

TEST REPORT

APPLICANT: Vaultek Safe, Inc.

PRODUCT NAME : Smart key Nano

MODEL NAME : VSK-N

BRAND NAME: VAULTEK

FCC ID : 2AONI-PRO-VSKN01

STANDARD(S) : 47 CFR Part 15 Subpart C

TEST DATE : 2018-09-05

ISSUE DATE : 2018-09-07

Tested by:

Ya Xinhou (Test Engineer)

Ya Xinhou

Approved by:

Peng Huarui (Supervisor)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

DIRECTORY

1. T	echnical Information ······	4
1.1.	Applicant and Manufacturer Information	4
1.2.	Equipment Under Test (EUT) Description	4
1.3.	Test Standards and Results	5
1.4.	Environmental Conditions	5
2. 4	7 CFR Part 15C Requirements	6
2.1.	Antenna requirement ······	6
2.2.	The Max Transmission Time	7
2.3.	20dB Bandwidth	9
2.4.	Conducted Emission	- 11
2.5.	Radiated Emission	-13
Ann	ex A Test Uncertainty ······	- 20
Ann	ex B Testing Laboratory Information······	- 21

Tel: 86-755-36698555

	Change History			
Issue Date		Reason for change		
1.0	2018-09-07	First edition		

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Vaultek Safe, Inc.
Applicant Address:37 N Orange Ave. Suite 800B Orlando, FL 32801, United States	
Manufacturer: Jeritech Electronics, Ltd.	
Manufacturer Address: Guannanyong Industrial Estate, Shiqi Town, Panyu, Guan	
	China

1.2. Equipment Under Test (EUT) Description

Product Name:	Smart key Nano
Serial No:	(N/A, marked #1 by test site)
Hardware Version:	R12
Software Version:	R12
Modulation Type:	ASK
Operating Frequency:	433.92MHz
Channel Number:	1
Antenna Type:	PCB Antenna
Antenna Gain:	1.36 dBi

Note 1: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:

No	Identity	Document Title	
1	47 CFR Part 15 (10-1-15 Edition)	Radio Frequency Devices	

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Test Engineer	Result
1	15.203	Antenna Requirement	N/A	N/A	PASS
2	15.231(a)(1)	The Max Transmission Time	Sep 05, 2018	Ya Xinhou	PASS
3	15.231(c)	20dB Bandwidth	Sep 05, 2018	Ya Xinhou	PASS
4	15.207	Conducted Emission	N/A	N/A	N/A _{Note1}
5	15.231(b)	Radiated Emission	Sep 05, 2018	Ya Xinhou	PASS
5	15.209(a)	Radiated Emission	Sep 03, 2016	ra Allillou	rass

Note 1: Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines.

Note 2: The tests were performed according to the method of measurements prescribed in ANSIC63.10-2013.

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

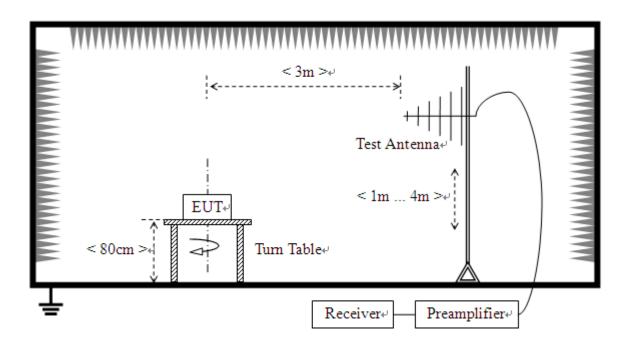
2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.


2.2. The Max Transmission Time

2.2.1. Requirement

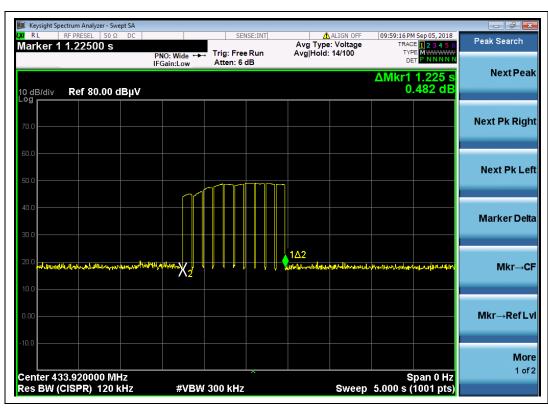
A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

2.2.2. Test Description

A. Test Setup:

2.2.3. Test procedure

Set the SPA Center Frequency=Fundamental frequency, RBW=100 kHz, VBW=300KHz, Span=0Hz, Sweep time=10s. Set EUT as normal operation and press Transmitter button. Set the SPA View. Delta Mark time.


2.2.4. Test Result

The frequency(433.92MHz) is selected to perform testing to verify the radiated max transmission time of the EUT.

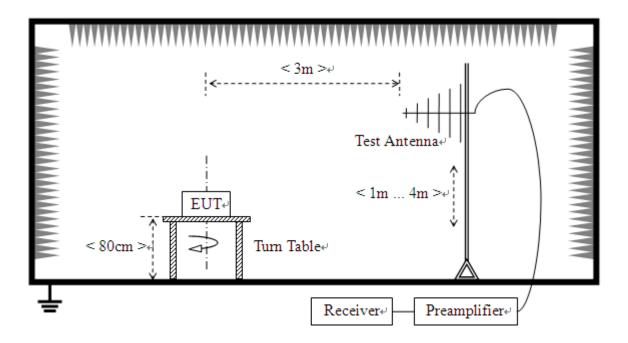
A. Test Verdict:

Frequency (MHz)	The max transmission time	Limit	Verdict
433.92	1225 ms	≤5000ms	PASS

B. Test Plots:

(The max transmission time _433.92MHz)

2.3.20dB Bandwidth


2.3.1. Requirement

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

As the center frequency for the device operating is 433.92MHz, thus, the 20dB bandwidth limit is 1085 kHz.

2.3.2. Test Description

A. Test Set:

2.3.3. Test procedure

Set spectrum analyzer's Center Frequency =Fundamental frequency, RBW,VBW and span to applicable value with Peak in Max Hold, A PEAK output reading and 20db Bandwidth function in spectrum analyzer were taken.

2.3.4. Test Result

The lowest, middle and highest channels are selected to perform testing to record the 20 dB bandwidth of the module.

A. Test Verdict:

Frequency (MHz)	20 dB Bandwidth (MHz)	Limits(MHz)	Result
433.92	0.34	≤1.085	PASS

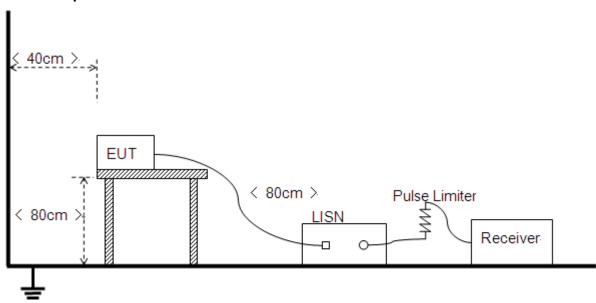
B. Test Plots:

(Bandwidth_433.92MHz)

2.4. Conducted Emission

2.4.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/ 50Ω line impedance stabilization network (LISN).


Frequency	range	Conducted Limit (dBµV)	
(MHz)		Quai-peak	Average
0.15 - 0.50		66 to 56	56 to 46
0.50 - 5		56	46
5 - 30		60	50

NOTE:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

2.4.2. Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

B. Equipments List:

Please reference ANNEX A(1.5).

2.4.3. Test Result

A. Test setup:

N/A

B. Test Plots:

N/A

2.5. Radiated Emission

2.5.1. Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

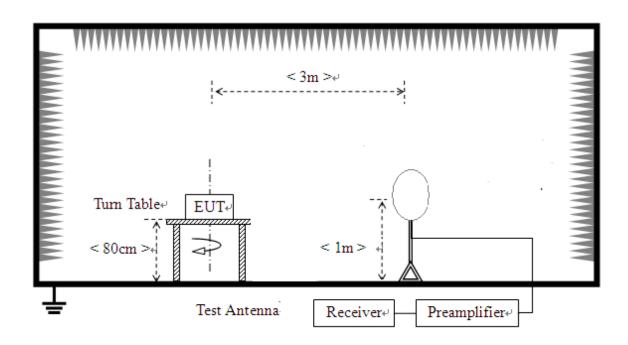
Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

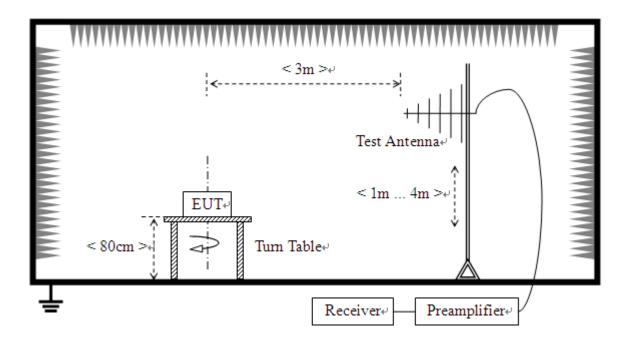
FCC Part 15.231(b)

Fundamental frequency(MHz)	Field strength of fundamental	Field strength of spurious
Fundamental frequency(MH2)	(microvolts/meter)	emission(microvolts/meter)
40.66-40.70	2250	225
70-130	1250	125
130-174	1250 to 3750	125 to 375
174-260	3750	375
260-47	3750 to 12500	375 to 1250
Above 470	12500	1250

Note:

- 1. For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- 2. For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

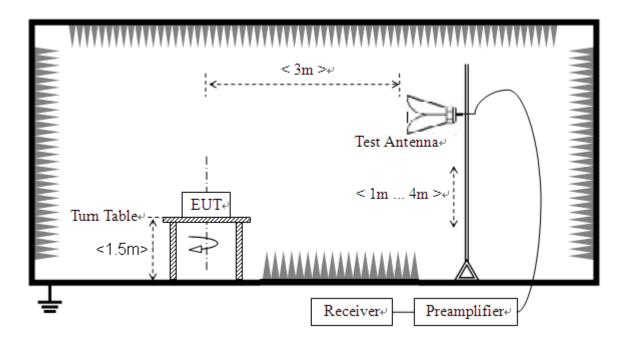

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)


2.5.2. Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz



Tel: 86-755-36698555

Http://www.morlab.cn

For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz. Test site have a minimum area of the ground plane covered with RF absorbing material as specified in Figure 6 of ANSI C63.4: 2014.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10:2013. For radiated emissions below or equal to 1GHz, The EUT was set-up on insulator 80cm above the Ground Plane, for radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10:2013.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

- (a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- (b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant

emissions, with polarization oriented for maximum response. The test antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

Please reference ANNEX A(1.5).

2.5.3. Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading G_{preamp}: Preamplifier Gain A_{Factor}: Antenna Factor at 3m

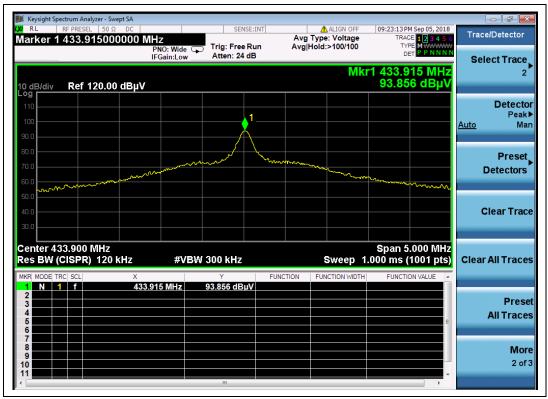
During the test, the total correction Factor A_T and A_{Factor} were built in test software.

Note1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Note2: The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Note3: The duty cycle is simply the on-time divided by the period:

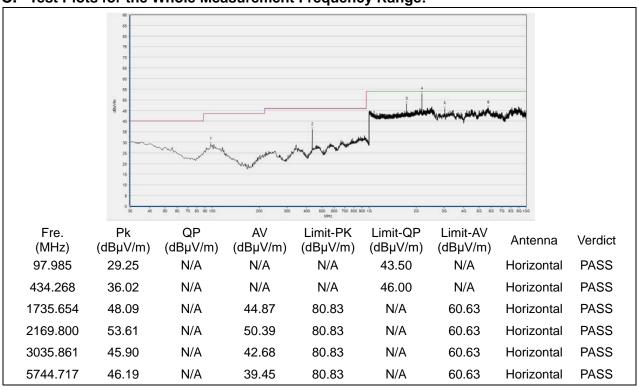
The duration of one cycle:	1.805ms
Effective period of the cycle:	1.245 ms
Duty cycle:	0.69


Therefore, the average factor is found by 20log (Duty cycle) =-3.22

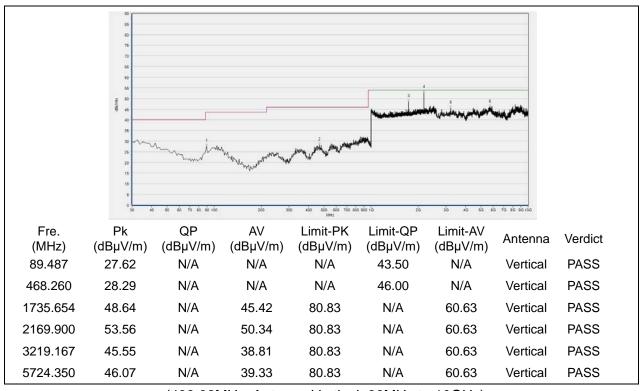
A. Test Results for Field strength of fundamental

Fre. (MHz)	Antenna	Receiver Reading U _R (PK) (dBuV)	A _T (dB)	A _{Factor} (dB@ 3m)	Final Emission_ PK (dBuV/m)	AV factor (dB)	Final Emission _AV (dBuV/m)	Limit-AV (dBµV/m)	Verdict
433.915	Horizontal	93.86	-32.24	16.08	77.70	-3.22	74.48	80.83	PASS
433.915	Vertical	83.97	-32.24	16.08	67.81	-3.22	64.59	80.83	PASS

(433.92MHz, Antenna Horizontal)


(433.92MHz, Antenna Vertical)

B. Test Results for Field strength of spurious emission


Frequency (MHz)	Final Emission_PK (dBuV/m)	AV factor(dB)	Final Emission_AV (dBuV/m)	Limit-AV (dBuV/m)	Antenna	Verdict
1735.654	48.09	-3.22	44.87	60.63	Horizontal	PASS
2169.800	53.61	-3.22	50.39	60.63	Horizontal	PASS
3035.861	45.90	-3.22	42.68	60.63	Horizontal	PASS
1735.654	48.64	-3.22	45.42	60.63	Vertical	PASS
2169.900	53.56	-3.22	50.34	60.63	Vertical	PASS

C. Test Plots for the Whole Measurement Frequency Range:

(433.92MHz, Antenna Horizontal, 30MHz to 10GHz)

(433.92MHz, Antenna Vertical, 30MHz to 10GHz)

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
20dB Bandwidth	±5%
Transmission time	±5%
Radiated Emission	±2.95dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.						
Department:	Morlab Laboratory						
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang						
	Road, Block 67, BaoAn District, ShenZhen, GuangDong						
	Province, P. R. China						
Responsible Test Lab	Mr. Su Feng						
Manager:							
Telephone:	+86 755 36698555						
Facsimile:	+86 755 36698525						

2. Identification of the Responsible Testing Location

Nome	Shenzhen Morlab Communications Technology Co., Ltd.					
Name:	Morlab Laboratory					
	FL.3, Building A, FeiYang Science Park, No.8 LongChang					
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong					
	Province, P. R. China					

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

4. Test Equipments Utilized

4.4 Radiated Test Equipments

Equipment	Serial No.	Type	Manufacturer	Cal. Date	Cal. Due	
Name	ochanito.	Турс	Manadacarci	Jan. Date		
Receiver	MY54130016	N9038A	N9038A Agilent		2019.08.03	
Test Antenna -	9163-519	VULB 9163	Schwarzbeck	2018.05.18	2019.05.17	
Bi-Log	9103-319	VOLD 9103	Scriwarzbeck			
Test Antenna -	1519-022	FMZB1519	Schwarzbeck	2018.03.03	2019.03.02	
Loop	1319-022	1 101201319	Scriwarzbeck			
Test Antenna –	01774	BBHA 9120D	Schwarzbeck	2040 00 00	2040 00 05	
Horn	01774	BBHA 9120D	Scriwarzbeck	2018.08.06	2019.08.05	
Test Antenna –	BBHA9170	BBHA9170	Schwarzbeck	2018.08.02	2019.08.01	
Horn	#774	DDI IA9170	Scriwarzbeck	2016.06.02	2019.06.01	
Coaxial cable						
(N male)	CB04	EMC04	Morlab	N/A	N/A	
(9KHz-30MHz)						
Coaxial cable						
(N male)	CB02	EMC02	Morlab	N/A	N/A	
(30MHz-26GHz)						
Coaxial cable						
(N male)	CB03	EMC03	Morlab	N/A	N/A	
(30MHz-26GHz)						
1-18GHz	MA02	TS-PR18	Rohde&	2018.05.08	2019.05.07	
pre-Amplifier	IVIAUZ	13-510	Schwarz	2010.00.00	2019.05.07	
18-26.5GHz	MA03	TS-PR18	Rohde&	2018.05.08	2019.05.07	
pre-Amplifier	IVIAUS	13-5110	Schwarz	2010.00.00	2019.05.07	
Anechoic	N/A	9m*6m*6m	CRT	2017.11.19	2020.11.18	
Chamber	IN/A	ani oni oni	CIXI	2017.11.19	2020.11.10	