SAR TEST REPORT

For

Shenzhen Zhong Zhi Xing Technology Co., Ltd

Children Smart watch

Model No.: M05

Additional Model No.: T09, T10, T11, M01, M06

Prepared for : Shenzhen Zhong Zhi Xing Technology Co., Ltd

Address : Floor 6, 2Building, Wutongdao, Hangkong Road, Baoan

District, Shenzhen, China.

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Address

Avenue, Bao'an District, Shenzhen, Guangdong, China

Tel : (86)755-82591330 : (86)755-82591332 Fax Web : www.LCS-cert.com

: webmaster@LCS-cert.com Mail

Date of receipt of test sample : Dec. 11, 2017

Number of tested samples

Serial number **:** Prototype

Date of Test : Dec. 11, 2017~Dec. 29, 2017

Date of Report : Dec. 29, 2017

SAR TEST REPORT

Report Reference No...... LCS171201069AEB

Date Of Issue...... Dec. 29, 2017

Testing Laboratory Name: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address.....: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure: Full application of Harmonised standards ■

Partial application of Harmonised standards

Other standard testing method

Applicant's Name...... Shenzhen Zhong Zhi Xing Technology Co., Ltd

Address : Floor 6, 2Building, Wutongdao, Hangkong Road, Baoan

District, Shenzhen, China.

Test Specification:

Standard : IEEE 1528:2013/KDB865664/ RSS-102

47CFR §2.1093

Test Report Form No.: LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF Dated 2014-09

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes noresponsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: Children Smart watch

Trade Mark....: N/A

Model/Type Reference....: M05

Operation Frequency...... GSM 850/PCS1900

Modulation Type..... GSM(GMSK)

Ratings Power Supply: DC 3.7V by battery(400mAh)

Recharge Voltage: DC 5V/500mA

Result Positive

Compiled by:

Supervised by:

Approved by:

Vera Deng / File administrators

Dick Su / Technique principal

Gavin Liang/ Manager

SAR -- TEST REPORT

Test Report No.: LCS171201069AEB Dec. 29, 2017
Date of issue

Type / Model	:	M05		
EUT	:	Children Smar	rt watch	
Applicant	•	Shenzhen Zho	ong Zhi Xing Technology Co., Ltd	
Address			ding, Wutongdao, Hangkong Road, Baoan	
Address	•	District,Shenz		
Telephone	:	/		
Fax				
1 421	•	,		
Manufacturer	:	Shenzhen Zho	ong Zhi Xing Technology Co., Ltd	
Address		Floor 6 2Build	ding, Wutongdao, Hangkong Road, Baoan	
	•	District, Shenz		
TelephoneFax				
Factory	:	Shenzhen Zho	ong Zhi Xing Technology Co., Ltd	
			ding, Wutongdao, Hangkong Road, Baoan	
1 10 0 2 0 S S S S S S S S S S S S S S S S	·	District, Shenzi		
		District, Silenzi	men, emmu.	
Telephone				
Fax	:	/		
		Т		
Test Result			Positive	

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revison History

Revision	Issue Date	Revisions	Revised By
000	Dec. 29, 2017	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. TEST STANDARDS AND TEST DESCRIPTION	6
1.1. TEST STANDARDS 1.2. TEST DESCRIPTION	6 6
2. TEST ENVIRONMENT	8
2.1. TEST FACILITY	
3.1. SARMEASUREMENT SET-UP 3.2. OPENSAR E-FIELD PROBE SYSTEM 3.3. PHANTOMS 3.4. DEVICE HOLDER 3.5. SCANNING PROCEDURE 3.6. DATA STORAGE AND EVALUATION 3.7. POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM 3.8. TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS 3.9. TISSUE EQUIVALENT LIQUID PROPERTIES 3.10. SYSTEM CHECK 3.11. SAR MEASUREMENT PROCEDURE 3.12. POWER REDUCTION	
3.13. Power Drift	20
4. TEST CONDITIONS AND RESULTS	21
4.1. CONDUCTED POWER RESULTS 4.2. MANUFACTURING TOLERANCE 4.3. TRANSMIT ANTENNA 4.4. SAR MEASUREMENT RESULTS 4.5. SAR MEASUREMENT VARIABILITY 4.6. GENERAL DESCRIPTION OF TEST PROCEDURES 4.7. MEASUREMENT UNCERTAINTY (300MHz-6GHz) 4.8. SYSTEM CHECK RESULTS 4.9. SAR TEST GRAPH RESULTS	22 23 23 24 25 25 26
5. CALIBRATION CERTIFICATES	32
 5.1 PROBE-EPGO281 CALIBRATION CERTIFICATE. 5.2 SID835DIPOLE CALIBRATION CERITICATE. 5.3 SID1900 DIPOLE CALIBRATION CERITICATE. 5.4 EUT TEST PHOTOGRAPHS. 	
6. EUT PHOTOGRAPHS	66

1.TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

<u>IEEE Std C95.1, 2005:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

<u>IEEE Std 1528™-2013:</u> IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. FCC Part 2.1093 Radiofreguency Radiation Exposure Evaluation:Portable Devices

<u>KDB447498 D01 General RF Exposure Guidance v06 :</u> Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB648474 D04, Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets

<u>KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 :</u> SAR Measurement Requirements for 100 MHz to 6 GHz

<u>KDB865664 D02 RF Exposure Reporting v01r02:</u> RF Exposure Compliance Reporting and Documentation Considerations

KDB941225 D01 3G SAR Procedures v03r01: 3G SAR MEAUREMENT PROCEDURES

RSS-102: 2015(Issue 5): Radio Frequency(RF) Exposure Compliance of Radio Communication Apparatus (All Frequency Bands).

1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power . And Test device is identical prototype.

1.3. General Remarks

Date of receipt of test sample	:	Dec. 11, 2017
Testing commenced on	1:	Dec. 11, 2017
Testing concluded on	1:	Dec. 29, 2017

1.4. Product Description

The Shenzhen Zhong Zhi Xing Technology Co., Ltd's Model: M05 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

General Description	
Product Name:	Children Smart watch
Trade Mark:	N/A
Model/Type reference:	M05
Listed Model(s):	T09, T10, T11, M01, M06
Modulation Type:	GSM(GMSK)
Device category:	Portable Device
Exposure category:	General population/uncontrolled environment
EUT Type:	Prototype
Hardware Version	G36SMB-V1.4
Software Version:	G72S_CTA_201604228
Power supply:	Power Supply: DC 3.7V by battery(400mAh) Recharge Voltage: DC 5V/500mA

The EUT is GSM, Children Smart watch. the Children Smart watch is intended for speech and Multimedia Message Service (MMS) transmission. It is equipped with GPRS class 12 for GSM850, PCS1900. For more information see the following datasheet

Technical Characteristics			
GSM			
Support Networks	GSM, GPRS		
Support Band	GSM850/PCS1900/GPRS850/GPRS1900		
Frequency	GSM850: 824.2~848.8MHz		
	GSM1900: 1850.2~1909.8MHz		
Power Class:	GSM850:Power Class 4		
	PCS1900:Power Class 1		
Modulation Type:	GMSK for GSM/GPRS		
GSM Release Version	R99		
GPRS Multislot Class	12		
EGPRS Multislot Class	Not Supported		
DTM Mode	Not Supported		
Antenna Description	PIFA Antenna, -1dBi(Max.) for GSM850;		
	-1dBi(Max.) for GSM1900		

1.5. Statement of Compliance

The maximum of results of SAR found during testing for M05 are follows:

<Highest Reported standalone SAR Summary>

Next – to – Mouth Exposure Conditions - Flat / Front (10mm)

Classment Class	Frequency Band	Highest Reported SAR _{1-g} (W/Kg)	SAR _{1-g} Limit
DCT	GSM850	0.094	1.6
PCT	PCS1900	0.063	1.6

Extremity Exposure Conditions - Flat / Rear (0mm)

Classment Class	Frequency Band	Highest Reported SAR _{10-g} (W/Kg)	SAR _{10-g} Limit
PCT	GSM850	0.830	4.0
PCI	PCS1900	0.220	4.0

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for 1g) for Next – to Mouth Exousre – Flat/Front (10mm) and Extremity Exposure limit (4.0W/Kg for 10g) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013. The EUT battery must be fully charged and checked periodically during the test to ascertain iniform power output

2.TEST ENVIRONMENT

2.1. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Site Description

EMC Lab.

: FCC Registration Number. is 254912.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001.

NVLAP Registration Code is 600167-0.

2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
·	
Atmospheric pressure:	950-1050mbar

2.3. SAR Limits

FCC Limit (1g Tissue)

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average(averaged over the whole body)	0.08	0.4		
Spatial Peak(averaged over any 1 g of tissue)	1.6	8.0		
Spatial Peak(hands/wrists/ feet/anklesaveraged over 10 g)	4.0	20.0		

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

2.4. Equipments Used during the Test

				Calibr	ation
Test Equipment	Manufacturer	Type/Model	Serial Number	Calibration Date	Calibration Due
PC	Lenovo	G5005	MY42081102	N/A	N/A
SAR Measurement system	SATIMO	4014_01	SAR_4014_01	N/A	N/A
Signal Generator	Angilent	E4438C	MY42081396	11/18/2017	11/17/2018
Multimeter	Keithley	MiltiMeter 2000	4059164	11/18/2017	11/17/2018
S-parameter Network Analyzer	Agilent	8753ES	US38432944	11/18/2017	11/17/2018
Wireless Communication Test Set	R&S	CMU200	105988	11/18/2017	11/17/2018
Wideband Radia Communication Tester	R&S	CMW500	1201.0002K50	11/18/2017	11/17/2018
Power Meter	R&S	KEITHLEY	4059164	11/18/2017	11/17/2018
E-Field PROBE	SATIMO	SSE2	SN 45/15 EPGO281	02/04/2017	02/03/2018
DIPOLE 835	SATIMO	SID 835	SN 07/14 DIP 0G835-303	10/01/2015	09/30/2018
DIPOLE 900	SATIMO	SID 900	SN 07/14 DIP 0G900-300	10/01/2015	09/30/2018
DIPOLE 1900	SATIMO	SID 1900	SN 30/14 DIP 1G900-333	10/01/2015	09/30/2018
COMOSAR OPEN Coaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	11/18/2017	11/17/2018
SAR Locator	SATIMO	VPS51	SN 40/14 VPS51	11/18/2017	11/17/2018
Communication Antenna	SATIMO	ANTA57	SN 39/14 ANTA57	11/18/2017	11/17/2018
Mobile Phone POSITIONING DEVICE	SATIMO	MSH98	SN 40/14 MSH98	N/A	N/A
DUMMY PROBE	SATIMO	DP60	SN 03/14 DP60	N/A	N/A
SAM PHANTOM	SATIMO	SAM117	SN 40/14 SAM117	N/A	N/A
Liquid measurement Kit	HP	85033D	3423A03482	11/18/2017	11/17/2018
Power meter	Agilent	E4419B	MY45104493	06/17/2017	06/16/2018
Power meter	Agilent	E4418B	GB4331256	06/17/2017	06/16/2018
Power sensor	Agilent	E9301H	MY41497725	06/17/2017	06/16/2018
Power sensor	Agilent	E9301H	MY41495234	06/17/2017	06/16/2018
Directional Coupler	MCLI/USA	4426-20	0D2L51502	06/17/2017	06/16/2018

Note

- 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated values;

SHENZH	HEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2AONM-M05	Report No.: LCS171201069AEB	
c)	The most recent return-loss results, measued at le previous measurement;	east annually,deviates by no	more than 20% from the	
	The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.			
2)	Network analyzer probe calibration against air, di measuring liquid parameters.	stilled water and a snorting Di	ock performed before	
This	report shall not be reproduced except in full, without the wr	ritten approval of Shenzhen LCS Co e 10 of 66	ompliance Testing Laboratory Ltd.	

3.SAR MEASUREMENTS SYSTEM CONFIGURATION

3.1. SARMeasurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

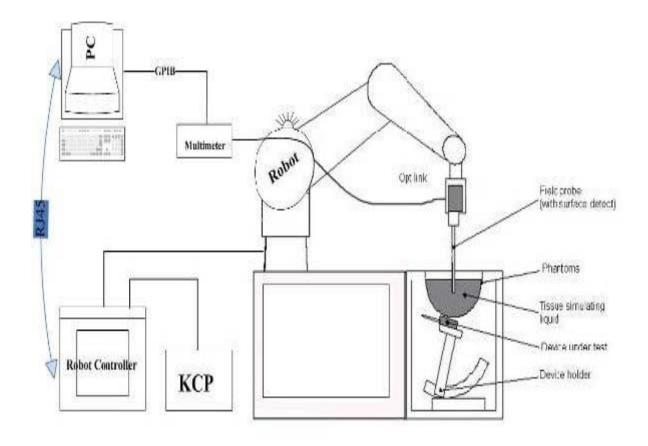
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

OPENSAR software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles to validate the proper functioning of the system.

3.2. OPENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EPGO281 (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

ConstructionSymmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.

Frequency 700 MHz to 3 GHz;

Linearity:0.25dB(700 MHz to 3GHz)

Directivity 0.25 dB in HSL (rotation around probe axis)

0.5 dB in tissue material (rotation normal to probe axis)

Dynamic Range 0.01W/kg to > 100 W/kg;

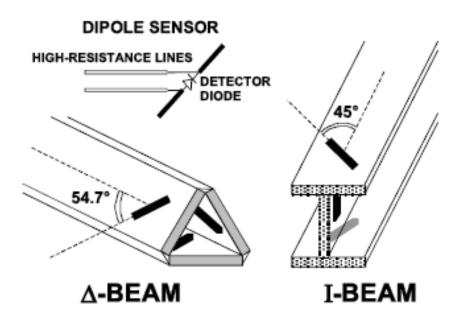
Linearity: 0.25 dB

Dimensions Overall length: 330 mm (Tip: 16mm)

Tip diameter: 5 mm (Body: 8 mm)

Distance from probe tip to sensor centers: 2.5 mm

Application General dosimetry up to 3 GHz


Dosimetry in strong gradient fields Compliance tests of Mobile Phones

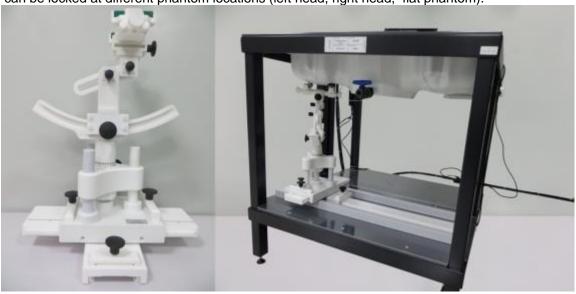
Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

3.3. Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN62209-1, EN62209-2:2010. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of allpredefined phantom positions and measurement grids by manually teaching three points in the robo


System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

3.4. Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

3.5. Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	≤ 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 mm ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°		
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

centered around the ri	entered around the maxima round in the preceding area scan.						
Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$			
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm			
Maximum zoom scan spatial resolution, normal to phantom surface	nal to e graded	Δz _{Zoom} (1): between 1st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm			
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$				
Minimum zoom scan volume	x, y, z		\geq 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm			

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files . The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

> - Conversion factor ConvFi - Diode compression point Dcpi

Device parameters: - Frequency

- Crest factor cf

Media parameters: - Conductivity σ

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DCtransmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi =compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field

dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

E – field
probes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H – fieldprobes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

$$H- {\rm field probes}: \qquad H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$
 With Vi = compensated signal of channel i (i = x, y, z)
$$Normi = {\rm sensor \ sensitivity \ of \ channel \ i} \qquad (i = x, y, z)$$

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

= sensor sensitivity factors for H-field probes

= carrier frequency [GHz]

= electric field strength of channel i in V/m Εi Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units. $SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

= local specific absorption rate in mW/g with SAR

> = total field strength in V/m Etot

= conductivity in [mho/m] or [Siemens/m] σ

= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

3.7. Position of the wireless device in relation to the phantom

Per KDB 447498 Section 6.2. Wrist watch and wrist-worn transmitters: Transmitters that are built-in within a wrist watch or similar wrist-worn devices typically operate in speaker mode for voice communication, with the device worn on the wrist and positioned next to the mouth. Next to the mouth exposure requires 1-g SAR and the wristworn condition requires 10-g extremity SAR.58 The 10-g extremity and 1-g SAR test exclusions may be applied to the wrist and face exposure conditions. When SAR evaluation is required, next to the mouth use is evaluated with the front of the device positioned at 10 mm from a flat phantom filled with head tissue-equivalent medium. The wrist bands should be strapped together to represent normal use conditions. SAR for wrist exposure is evaluated with the back of the device positioned in direct contact against a flat phantom filled with body tissue-equivalent medium. The wrist bands should be unstrapped and touching the phantom. The space introduced by the watch or wrist bands and the phantom must be representative of actual use conditions; otherwise, if applicable, the neck or a curved head region of the SAM phantom may be used, provided the device positioning and SAR probe access issues have been addressed through a KDB inquiry. When other device positioning and SAR measurement considerations are necessary, a KDB inquiry is also required for the test results to be acceptable; for example, devices with rigid wrist bands or electronic circuitry and/or antenna(s) incorporated in the wrist bands. These test configurations are applicable only to devices that are worn on the wrist and cannot support other use conditions; therefore, the operating restrictions must be fully demonstrated in both the test reports and user manuals.

3.8. Tissue Dielectric Parameters for Head and Body Phantoms

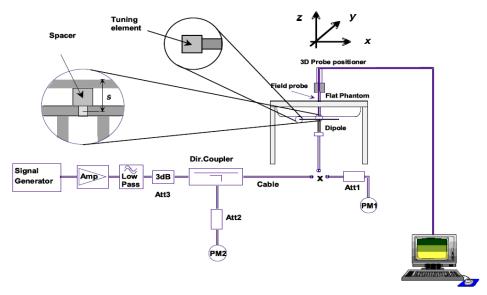
The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

The composition of the tissue simulating liquid

Frequency (MHz)	Bactericide	DGBE	HEC	NaCl	Sucrose	1,2- Propan ediol	X100	Water	Conductivity	Permittivity
	%	%	%	%	%	%	%	%	σ	εr
750	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
835	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
900	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
1800	/	13.84	/	0.35	/	/	30.45	55.36	1.38	41.0
1900	/	13.84	/	0.35	/	/	30.45	55.36	1.38	41.0
2000	/	7.99	/	0.16	/	/	19.97	71.88	1.55	41.1
2450	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3
2600	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3

Target Frequency	He	ad	В	ody
(MHz)	εr	σ(S/m)	εr	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
2600	39.0	1.96	52.5	2.16
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

3.9. Tissue equivalent liquid properties


Dielectric Performance of Head and Body Tissue Simulating Liquid

Tissue	Measured	Target	t Tissue		Measure	Liquid			
Type	Frequency (MHz)	εr	σ	εr	Dev.	σ	Dev.	Temp.	Test Data
835H	835	41.50	0.90	42.19	1.66%	0.93	3.33%	21.5	12/18/2017
1900H	1900	40.00	1.40	41.33	3.33%	1.42	1.43%	21.5	12/19/2017
835B	835	55.20	0.97	56.20	1.81%	0.98	1.03%	21.5	12/20/2017
1900B	1900	53.30	1.52	54.50	2.25%	1.53	0.66%	21.5	12/21/2017

3.10. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

The output power on dipole port must be calibrated to 20 dBm (100mW) before dipole is connected.

Photo of Dipole Setup

Justification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

SID835 SN 07/14 DIP 0G835-303 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2015-10-01	-24.46		55.4		2.4	
2016-09-30	-25.52	4.334	56.5	1.1	1.343	-1.057
2017-09-29	-25.16	2.862	55.8	0.4	1.832	-0.568

SID1900 SN 30/14 DIP 1G900-333 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2015-10-01	-23.68		51.2		6.4	
2016-09-30	-23.40	-1.182	50.188	-1.012	3.562	-2.838
2017-09-29	-23.55	-0.549	50.395	-0.805	4.261	-2.139

Mixtur	Frequen	Power	SAR _{1g}	SAR _{10g}	SAR _{10g} Drift		og Drift 1W Targe		arget	rget Difference percentage		Liquid	Date
e Type	cy (MHz)	rowei	(W/Kg)	(W/Kg)	(W/Kg) (%)	SAR _{1g} (W/Kg)	SAR _{10g} (W/Kg)	1g	10g	Temp	Date		
		100 mW	0.948	0.618							12/18/		
Head	835	Normalize to 1 Watt	9.48	6.18	-0.28	9.60	6.20	-1.25%	-0.32%	21.5	2017		
		100 mW	0.983	0.622							12/19/		
Body	835	Normalize to 1 Watt	9.83	6.22	6.22 0.26	0.26 9.90	6.39	-0.71%	-2.66%	21.5	2017		
		100 mW	3.927	2.008							12/20/		
Head	1900	Normalize to 1 Watt	39.27	20.08	1.36	39.84	20.20	-1.43%	-0.59%	21.5	2017		
		100 mW	4.118	2.058							12/21/		
Body	1900	Normalize to 1 Watt	41.18	20.58	-0.35	43.33	21.59	-4.96%	-4.68%	21.5	2017		

3.11. SAR measurement procedure

The measurement procedures are as follows:

3.11.1 Conducted power measurement

- a. For WWAN power measurement, use base station simulator connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- b. Read the WWAN RF power level from the base station simulator.
- c. For BT power measurement, use engineering software to configure EUT BT continuously Transmission, at maximum RF power in each supported wireless interface and frequency band.
- d. Connect EUT RF port through RF cable to the power meter, and measure BT output power.

3.11.2 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using CMU200 the power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

3.12. Power Reduction

The product without any power reduction.

3.13. Power Drift

To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%.

4.TEST CONDITIONS AND RESULTS

4.1. Conducted Power Results

Max Conducted power measurement results and power drift from tune-up tolerance provide by manufacturer:

Conducted power measurement results for GSM850/PCS1900

GSN	1 850	Tune-up (Burst Average)		(:hannel/Frequency(MHz)		Division	Division Average)		Average power (dBm) Channel/Frequency(MHz)		
Com		Max.	128/ 824.2	190/ 836.6	251/ 848.8	Factors	Max.	128/ 824.2	190/ 836.6	251/ 848.8	
G	SM	34.0	32.71	32.42	33.09	-9.03dB	24.97	23.68	23.39	24.06	
	1TX slot	34.0	32.58	32.38	33.07	-9.03dB	24.97	23.55	23.35	24.04	
GPRS	2TX slot	32.0	31.36	31.50	31.10	-6.02dB	25.98	25.34	25.48	25.08	
(GMSK)	3TX slot	30.0	29.43	29.53	29.49	-4.26dB	25.74	25.17	25.27	25.23	
	4TX slot	28.0	27.26	27.55	27.22	-3.01dB	24.99	24.25	24.54	24.21	
		Tune-up (Burst		Conducted (dBm)	-		Tune- up(Time		Average power (dBm)		
GSM	1900	Average)	Chanr	nel/Frequen	cy(MHz)	Division	Average)	Channel/Frequency(MHz)			
3314	1300	Max.	512/ 1850. 2	661/ 1880	810/ 1909.8	Factors	Max.	512/ 1850.2	661/ 1880	810/ 1909.8	
G	SM	28.0	27.18	27.30	27.04	-9.03dB	18.97	18.15	18.27	18.01	
	1TX slot	28.0	27.09	27.25	26.89	-9.03dB	18.97	18.06	18.22	17.86	
GPRS	2TX slot	27.0	26.41	26.51	26.48	-6.02dB	20.98	20.39	20.49	20.46	
(GMSK)	3TX slot	27.0	25.42	26.10	26.44	-4.26dB	22.74	21.16	21.84	22.18	
	4TX slot	25.0	24.88	24.61	24.85	-3.01dB	21.99	21.87	21.60	21.84	

Notes:

1. Division Factors

To average the power, the division factor is as follows:

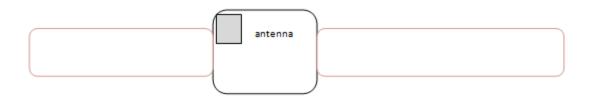
1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.00dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.00dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.00dB

2. According to the conducted power as above, the GPRS measurements are performed with 2Txslot for GPRS850 and 3Txslot GPRS1900.


4.2. Manufacturing tolerance

GSM Speech

GSM 850 (GMSK) (Burst Average Power)							
Channel	Channel 128	Channel 190	Channel 251				
Target (dBm)	32.0	32.0	33.0				
Tolerance ±(dB)	1.0	1.0	1.0				
	GSM 1900 (GMSK) (B	Burst Average Power)					
Channel	Channel 512	Channel 661	Channel 810				
Target (dBm)	27.0	27.0	27.0				
Tolerance ±(dB)	1.0	1.0	1.0				

	GSM 850 GPRS	(GMSK) (Burst Av	verage Power)	
Cha	annel	128	190	251
1 Txslot	Target (dBm)	32.0	32.0	33.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0
2 Txslot	Target (dBm)	31.0	31.0	31.0
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0
3 Txslot	Target (dBm)	29.0	29.0	29.0
3 1 X SIUL	Tolerance ±(dB)	1.0	1.0	1.0
4 Txslot	Target (dBm)	27.0	27.0	27.0
4 1 X SIUL	Tolerance ±(dB)	1.0	1.0	1.0
	GSM 1900 GPRS	S (GMSK) (Burst A	verage Power)	
Cha	annel	512	661	810
1 Txslot	Target (dBm)	27.0	27.0	26.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0
2 Txslot	Target (dBm)	26.0	26.0	26.0
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0
3 Txslot	Target (dBm)	25.0	26.0	26.0
3 1 X S 10 L	Tolerance ±(dB)	1.0	1.0	1.0
4 Txslot	Target (dBm)	24.0	24.0	24.0
4 1 X SIOL	Tolerance ±(dB)	1.0	1.0	1.0

4.3. Transmit Antenna

REAR VIEW

4.4. SAR Measurement Results

The calculated SAR is obtained by the following formula:

Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10}

Scaling factor=10^{(Ptarget-Pmeasured))/10}

Reported SAR= Measured SAR* Scaling factor

Where

Ptarget is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift)

Reported SAR which including Power Drift and Scaling factor

Duty Cycle

Test Mode	Duty Cycle
Speech for GSM850/1900	1:8
GPRS850	1:4
GPRS1900	1:2.67

4.4.1 SAR Results

Next - to - Mouth <Flat / Front (10mm)>

Ch.	Freq. (MHz)	Time slots	Test Position	Conducte d Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
251	848.8	Voice	Front	33.09	34.00	-2.29	1.233	0.076	0.094	
661	1880.0	Voice	Front	27.30	28.00	-1.77	1.175	0.054	0.063	

Extremity <Flat / Rear (0mm)>

	Extromity struct roun sommy									
				Conducted	Maximum	Power		SAR _{10-g} res	sults(W/kg)	
Ch.	Freq. (MHz)	time slots	Test Position	Power (dBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
190	836.6	Voice	Back	33.09	34.00	0.05	1.233	0.575	0.709	
190	836.6	2Txslots	Back	31.50	32.00	-2.27	1.122	0.740	0.830	Plot 1
128	824.2	2Txslots	Back	31.50	32.00	0.30	1.122	0.728	0.817	
251	848.0	2Txslots	Back	31.50	32.00	1.86	1.122	0.719	0.807	
661	1880.0	Voice	Back	27.30	28.00	1.01	1.175	0.158	0.186	
810	1909.8	3Txslots	Back	26.44	27.00	-2.75	1.138	0.193	0.220	Plot 2

Note:

1. The value with red color is the maximum Reported SAR Value of each test band.

- 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).
- 3. Per FCC KDB Publication 447498 D01 v06, 6.2. Transmitters that are built-in within a wrist watch or similar wrist-worn devices typically operate in speaker mode for voice communication, with the device worn on the wrist and positioned next to the mouth. Next to the mouth exposure requires 1-g SAR and the wrist-worn condition requires 10-g extremity SAR. When SAR evaluation is required, next to the mouth use is evaluated with the front of the device positioned at 10 mm from a flat phantom filled with head tissue-equivalent medium. SAR for wrist exposure is evaluated with the back of the device positioned in direct contact against a flat phantom filled with body tissue-equivalent medium.

4.5. SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is \geq 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with \leq 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

Next – to – Mouth Exposure Conditions

Frequency	eguency RF			Repeated	Highest	First Repeated	
Band	Air Interface		Test	SAR	Measured	Measued	Largest to
(MHz)	All illellace	Exposure Configuration	Position		SAR _{1-g}	SAR _{1-g}	Smallest
(1011 12)		Configuration		(yes/no)	(W/Kg)	(W/Kg)	SAR Ratio
850	GSM850	Standalone	Front	no	0.076	n/a	n/a
1900	GSM1900	Standalone	Front	no	0.054	n/a	n/a

Extremity Exposure Conditions

roguenov		RF		Donostod	Highest	First R	epeated
requency Band	Air Interface	Exposure	Test	Repeated SAR	Measured	Measued	Largest to
(MHz)	All lilleriace	Configuration	Position	(yes/no)	SAR _{10-g}	SAR _{10-g}	Smallest
(1711 12)		Configuration		(yes/110)	(W/Kg)	(W/Kg)	SAR Ratio
850	GSM850	Standalone	Rear	no	0.740	n/a	n/a
1900	GSM1900	Standalone	Rear	no	0.193	n/a	n/a

4.6. General description of test procedures

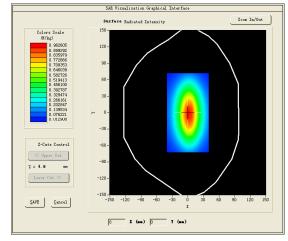
- 1. The DUT is tested using CMU 200 communications testers as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.
- 2. Test positions as described in the tables above are in accordance with the specified test standard.
- 3. Tests in body position were performed in that configuration, which generates the highest time based averaged output power (see conducted power results).
- 4. Tests in head position with GSM were performed in voice mode with 1 timeslot unless GPRS/EGPRS/DTM function allows parallel voice and data traffic on 2 or more timeslots.
- 5. According to KDB 447498 D01 testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 6. Per KDB648474 D04 require when the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is < 1.2 W/kg.

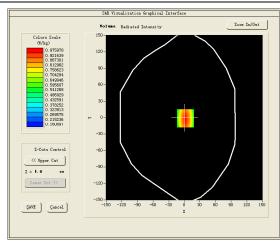
4.7. Measurement Uncertainty (300MHz-6GHz)

Not required as SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is ≥ 1.5 W/kg for 1-g SAR according to KDB865664D01.

4.8. System Check Results

Test mode:835MHz(Head) Product Description: Validation


Model:Dipole SID835

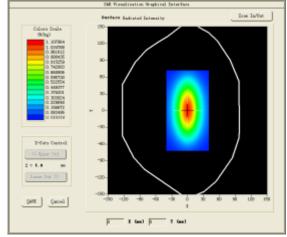

E-Field Probe: SSE2(SN45/15 EPGO281)

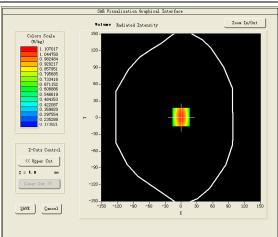

Test Date: Dec. 18, 2017

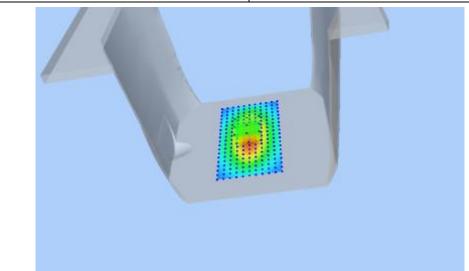
Medium(liquid type)	HSL_850
Frequency (MHz)	835.000000
Relative permittivity (real part)	42.19
Conductivity (S/m)	0.93
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.78
Variation (%)	0.280000
SAR 10g (W/Kg)	0.618490
SAR 1g (W/Kg)	0.948496

SURFACE SAR

Test mode:835MHz(Body) Product Description: Validation


Model:Dipole SID835

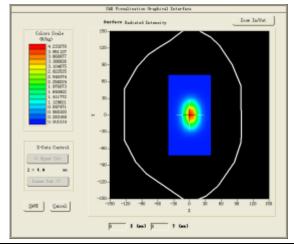

E-Field Probe: SSE2(SN45/15 EPGO281)

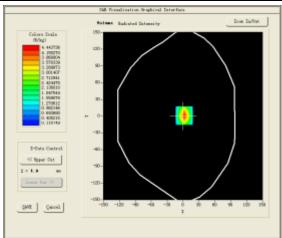

Test Date: Dec. 19, 2017

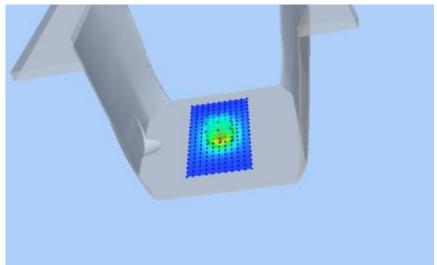
Medium(liquid type)	MSL_850
Frequency (MHz)	835.0000
Relative permittivity (real part)	56.20
Conductivity (S/m)	0.98
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.85
Variation (%)	0.2600000
SAR 10g (W/Kg)	0.6221111
SAR 1g (W/Kg)	0.9831215
1	

SURFACE SAR

Test mode:1900MHz(Head) Product Description: Validation


Model:Dipole SID1900

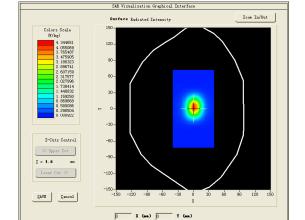

E-Field Probe: SSE2(SN45/15 EPGO281)

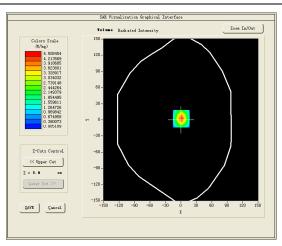

Test Date: Dec. 20, 2017

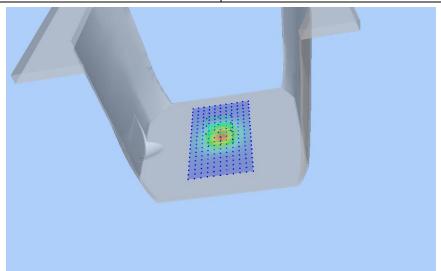
Medium(liquid type)	HSL_1900
Frequency (MHz)	1900.0000
Relative permittivity (real part)	41.33
Conductivity (S/m)	1.42
Input power	100mW
Crest Factor	1.0
Conversion Factor	2.10
Variation (%)	1.3600000
SAR 10g (W/Kg)	2.0083894
SAR 1g (W/Kg)	3.9266317

SURFACE SAR

Test mode:1900MHz(Body) Product Description: Validation


Model:Dipole SID1900


E-Field Probe: SSE2(SN45/15 EPGO281)


Test Date: Dec. 21, 2017

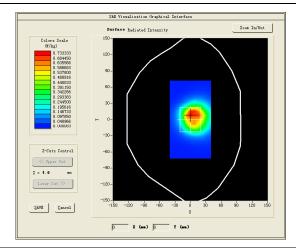
Medium(liquid type)	MSL_1900		
Frequency (MHz)	1900.0000		
Relative permittivity (real part)	54.50		
Conductivity (S/m)	1.53		
Input power	100mW		
Crest Factor	1.0		
Conversion Factor	2.16		
Variation (%)	-0.350000		
SAR 10g (W/Kg)	2.057638		
SAR 1g (W/Kg)	4.117814		

SURFACE SAR

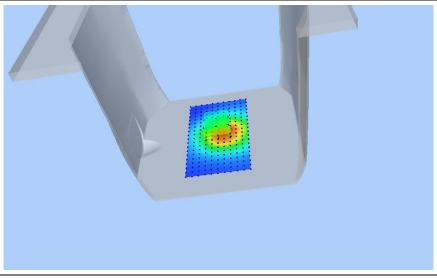
4.9. SAR Test Graph Results

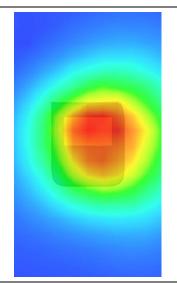
SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02

Test Mode:GSM 850MHz, Middle channel < Extremity Exposure (Flat / Rear 0mm)>


Product Description: Children Smart watch


Model: M05


Test Date: Dec. 19, 2017


Medium(liquid type)	MSL_850
Frequency (MHz)	836.600000
Relative permittivity (real part)	56.20
Conductivity (S/m)	0.98
E-Field Probe	SN45/15 EPGO281
Crest Factor	8.0
Conversion Factor	1.85
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-2.290000
SAR 10g (W/Kg)	0.429500
SAR 1g (W/Kg)	0.739777
SURFACE SAR	VOI LIME SAR

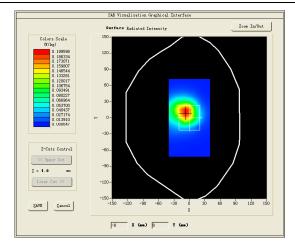
SURFACE SAR

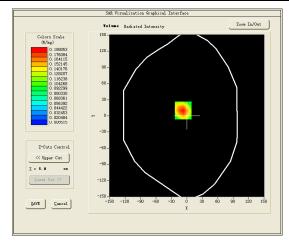
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 30 of 66

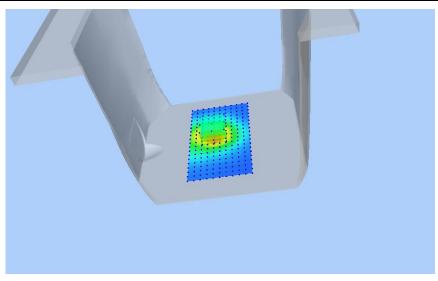
#2

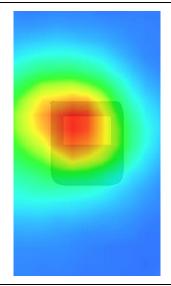
Test Mode:GSM 1900MHz, High channel <Extremity Exposure (Flat / Rear 0mm)>

Product Description: Children Smart watch


Model: M05


Test Date: Dec. 21, 2017


Medium(liquid type)	MSL_1900			
Frequency (MHz)	1909.800000			
Relative permittivity (real part)	54.50			
Conductivity (S/m)	1.53			
E-Field Probe	SN45/15 EPGO281			
Crest Factor	1.0			
Conversion Factor	2.16			
Sensor	4mm			
Area Scan	dx=8mm dy=8mm			
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm			
Variation (%)	-2.750000			
SAR 10g (W/Kg)	0.105430			
SAR 1g (W/Kg)	0.192571			


SURFACE SAR

5.CALIBRATION CERTIFICATES

5.1 Probe-EPGO281 Calibration Certificate

COMOSAR E-Field Probe Calibration Report

Ref: ACR.348.1.15.SATU.A

SHENZHEN STS TEST SERVICES CO., LTD. 1/F., BUILDING B, ZHUOKE SCIENCE PARK, No.190, CHONGQING ROAD, FUYONG STREET BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 45/15 EPGO281

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 02/04/2017

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

Ref: ACR.348.1.15.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	02/08/2017	Jes
Checked by:	Jérôme LUC	Product Manager	02/08/2017	Jes
Approved by :	Kim RUTKOWSKI	Quality Manager	02/08/2017	frem Puthowsh

ei e	Customer Name
Distribution:	Shenzhen STS Test Services Co., Ltd.

Date	Modifications		
02/08/2017	Initial release		
	AND AND DESCRIPTION OF THE PROPERTY OF THE PRO	10-10-10-10-10-10-10-10-10-10-10-10-10-1	

Page: 2/10

Ref: ACR.348.1.15.SATU.A

TABLE OF CONTENTS

1	Dev	de Under Test	
2	Pro	duct Description4	
	2.1	General Information	4
3	Me	asurement Method	
	3.1	Linearity	4
	3.2	Sensitivity	
	3.3	Lower Detection Limit	5
	3.4	Isotropy	
	3.5	Boundary Effect	5
4	Me	asurement Uncertainty	
5	Cal	ibration Measurement Results6	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	
	5.4	Isotropy	
6	List	of Equipment	

Page: 3/10

Ref: ACR.348.1.15.SATU.A

1 DEVICE UNDER TEST

Device Under Test					
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE				
Manufacturer	MVG				
Model	SSE2				
Serial Number	SN 45/15 EPGO281				
Product Condition (new / used)	New				
Frequency Range of Probe	0.45 GHz-6GHz				
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.186 MΩ				
<u>^</u>	Dipole 2: R2=0.194 MΩ				
	Dipole 3: R3=0.191 M Ω				

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

Ref: ACR.348.1.15.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 <u>ISOTROPY</u>

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$-\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$-\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$-\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$-\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

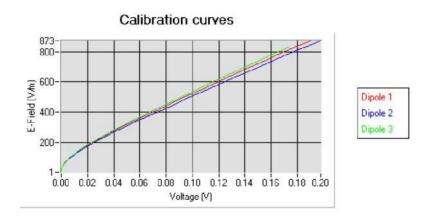
Page: 5/10

Ref: ACR.348.1.15.SATU.A

Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty			-		5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters		
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

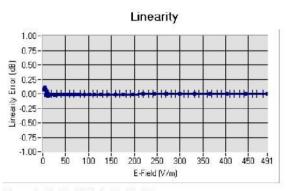

5.1 SENSITIVITY IN AIR

	Normy dipole $2 (\mu V/(V/m)^2)$	
0.77	0.83	0.67

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
91	90	95

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$



Page: 6/10

Ref: ACR.348.1.15.SATU.A

5.2 LINEARITY

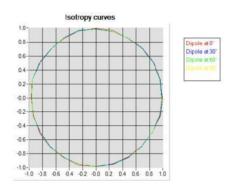
Linearity: 11+/-2.60% (+/-0.11dB)

5.3 SENSITIVITY IN LIQUID

Liquid	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	<u>ConvF</u>
HL450	450	44.12	0.88	1.76
BL450	450	58.92	1.00	1.81
HL750	750	42.24	0.90	1.53
BL750	750	56.85	0.99	1.59
HL850	835	43.02	0.90	1.78
BL850	835	53.72	0.98	1.85
HL900	900	42.47	0.99	1.62
BL900	900	56.97	1.09	1.67
HL1800	1800	42.24	1.40	1.83
BL1800	1800	53.53	1.53	1.87
HL1900	1900	40.79	1.42	2.10
BL1900	1900	54.47	1.57	2.16
HL2000	2000	40.52	1.44	2.01
BL2000	2000	54.18	1.56	2.09
HL2450	2450	38.73	1.81	2.21
BL2450	2450	53.23	1.96	2.28
HL2600	2600	38.54	1.95	2.32
BL2600	2600	52.07	2.23	2.38
HL5200	5200	36.80	4.84	2.46
BL5200	5200	51.21	5.16	2.52
HL5400	5400	36.35	4.96	2.70
BL5400	5400	50.51	5.70	2.79
HL5600	5600	35.57	5.23	2.74
BL5600	5600	49.83	5.91	2.83
HL5800	5800	35.30	5.47	2.53
BL5800	5800	49.03	6.28	2.60

LOWER DETECTION LIMIT: 9mW/kg

Page: 7/10



Ref: ACR.348.1.15.SATU.A

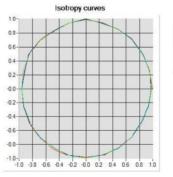
5.4 ISOTROPY


HL900 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.06 dB

HL1800 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.08 dB


Page: 8/10

Ref: ACR.348.1.15.SATU.A

HL5600 MHz

- Axial isotropy: 0.06 dB - Hemispherical isotropy: 0.08 dB

Dipole at 0° Dipole at 30° Cripole at 60°

Page: 9/10

Ref: ACR.348.1.15.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2015	02/2018
Reference Probe	MVG	EP 94 SN 37/08	10/2016	10/2017
Multimeter	Keithley 2000	1188656	12/2015	12/2018
Signal Generator	Agilent E4438C	MY49070581	12/2015	12/2018
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2015	12/2018
Power Sensor	HP ECP-E26A	US37181460	12/2015	12/2018
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Control Company	150798832	10/2016	10/2018

Page: 10/10

5.2 SID835Dipole Calibration Ceriticate

SAR Reference Dipole Calibration Report

Ref: ACR.287.4.14.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD

BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 835 MHZ

SERIAL NO.: SN 07/14 DIP 0G835-303

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

10/01/2015

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR.287.4.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/14/2015	Jes
Checked by:	Jérôme LUC	Product Manager	10/14/2015	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2015	nim Puthowski

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Modifications	
A	10/14/2015	Initial release	

Page: 2/11

Ref. ACR.287.4.14.SATU.A

TABLE OF CONTENTS

1	Intr	oduction4	
2	Dev	vice Under Test4	
3		duct Description4	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results6	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	6
7	Val	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	7
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	
Q	Lie	of Fauinment 11	

Page: 3/11

Ref: ACR.287.4.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE	
Manufacturer	Satimo	
Model	SID835	
Serial Number	SN 07/14 DIP 0G835-303	
Product Condition (new / used)	New	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/11

Ref ACR 287 4 14 SATU A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %


Page: 5/11

Ref: ACR.287.4.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
835	-24.46	-20	$55.4 \Omega + 2.4 j\Omega$

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm	h mm		d r	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/11

Ref. ACR 287 4 14 SATU A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

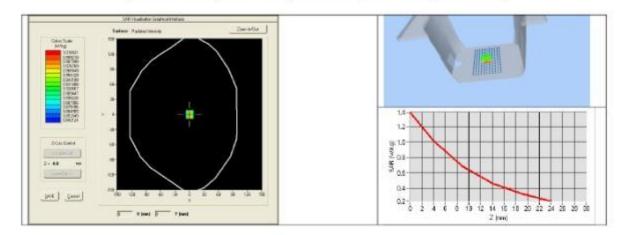
7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ϵ_{r}')	Conductiv	ity (0) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %	PASS	0.90 ±5 %	PASS
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %	7	1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %	1	1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 42.3 sigma: 0.92
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm


Page: 7/11

Ref: ACR.287.4.14.SATU.A

Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	835 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR ((W/kg/W)	10 g SAR	(W/kg/W)
02000	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56	9.60 (0.96)	6.22	6.20 (0.62)
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

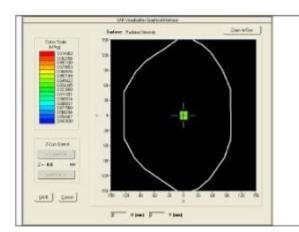
Page: 8/11

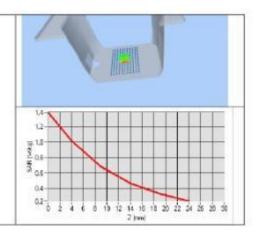
Ref: ACR.287.4.14.SATU.A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (e,')	Conductivi	ity (a) S/m
3337778	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %	PASS	0.97 ±5 %	PASS
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID


Software	OPENSAR V4	
Phantom	SN 20/09 SAM71	
Probe	SN 18/11 EPG122	
Liquid	Body Liquid Values: eps' : 54.1 sigma : 0.97	
Distance between dipole center and liquid	15.0 mm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	835 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	


Page: 9/11

Ref: ACR.287.4.14.SATU.A

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
835	9.90 (0.99)	6.39 (0.64)

Page: 10/11

Ref. ACR.287.4.14.SATU.A

8 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Calipers	Carrera	CALIPER-01	12/2013	12/2016
Reference Probe	Satimo	EPG122 SN 18/11	10/2015	10/2016
Multimeter	Keithley 2000	1188656	12/2013	12/2016
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2013	12/2016
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	8/2013	8/2016

Page: 11/11

5.3 SID1900 Dipole Calibration Ceriticate

COMOSAR E-Field Probe Calibration Report

Ref: ACR.262.8.14.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD

BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE

FREQUENCY:1900MHz

SERIAL NO.: SN 30/14 DIP1G900-333

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

10/01/2015

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national metrology institutions.

Ref: ACR.262.8.14.SATU.A

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	10/14/2015	JS
Checked by:	Jérôme LUC	Product Manager	10/14/2015	Jes
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2015	tum Puthoushi

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

	Date	Issue	
	10/14/2015	Α	
	r-		
	-	-	
_			

Page: 2/9

Ref. ACR.262.8.14.SATU.A

TABLE OF CONTENTS

1	Inti	roduction4	
2	De	vice Under Test4	
3	Pro	duct Description	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	
6	Cal	libration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Va	lidation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment	

Page: 3/11

Ref: ACR.262.8.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

D	evice Under Test
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE
Manufacturer	Satimo
Model	SID1900
Serial Number	SN 30/14 DIP1G900-333
Product Condition (new / used)	New

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/11

Ref. ACR 262 8 14 SATU A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Los		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

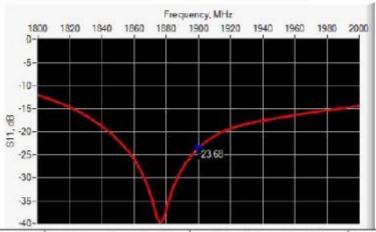
The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

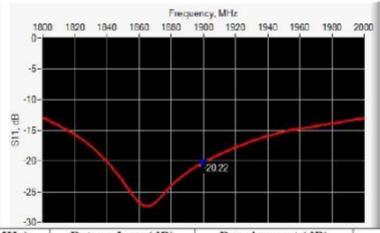
5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %


Page: 5/11

Ref. ACR.262.8.14.SATU.A


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
1900	-23.68	-20	51.2 Ω + 6.4 jΩ

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
1900	-20.22	-20	$48.8 \Omega + 9.6 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm	h m	im	d r	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.	1	3.6 ±1 %.	

Page: 6/11

Ref. ACR.262.8.14.SATU.A

900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.	PASS	39.5 ±1 %.	PASS	3.6 ±1 %.	PAS
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3,6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ε,')		Conductivity (a) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %	PASS	1.40 ±5 %	PASS
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	

Page: 7/11

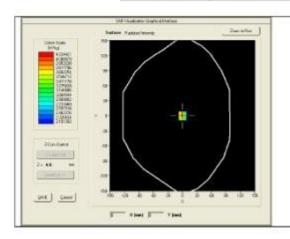
Ref. ACR.262.8.14.SATU.A

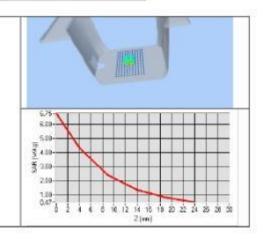
2100	20.0 +5.9/	4.40.45.87	
2100	39.8 ±5 %	1.49 ±5 %	
2300	39.5 ±5 %	1.67 ±5 %	
2450	39.2 ±5 %	1.80 ±5 %	
2600	39.0 ±5 %	1.96 ±5 %	
3000	38.5 ±5 %	2.40 ±5 %	
3500	37.9 ±5 %	2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 41.1 sigma : 1.42
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %


Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19,3	
1800	38.4		20.1	
1900	39.7	39.84 (3.98)	20.5	20.20 (2.02)
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	


Page: 8/11

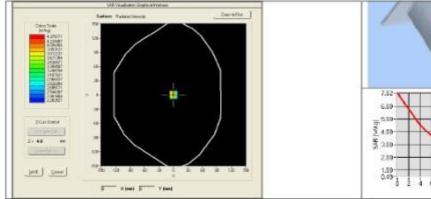
Ref: ACR.262.8.14.SATU.A

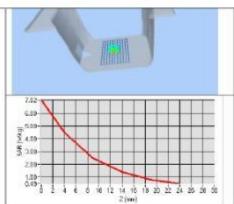
2450	52.4	24	
2600	55.3	24.6	
3000	63.8	25.7	
3500	67.1	25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	Relative permittivity (ε _r ')		ity (a) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %	PASS	1.52 ±5 %	PASS
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	

Page: 9/11


Ref: ACR.262.8,14.SATU.A


5500	48.6 ±10 %	5.65 ±10 %	
5600	48.5 ±10 %	5.77 ±10 %	
5800	48.2 ±10 %	6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 54.2 sigma : 1.54
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
- 2	measured	measured
1900	43.33 (4.33)	21.59 (2.16)

Page: 10/11

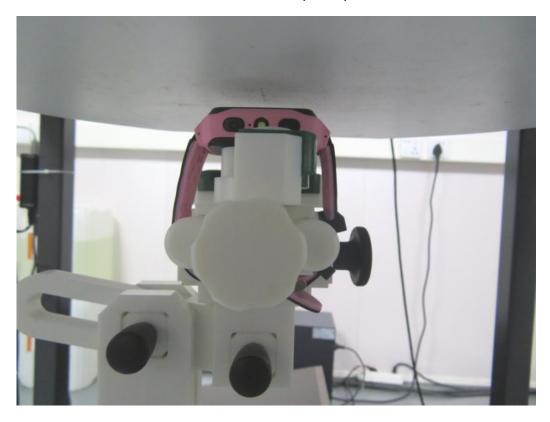
Ref: ACR.262,8.14.SATU.A


8 LIST OF EQUIPMENT

Equipment Description SAM Phantom	Manufacturer / Model Satimo	Identification No. SN-20/09-SAM71	Current Calibration Date Validated. No cal required.	Next Calibration Date			
				Validated. No ca required.			
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.			
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016			
Calipers	Carrera	CALIPER-01	12/2013	12/2016			
Reference Probe	Satimo	EPG122 SN 18/11	10/2015	10/2016			
Multimeter	Keithley 2000	1188656	12/2013	12/2016			
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016			
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Power Meter	HP E4418A	US38261498	12/2013	12/2016			
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016			
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Temperature and Humidity Sensor	Control Company	11-661-9	8/2013	8/2016			

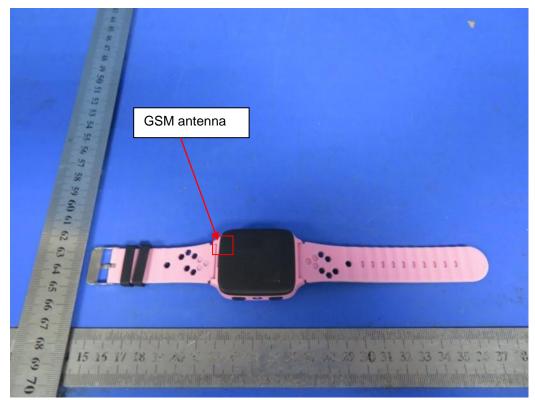
Page: 11/11

5.4 EUT TEST PHOTOGRAPHS



Photograph of the depth in the Body Phantom (1900MHz, 15.9cm depth)

Next – to – Mouth Exposure Conditions Flat / Front (10mm)



Extremity Exposure Conditions Flat / Rear (0mm)

6.EUT Photographs

.....The End of Test Report.....