

# RF EXPOSURE **EVALUATION REPORT**

**APPLICANT** : Vaultek Safe, Inc.

PRODUCT NAME : Gun Safe

NVTi-BK, NVTi-TG, NVTi-CN,

NVTi-CM, NVTi-GR, NVT-BK, MODEL NAME NVT-TG. NVT-CN. NVT-CM.

**NVT-GR** 

**BRAND NAME** : Vaultek

FCC ID : 2AONI-NVTI-8710M451

: 47 CFR Part 2(2.1091) STANDARD(S)

RECEIPT DATE : 2022-05-09

**TEST DATE** : 2022-05-16 to 2022-06-15

**ISSUE DATE** : 2022-06-20

Shenzhen Morlab Communications Technology Co., Ltd.

Edited by:

Peng Mi (Rapporteur)

Approved by:

Shen Junsheng (Supervisor)

NOTE: This document is issued by Shenzhen Morlab Communications Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.



Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn





### **DIRECTORY**

| 1.  | Technical Information                       | 3     |
|-----|---------------------------------------------|-------|
| 1.1 | Applicant and Manufacturer Information      | 3     |
| 1.2 | Equipment under Test (EUT) Description      | ··· 3 |
| 1.3 | Applied Reference Documents                 | 4     |
| 2.  | Device Category and RF Exposure Limit       | 5     |
| 3.  | RF Output Power                             | ··· 6 |
| 4.  | RF Exposure Assessment ······               | 7     |
| An  | nex A Testing Laboratory Information ······ | ع …   |

| Change History |            |                   |  |
|----------------|------------|-------------------|--|
| Version        | Date       | Reason for change |  |
| 1.0            | 2022-06-20 | First edition     |  |
|                |            |                   |  |

Tel: 86-755-36698555

Http://www.morlab.cn



### 1. Technical Information

Note: Provide by applicant.

### 1.1 Applicant and Manufacturer Information

| Applicant:            | Vaultek Safe, Inc.                                           |  |  |
|-----------------------|--------------------------------------------------------------|--|--|
| Applicant Address:    | 37 N Orange Ave.Suite 770 Orlando, FL 32801                  |  |  |
| Manufacturer:         | Jeritech Electronics, Ltd.                                   |  |  |
| Manufacturer Address. | Guannanyong Industrial Estate, Shiqi Town, Panyu, GuangZhou, |  |  |
| Manufacturer Address: | China                                                        |  |  |

### 1.2 Equipment under Test (EUT) Description

Shenzhen Morlab Communications Technology Co., Ltd.

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

| Product Name:          | Gun Safe                                         |
|------------------------|--------------------------------------------------|
| Sample No.:            | 2#                                               |
| Hardware Version:      | R23                                              |
| Software Version:      | 1.0.0                                            |
| Modulation Technology: | DSSS, OFDM                                       |
| Modulation Mode:       | 802.11b, 802.11g, 802.11n (HT20), 802.11n (HT40) |
| Operating Frequency    | 802.11b/g/n (HT20): 2412MHz-2472MHz              |
| Range:                 | 802.11n (HT40): 2422MHz-2462MHz                  |
| Antenna Type:          | PCB Antenna                                      |
| Antenna Gain:          | 1.34dBi                                          |

**Note 1:** According to the certificate holder, they declared that the models NVTi-BK, NVTi-TG, NVTi-CN, NVTi-CM, NVTi-GR, NVT-BK, NVT-TG, NVT-CN, NVT-CM and NVT-GR have the same hardware and software, only different for model number and colors, everything else is the same. The main measuring model is NVTi-BK, only the results for NVTi-BK were recorded in this report.



### 1.3 Applied Reference Documents

### Leading reference documents for testing:

| Identity              | Document Title                                                | Method<br>determination<br>/Remark |
|-----------------------|---------------------------------------------------------------|------------------------------------|
| 47 CFR Part 2(2.1091) | Radio Frequency Radiation Exposure Assessment: mobile devices | No deviation                       |
| KDB 447498 D01v06     | General RF Exposure Guidance                                  | No deviation                       |

**Note 1:** Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

**Note 2:** When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% confidence intervals.





# 2. Device Category and RF Exposure Limit

Per user manual, Based on 47 CFR 2.1091, this device belongs to mobile device category with General Population/Uncontrolled exposure.

#### **Mobile Devices:**

47 CFR 2.1091(b)

For purposes of this section, a mobile device is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitter's radiating structure(s) and the body of the user or nearby persons. In this context, the term "fixed location" means that the device is physically secured at one location and is not able to be easily moved to another location. Transmitting devices designed to be used by consumers or workers that can be easily re-located, such as wireless devices associated with a personal computer, are considered to be mobile devices if they meet the 20 centimeter separation requirement.

#### **General Population/Uncontrolled Exposure:**

The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Warning labels placed on low-power consumer devices such as cellular telephones are not considered sufficient to allow the device to be considered under the occupational/controlled category, and the general population/uncontrolled exposure limits apply to these devices.

Table 1—Limits for Maximum Permissible Exposure (MPE)

| Frequency range<br>(MHz) | Electric field<br>strength<br>(V/m)                     | Magnetic field<br>strength<br>(A/m) | strength Power density (mW/cm²) |    |  |  |  |
|--------------------------|---------------------------------------------------------|-------------------------------------|---------------------------------|----|--|--|--|
| (1                       | (B) Limits for General Population/Uncontrolled Exposure |                                     |                                 |    |  |  |  |
| 0.3-1.34                 | 614                                                     | 1.63                                | *(100)                          | 30 |  |  |  |
| 1.34-30                  | 824/f                                                   | 2.19/f                              | *(180/f²)                       | 30 |  |  |  |
| 30-300                   | 27.5                                                    | 0.073                               | 0.2                             | 30 |  |  |  |
| 300-1500                 | -                                                       | -                                   | f/1500                          | 30 |  |  |  |
| 1500-100,000             | -                                                       | -                                   | 1.0                             | 30 |  |  |  |

f = frequency in MHz\* = Plane-wave equivalent power density





# 3. RF Output Power

| 2.4GHz WLAN |         |                    |                     |                  |                 |
|-------------|---------|--------------------|---------------------|------------------|-----------------|
| Mode        | Channel | Frequency<br>(MHz) | Average power (dBm) | Tune-up<br>Power | Duty<br>Cycle % |
|             | CH 1    | 2412               | 17.50               |                  |                 |
| 802.11b     | CH 7    | 2442               | 17.39               | 18.50            | 98.89           |
|             | CH 13   | 2472               | 17.20               |                  |                 |
|             | CH 1    | 2412               | 16.87               | 17.50            | 94.09           |
| 802.11g     | CH 7    | 2442               | 16.78               |                  |                 |
|             | CH 13   | 2472               | 16.45               |                  |                 |
| 802.11n     | CH 1    | 2412               | 16.73               |                  |                 |
| (HT20)      | CH 7    | 2442               | 16.75               | 17.50            | 93.66           |
| (11120)     | CH 13   | 2472               | 16.48               |                  |                 |
| 802.11n     | CH 3    | 2422               | 16.72               |                  |                 |
| (HT40)      | CH 7    | 2442               | 16.63               | 17.50            | 87.85           |
| (11140)     | CH 11   | 2462               | 16.60               |                  |                 |

**Note 1:** According to KDB 447498, MPE assessment is based on source-based time-averaged maximum conducted output power of the RF channel requiring assessment, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

Note 2: The output power refers to report (Report No.: SZ22050115W01).



Tel: 86-755-36698555

Http://www.morlab.cn



# 4. RF Exposure Assessment

### > Standalone Transmission Assessment:

|             | Frequency | Frequency Tune-up (MHz) Power(dBm) | Antonno              | E.I.R.P. | Power    | Limit for |
|-------------|-----------|------------------------------------|----------------------|----------|----------|-----------|
| Bands       |           |                                    | Antenna<br>Gain(dBi) | (mW)     | Density  | MPE       |
|             | (IVITZ)   |                                    |                      |          | (mW/cm²) | (mW/cm²)  |
| WLAN 2.4GHz | 2412      | 18.50                              | 1.34                 | 96.38    | 0.019    | 1.0       |

#### Note:

- According to KDB 447498, MPE assessment is based on source-based time-averaged maximum conducted output power of the RF channel requiring assessment, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.
- 2. MPE calculate method

### $S = PG/4\pi R^2$

Where: S= Power density (in appropriate units, e.g. mW/cm<sup>2</sup>)

P = Time-average maximum tune-up power (in appropriate units, e.g. dBm)

G = numeric gain of the antenna (in appropriate units, e.g. dBi)

R = Separation distance to the centre of radiation of the antenna (20cm)

#### > Simultaneous Transmission Assessment:

This device only incorporates a WLAN 2.4G transmitter, therefore simultaneous SAR assessment is not required.

#### > Conclusion:

According to 47 CFR §2.1091, this device complies with human exposure basic restrictions.





# **Annex A Testing Laboratory Information**

### 1. Identification of the Responsible Testing Laboratory

| Laboratory Name:    | Shenzhen Morlab Communications Technology Co., Ltd.    |  |  |
|---------------------|--------------------------------------------------------|--|--|
|                     | FL.3, Building A, FeiYang Science Park, No.8 LongChang |  |  |
| Laboratory Address: | Road, Block 67, BaoAn District, ShenZhen, GuangDong    |  |  |
|                     | Province, P. R. China                                  |  |  |
| Telephone:          | +86 755 36698555                                       |  |  |
| Facsimile:          | +86 755 36698525                                       |  |  |

### 2. Identification of the Responsible Testing Location

| Name:    | Shenzhen Morlab Communications Technology Co., Ltd.    |  |  |
|----------|--------------------------------------------------------|--|--|
|          | FL.3, Building A, FeiYang Science Park, No.8 LongChang |  |  |
| Address: | Road, Block 67, BaoAn District, ShenZhen, GuangDong    |  |  |
|          | Province, P. R. China                                  |  |  |

### 3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

| END OF REPORT |  |
|---------------|--|
|               |  |

