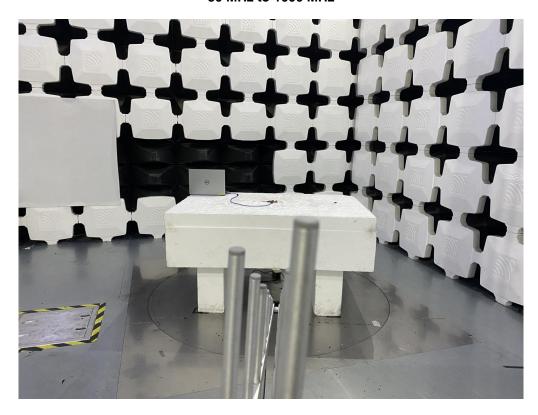
			Bandwidth		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP40	100626	Mar. 28, 2021

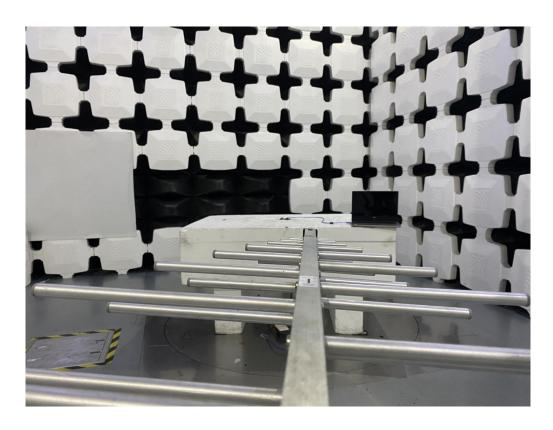
	Maximum Output Power							
Item	Item Kind of Equipment Manufacturer Type No. Serial No. Calibrated un							
1	Peak Power Analyze	Keysight	8990B	MY51000507	Mar. 28, 2021			
2	Wideband Power Sensor	Keysight	N9123A	MY58310003	Mar. 28, 2021			

	Antenna Conducted Spurious Emissions						
Item	Item Kind of Equipment Manufacturer Type No. Serial No. Calibrated until						
1 Spectrum Analyzer R&S FSP40 100626 Mar. 28, 202							

	Power Spectral Density						
Item	Item Kind of Equipment Manufacturer Type No. Serial No. Calibrated						
1	Spectrum Analyzer	R&S	FSP40	100626	Mar. 28, 2021		

Remark: "N/A" denotes no model name, serial no. or calibration specified.


All calibration period of equipment list is one year.



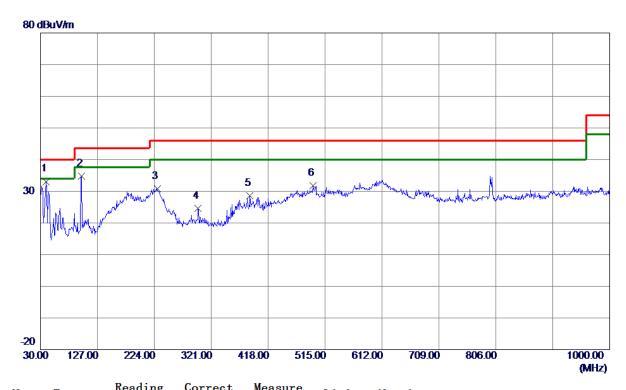
9. EUT TEST PHOTO

Radiated Emissions Test Photos

30 MHz to 1000 MHz

Radiated Emissions Test Photos

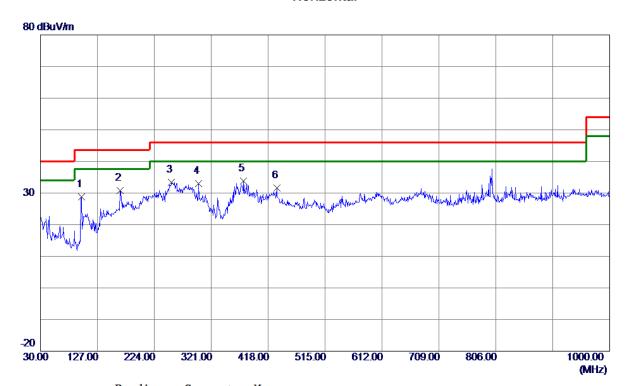
Above 1 GHz



APPENDIX A - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

Test Mode: TX Mode Channel 39 _1Mbps

Vertical


No.	Freq.	Level	Factor	measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	39.7000	50. 21	-17. 11	33. 10	40.00	-6. 90	Peak	
2	99. 8399	55. 57	-20.73	34.84	43.50	-8. 66	Peak	
3	228.8500	49.03	-18. 21	30.82	46.00	-15. 18	Peak	
4	298. 6900	39. 60	-14.94	24.66	46.00	-21.34	Peak	
5	386. 9600	41.34	-12. 79	28. 55	46.00	-17.45	Peak	
6	494.6300	42.30	-10.41	31.89	46.00	-14.11	Peak	

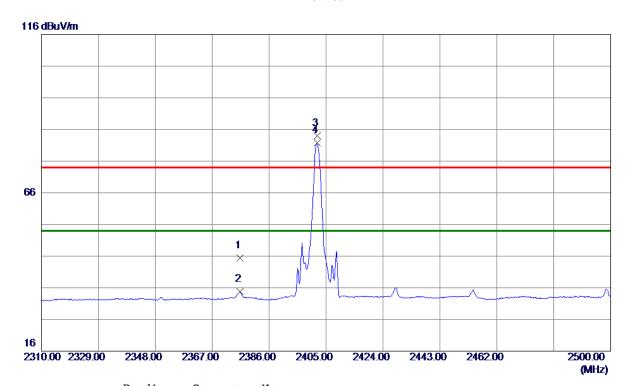
- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mode: TX Mode Channel 39 _1Mbps

Horizontal

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	99. 8399	49. 52	-20.73	28. 79	43.50	-14.71	Peak	
2	165.8000	46. 43	-15. 67	30.76	43.50	-12.74	Peak	
3	253. 1000	50.06	-16. 58	33.48	46.00	-12.52	Peak	
4	299.6600	47.95	-14. 92	33. 03	46.00	-12.97	Peak	
5 *	376. 2900	46. 80	-13.06	33.74	46.00	-12. 26	Peak	
6	433. 0350	43. 24	-11.62	31.62	46.00	-14.38	Peak	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



APPENDIX B - RADIATED EMISSION - ABOVE 1000 MHZ

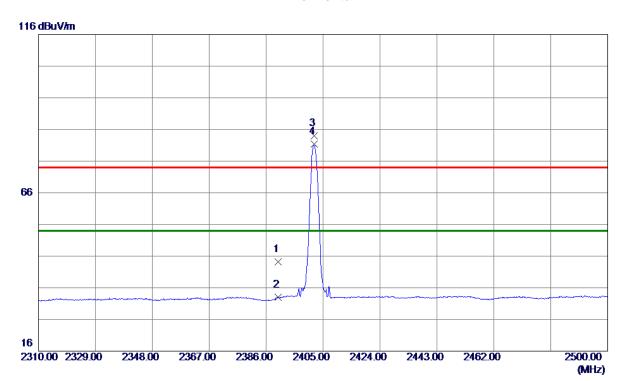
Test Mode: TX 2402 MHz _CH00_1Mbps

Vertical

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2376. 2150	65. 33	-20.02	45. 31	74.00	-28.69	Peak	
2	2376. 2150	54.87	-20.02	34.85	54.00	-19. 15	AVG	
3	2402.0550	103.81	-19. 91	83. 90	74.00	9. 90	Peak	No limit
4 *	2402. 0550	101. 69	-19. 91	81. 78	54.00	27.78	AVG	No limit

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

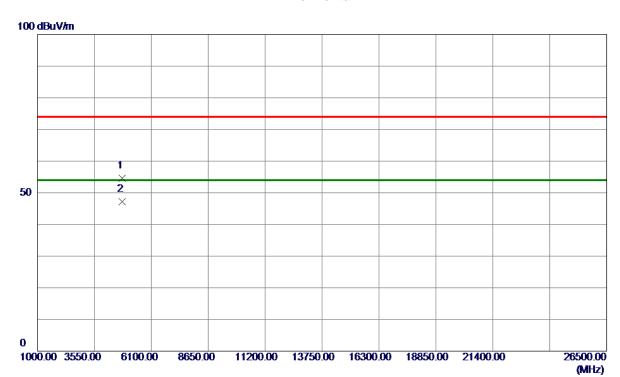
Vertical



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4803.7050	67. 15	−13. 08	54.07	74.00	-19.93	Peak	
2 *	4804.0250	59. 56	-13. 08	46. 48	54.00	-7. 52	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

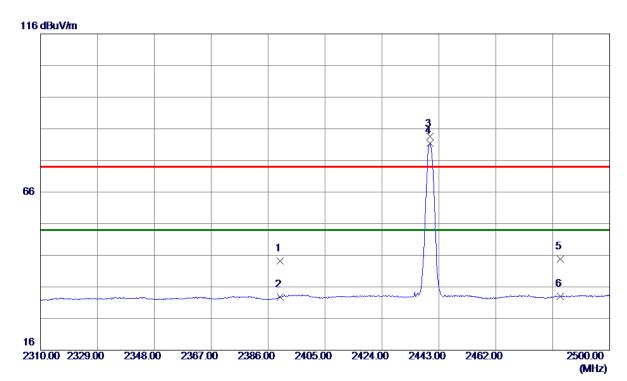
Horizontal



No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2390.0000	64. 12	-19.96	44. 16	74.00	-29.84	Peak	
2	2390.0000	52. 97	-19.96	33. 01	54.00	-20.99	AVG	
3	2402.0550	103.81	-19.91	83. 90	74.00	9. 90	Peak	No limit
4 *	2402.0550	101. 24	-19.91	81. 33	54.00	27. 33	AVG	No limit

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

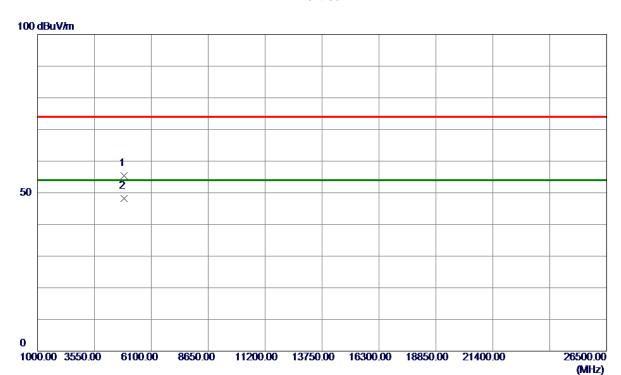
Horizontal



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4803.9250	67.68	-13.08	54.60	74.00	-19.40	Peak	
2 *	4803. 9850	60. 19	-13. 08	47.11	54.00	-6. 89	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

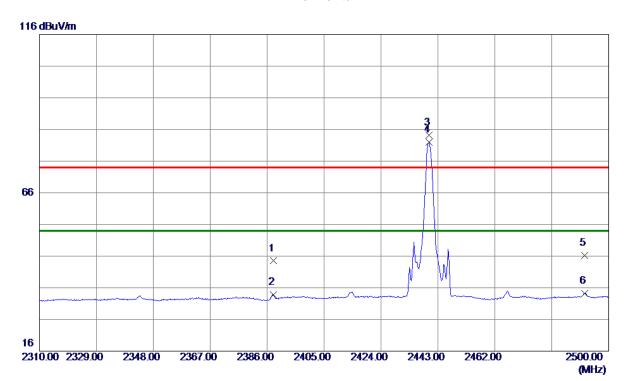
Vertical



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2390. 0000	64. 22	-19. 96	44. 26	74.00	-29.74	Peak	
2	2390. 0000	52.82	-19. 96	32.86	54.00	-21.14	AVG	
3	2439. 9600	103. 33	-19.74	83. 59	74.00	9. 59	Peak	No limit
4 *	2439. 9600	101. 16	-19.74	81. 42	54.00	27.42	AVG	No limit
5	2483. 5000	64. 32	-19. 54	44.78	74.00	-29. 22	Peak	
6	2483. 5000	52. 59	-19. 54	33. 05	54.00	-20.95	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

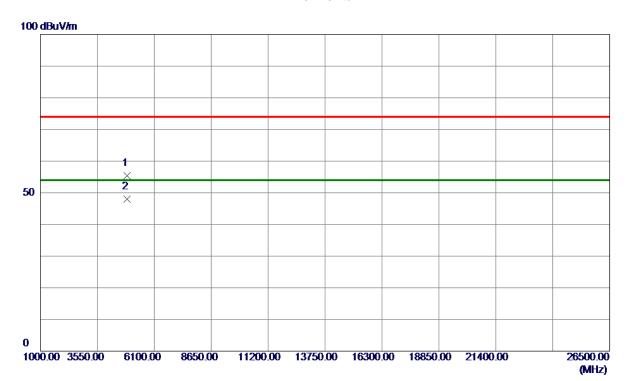
Vertical



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4879. 7970	68. 18	-12.85	55. 33	74.00	-18.67	Peak	
2 *	4879. 9930	61. 08	-12. 85	48. 23	54.00	-5. 77	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

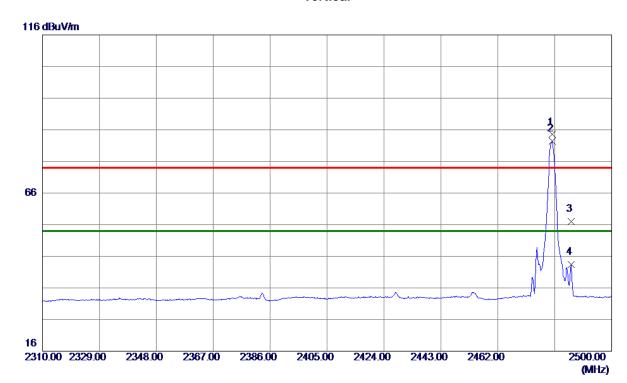
Horizontal



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2388. 0900	64. 47	-19. 97	44. 50	74.00	-29. 50	Peak	
2	2388. 0900	53. 76	-19.97	33. 79	54.00	-20. 21	AVG	
3	2440. 0550	103. 91	-19. 74	84. 17	74.00	10. 17	Peak	No limit
4 *	2440.0550	101. 79	-19.74	82. 05	54.00	28. 0 5	AVG	No limit
5	2491. 9250	65. 65	-19. 51	46. 14	74.00	-27.86	Peak	
6	2491. 9250	53. 79	-19. 51	34. 28	54.00	-19.72	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

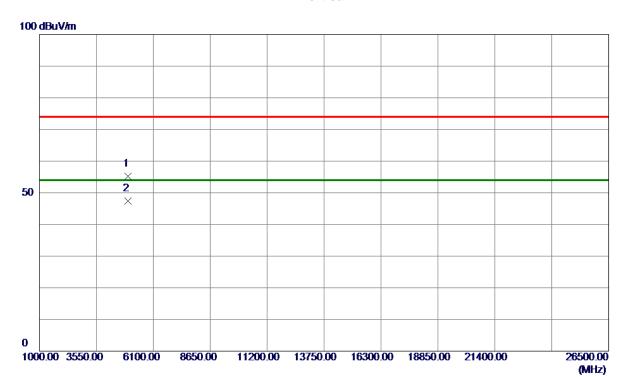
Horizontal



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4879.9620	68. 24	-12.85	55. 39	74.00	-18.61	Peak	
2 *	4879. 9700	60.89	-12.85	48. 04	54.00	-5. 96	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

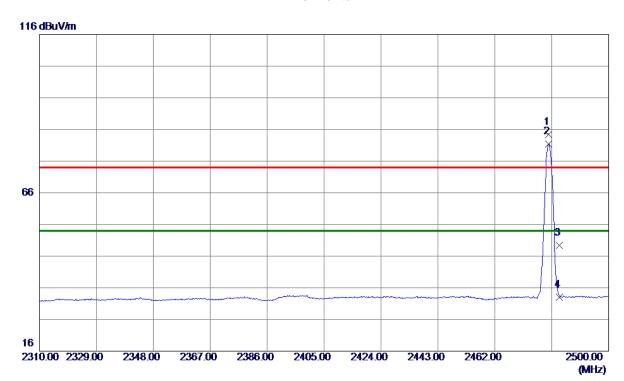
Vertical



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2480.0500	104.06	-19. 56	84. 50	74.00	10. 50	Peak	No limit
2 *	2480.0500	101.89	-19. 56	82. 33	54.00	28. 33	AVG	No limit
3	2486. 4150	76. 58	-19. 53	57.05	74.00	-16.95	Peak	
4	2486. 4150	62.89	-19. 53	43. 36	54.00	-10.64	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

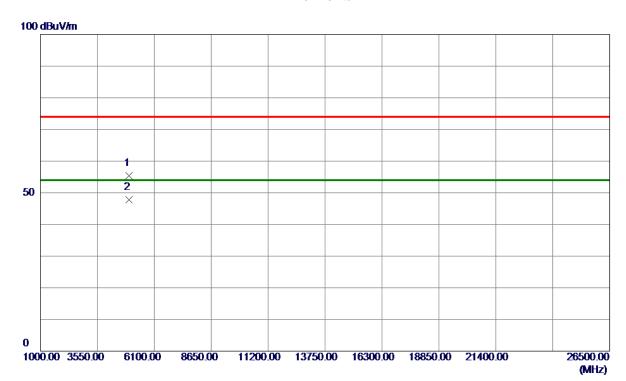
Vertical



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4959.7730	67.74	-12.60	55. 14	74.00	-18.86	Peak	
2 *	4960.0400	60.00	-12.60	47.40	54.00	-6. 60	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Horizontal



No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2479. 9550	104.01	-19. 56	84.45	74.00	10.45	Peak	No limit
2 *	2479. 9550	100. 91	-19. 56	81. 35	54.00	27. 35	AVG	No limit
3	2483. 5000	68. 88	-19. 54	49. 34	74.00	-24.66	Peak	
4	2483. 5000	52. 57	-19. 54	33. 03	54.00	-20.97	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Horizontal

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4959.8580	67. 98	-12.60	55. 38	74.00	-18.62	Peak	
2 *	4960. 0419	60. 33	-12.60	47.73	54.00	-6. 27	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

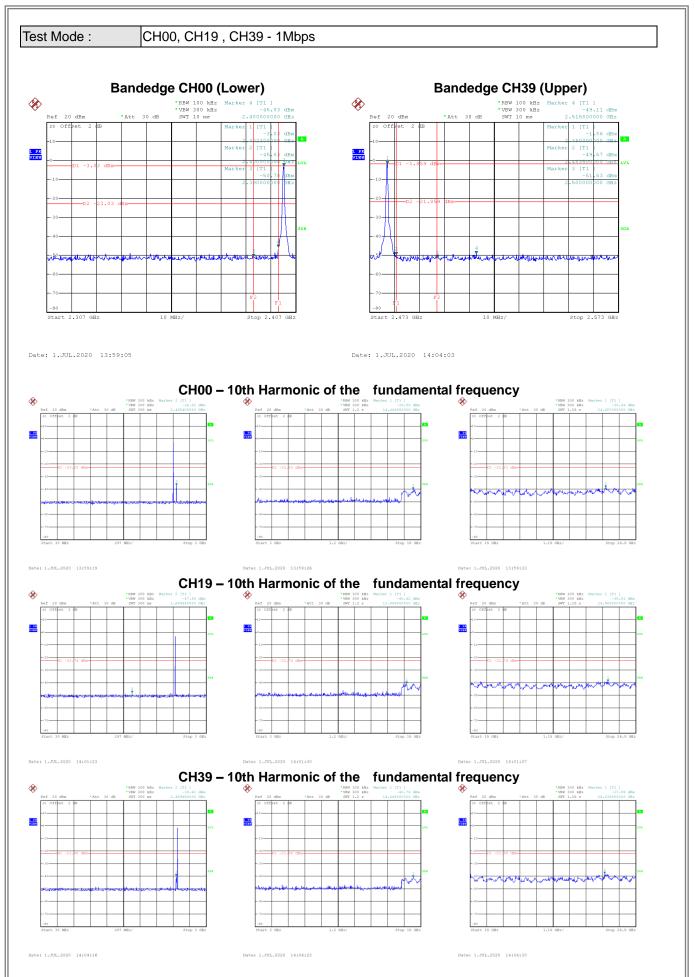


	APPENDIX C	- BANDWIDT	ΓΗ	

Test Mode: CH00, CH19, CH39 - 1Mbps

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	6 dB Bandwidth Min. Limit (kHz)	Test Result
00	2402	0.514	500	Pass
19	2440	0.512	500	Pass
39	2480	0.508	500	Pass

APPENDIX D - MAXIMUM OUTPUT POWER


Test Mode: CH00, CH19, CH39 - 1Mbps

Frequency (MHz)	Output Power (dBm)	Output Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	-2.40	0.0006	30.00	1.00	Pass
2440	-1.85	0.0007	30.00	1.00	Pass
2480	-1.26	0.0007	30.00	1.00	Pass

APPENDIX E - CONDUCTED SPURIOUS EMISSION

APPENDIX F - POWER SPECTRAL DENSITY

Test Mode: CH00, CH19, CH39 - 1Mbps

Channel	Frequency (MHz)	Power Spectral Density (dBm/3 kHz)	Max. Limit (dBm/3 kHz)	Test Result
00	2402	-15.09	8.00	Pass
19	2440	-14.46	8.00	Pass
39	2480	-14.07	8.00	Pass

