

Page 1 of 76

TEST REPORT

Product Name	:	Smart Watch
Brand Mark	:	N/A
Model No.	:	TRUEFREE Watch GT1
Extension model	:	TRUEFREE Watch GT2, TRUEFREE Watch GT3, TRUEFREE Watch GT4, TRUEFREE Watch1, TRUEFREE Watch2, TRUEFREE Watch3, TRUEFREE Watch1 Pro, TRUEFREE Watch2 Pro, TRUEFREE Watch3 Pro
Report Number	:	BLA-EMC-202310-A2402
FCC ID	:	2AONGDD007
Date of Sample Receipt	:	2023/10/13
Date of Test	:	2023/10/13 to 2023/10/26
Date of Issue	:	2023/10/26
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

Shenzhen Ginto E-Commerce Co., Limited Room 1308-1309, Building B, Huihai square, Chuangye Road, Longhua District, Shenzhen, Guangdong, China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by:

Approved by:

Jozu 13 hue Theng

Date:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

Add: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

REPORT REVISE RECORD

Version No.	Date	Description
00	2023/10/26	Original

TABLE OF CONTENTS

1 TEST SUMMARY	5
2 GENERAL INFORMATION	6
3 GENERAL DESCRIPTION OF E.U.T.	6
4 TEST ENVIRONMENT	8
5 TEST MODE	8
6 MEASUREMENT UNCERTAINTY	
7 DESCRIPTION OF SUPPORT UNIT	
8 LABORATORY LOCATION	9
9 TEST INSTRUMENTS LIST	10
10 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	12
10.1 LIMITS	
10.2 BLOCK DIAGRAM OF TEST SETUP	
10.3 PROCEDURE	
10.4 TEST DATA	14
11 CONDUCTED BAND EDGES MEASUREMENT	17
11.1 LIMITS	
11.2 BLOCK DIAGRAM OF TEST SETUP	17
11.3 TEST DATA	
12 RADIATED SPURIOUS EMISSIONS	19
12.1 LIMITS	19
12.2 BLOCK DIAGRAM OF TEST SETUP	
12.3 PROCEDURE	20
12.4 TEST Data	22
13 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	31
13.1 LIMITS	
13.2 BLOCK DIAGRAM OF TEST SETUP	
13.3 PROCEDURE	
13.4 TEST DATA	
14 CONDUCTED SPURIOUS EMISSIONS	
14.1 LIMITS	20
14.1 LIIVIII 3	

14.2 BLOCK DIAGRAM OF TEST SETUP	
14.3 TEST Data	40
15 POWER SPECTRUM DENSITY	
15.1 LIMITS	
15.2 BLOCK DIAGRAM OF TEST SETUP	
15.3 TEST DATA	41
16 CONDUCTED PEAK OUTPUT POWER	
16.1 LIMITS	
16.2 BLOCK DIAGRAM OF TEST SETUP	
16.3 TEST DATA	
17 MINIMUM 6DB BANDWIDTH	
17.1 LIMITS	
17.2 BLOCK DIAGRAM OF TEST SETUP	
17.3 TEST DATA	44
18 ANTENNA REQUIREMENT	45
18.1 CONCLUSION	45
19 APPENDIX	46
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	74
APPENDIX B: PHOTOGRAPHS OF EUT	76

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass

2 GENERAL INFORMATION

Applicant	Shenzhen Ginto E-Commerce Co., Limited		
Address	Room 1308-1309, Building B, Huihai square,Chuangye Road, Longhua District,Shenzhen,Guangdong,China		
Manufacturer	Shenzhen Toleda Digital Technologies Co., Ltd		
Address	6/F, Block A, Yajiashi Industry Park, Dalang Street, Longhua District, Shenzhen, China		
Factory	Shenzhen Toleda Digital Technologies Co., Ltd		
Address	6/F, Block A, Yajiashi Industry Park, Dalang Street, Longhua District, Shenzhen, China		
Product Name	Smart Watch		
Test Model No.	TRUEFREE Watch GT1		
Extension model	TRUEFREE Watch GT2, TRUEFREE Watch GT3, TRUEFREE Watch GT4, TRUEFREE Watch1, TRUEFREE Watch2, TRUEFREE Watch3, TRUEFREE Watch1 Pro, TRUEFREE Watch2 Pro, TRUEFREE Watch3 Pro		
Note	All above models are identical in the same PCB layout, interior structure and electrical circuits. The differences are model name for commercial purpose.		

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	RH281L V02
Software Version	RH281LFLV004755
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Rate data:	1Mbps, 2Mbps
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	Internal Antenna
Antenna Gain:	3.25dBi (Provided by the applicant)

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
: :	: :	: :	: :	: :	: :	: :	: :
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Operation Frequency each of channel

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	25°C	3.8Vdc

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION
Transmitting mode	Keep the EUT in continuously transmitting mode with modulation.

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %
Unwanted Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB
Unwanted Radiated Emission (1GHz ~ 18GHz)	±4.44 dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
PC	lenovo	E46OC	N/A	From lab (No.BLA-ZC-BS-2022005)

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

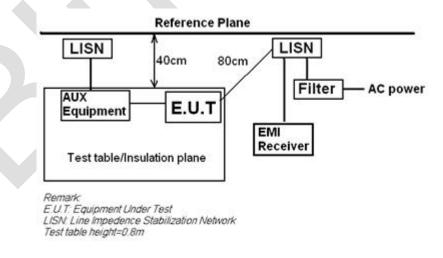
9 TEST INSTRUMENTS LIST

Test Equipment Of Radiated Spurious Emissions								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Chamber 1	SKET	966	N/A	2020/11/10	2023/11/9			
Chamber 2	SKET	966	N/A	2021/07/20	2023/11/9			
Spectrum	R&S	FSP40	100817	2023/08/30	2024/08/29			
Receiver	R&S	ESR7	101199	2023/08/30	2024/08/29			
Receiver	R&S	ESPI7	101477	2023/07/07	2024/07/06			
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2022/10/12	2025/10/11			
Horn Antenna	Schwarzbeck	BBHA9120D	01892 P:00331	2022/09/13	2025/09/12			
Horn Antenna	Schwarzbeck	BBHA 9170	1106	2022/04/24	2024/04/23			
Amplifier	SKET	LNPA_30M01G-30	SK2021060801	2023/07/07	2024/07/06			
Amplifier	SKET	PA-000318G-45	N/A	2023/08/30	2024/08/29			
Amplifier	SKET	LNPA_18G40G-50	SK2022071301	2023/07/14	2024/07/13			
Filter group	SKET	2.4G/5G Filter group r N/A		2023/07/07	2024/07/06			
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A			
Loop antenna	SCHNARZBE CK	FMZB1519B	00102	2022/09/14	2025/09/13			
1kHZ calibration audio source	SKET	MCS-ABT-C35	N/A	2023/09/04	2024/09/03			
Free Field Microphone	SKET	MGS MP 663	0414	2023/09/04	2024/09/03			
Audio shielding box	SKET	SB-ABT-C35	N/A	2023/03/30	2024/03/29			
Controller	SKET	N/A	N/A	N/A	N/A			
Coaxial Cable	BlueAsia	BLA-XC-02 N/A		N/A	N/A			
Coaxial Cable	BlueAsia	BLA-XC-03	BLA-XC-03 N/A		N/A			
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A			
Signal Generator DTV	ECREDIX	DSG-1000	N/A	N/A	N/A			

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Shield room	SKET	833	N/A	2020/11/25	2023/11/24			
Receiver	R&S	ESPI3	101082	2023/08/30	2024/08/29			
LISN	R&S	ENV216	3560.6550.15	2023/08/30	2024/08/29			
LISN	AT	AT166-2	AKK1806000003	2023/08/30	2024/08/29			
ISN	TESEQ	ISNT8-cat6	53580	2023/08/30	2024/08/29			
Single-channel vehicle artificial power network	Schwarzbeck	NNBM 8124	01045	2023/07/07	2024/07/06			
Single-channel vehicle artificial power network	Schwarzbeck	NNBM 8124	01075	2023/07/07	2024/07/06			
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A			

Test Equipment Of RF Conducted Test								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Spectrum	R&S	FSP40	100817	2023/08/30	2024/08/29			
Spectrum	Agilent	N9020A	MY49100060	2023/08/30	2024/08/29			
Spectrum	Agilent	N9020A	MY54420161	2023/08/30	2024/08/29			
Signal Generator	Agilent	N5182A	MY47420955	2023/08/30	2024/08/29			
Signal Generator	Agilent	N5181A	MY46240904	2023/07/07	2024/07/06			
Signal Generator	R&S	CMW500	132429	2023/08/30	2024/08/29			
BluetoothTester	Anritsu	MT8852B	06262047872	2023/08/30	2024/08/29			
Power probe	DARE	RPR3006W	14100889SN042	2023/09/01	2024/08/31			
Power detection box	CDKMV	MW100-PSB	MW201020JYT	2023/07/07	2024/07/06			
DCPowersupply	zhaoxin	KXN-305D	20K305D1221363	2023/08/30	2024/08/29			
DCPowersupply	zhaoxin	RXN-1505D	19R1505D050168	2023/08/30	2024/08/29			
2.4GHz/5GHz RF Test software	MTS	MTS 8310	Version 2.0.0.0	N/A	N/A			
Audio Analyzer	Audio Precision	ATS-1	ATS141094	2023/07/07	2024/07/06			

10 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)


Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.2					
Test Mode (Pre-Scan)	ТХ					
Test Mode (Final Test)	ТХ					
Tester	Jozu					
Temperature	25 ℃					
Humidity	60%					

10.1 LIMITS

Frequency of	Conducted limit(dBµV)						
emission(MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					
*Desurges with the legenithus of the furgroup of							

*Decreases with the logarithm of the frequency.

10.2 BLOCK DIAGRAM OF TEST SETUP

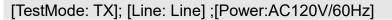
10.3 PROCEDURE

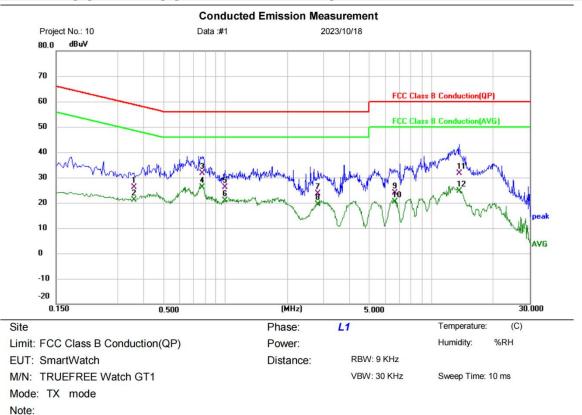
1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as

the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.


5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

10.4 TEST DATA

NOIC.						
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	
	MHz	dBuV	dB	dBuV	dBuV	
1	0.3580	15.94	10.07	26.01	58.77	6
2	0.3580	11.06	10.07	21.13	48.77	8
3	0.7740	21.51	10.09	31.60	56.00	8
4 *	0.7740	16.05	10.09	26.14	46.00	8
						-

0.3580	15.94	10.07	26.01	58.77	-32.76	QP		
0.3580	11.06	10.07	21.13	48.77	-27.64	AVG		
0.7740	21.51	10.09	31.60	56.00	-24.40	QP		
0.7740	16.05	10.09	26.14	46.00	- <mark>19.8</mark> 6	AVG		
0.9940	16.04	<mark>10.11</mark>	26.15	56.00	-29.85	QP		
0.9940	10.81	10.11	20.92	46.00	-25.08	AVG		
2.8140	13.36	10.24	23.60	56.00	-32.40	QP		
2.8140	9.21	10.24	19.45	46.00	-26.55	AVG		
6.6340	13.74	10.06	23.80	60.00	-36.20	QP		
6.6340	10.42	10.06	20.48	50.00	-29.52	AVG		
13.6660	21.53	9.99	31.52	60.00	-28.48	QP		
13.6660	14.72	9.99	24.71	50.00	-25.29	AVG		
m data	x:Over limit	l:ove	r margin				Reference Only	
ESPI_	_1			Spectrum	Analyzer:	ESPI		
				Engineer	Signature			
	0.3580 0.7740 0.9940 0.9940 2.8140 2.8140 6.6340 6.6340 13.6660 13.6660	0.3580 11.06 0.7740 21.51 0.7740 16.05 0.9940 16.04 0.9940 10.81 2.8140 13.36 2.8140 9.21 6.6340 13.74 6.6340 10.42 13.6660 21.53 13.6660 14.72	0.3580 11.06 10.07 0.7740 21.51 10.09 0.7740 16.05 10.09 0.9940 16.04 10.11 0.9940 10.81 10.11 2.8140 13.36 10.24 2.8140 9.21 10.24 6.6340 13.74 10.06 13.6660 21.53 9.99 13.6660 14.72 9.99 m data x:Over limit !:over	0.3580 11.06 10.07 21.13 0.7740 21.51 10.09 31.60 0.7740 16.05 10.09 26.14 0.9940 16.04 10.11 26.15 0.9940 10.81 10.11 20.92 2.8140 13.36 10.24 23.60 2.8140 9.21 10.24 19.45 6.6340 13.74 10.06 23.80 6.6340 10.42 10.06 20.48 13.6660 21.53 9.99 31.52 13.6660 14.72 9.99 24.71 m data x:Over limit !:over margin	0.3580 11.06 10.07 21.13 48.77 0.7740 21.51 10.09 31.60 56.00 0.7740 16.05 10.09 26.14 46.00 0.9940 16.04 10.11 26.15 56.00 0.9940 10.81 10.11 20.92 46.00 2.8140 13.36 10.24 23.60 56.00 2.8140 9.21 10.24 19.45 46.00 6.6340 13.74 10.06 23.80 60.00 6.6340 10.42 10.06 20.48 50.00 13.6660 21.53 9.99 31.52 60.00 13.6660 14.72 9.99 24.71 50.00 m data x:Over limit !:over margin ESPL_1 Spectrum	0.3580 11.06 10.07 21.13 48.77 -27.64 0.7740 21.51 10.09 31.60 56.00 -24.40 0.7740 16.05 10.09 26.14 46.00 -19.86 0.9940 16.04 10.11 26.15 56.00 -29.85 0.9940 10.81 10.11 20.92 46.00 -25.08 2.8140 13.36 10.24 23.60 56.00 -32.40 2.8140 9.21 10.24 19.45 46.00 -26.55 6.6340 13.74 10.06 23.80 60.00 -36.20 6.6340 10.42 10.06 20.48 50.00 -29.52 13.6660 21.53 9.99 31.52 60.00 -28.48 13.6660 14.72 9.99 24.71 50.00 -25.29 m data x:Over limit	0.3580 11.06 10.07 21.13 48.77 -27.64 AVG 0.7740 21.51 10.09 31.60 56.00 -24.40 QP 0.7740 16.05 10.09 26.14 46.00 -19.86 AVG 0.9940 16.04 10.11 26.15 56.00 -29.85 QP 0.9940 10.81 10.11 20.92 46.00 -25.08 AVG 2.8140 13.36 10.24 23.60 56.00 -32.40 QP 2.8140 9.21 10.24 19.45 46.00 -26.55 AVG 6.6340 13.74 10.06 23.80 60.00 -36.20 QP 6.6340 10.42 10.06 20.48 50.00 -29.52 AVG 13.6660 21.53 9.99 31.52 60.00 -28.48 QP 13.6660 14.72 9.99 24.71 50.00 -25.29 AVG m data x:Over limit !:over margin ESPI_1 Spectrum Analyzer: <td colsp<="" td=""></td>	

Over

dB

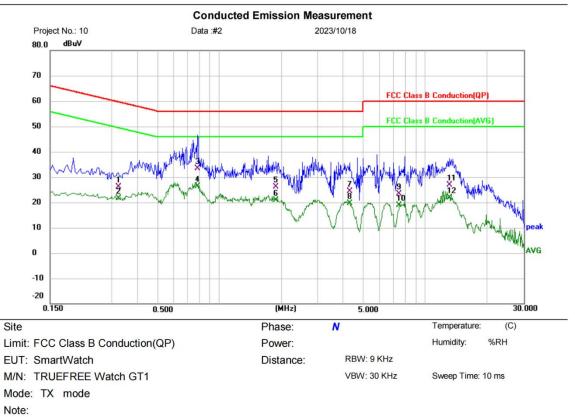
Detector

Antenna

cm

Table

degree


Comment

Height Degree

Test Result: Pass

[TestMode: TX]; [Line: Neutral] ;[Power:AC120V/60Hz]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree	Comment
1		0.3220	16.08	10.07	26.15	59.66	-33.51	QP			
2		0.3220	11.46	10.07	21.53	49.66	-28.13	AVG			
3		0.7820	23.25	10.02	33.27	56.00	-22.73	QP			
4	*	0.7820	16.47	10.02	26.49	46.00	- <mark>19.5</mark> 1	AVG			
5		1.8820	15.92	10.10	26.02	56.00	-29.98	QP			
6		1.8820	10.88	10.10	20.98	46.00	-25.02	AVG			
7		4.2900	14.63	9.87	24.50	56.00	-31.50	QP			
8		4.2900	9.80	9.87	19.67	46.00	-26.33	AVG			
9		7.4860	13.40	9.88	23.28	60.00	-36.72	QP			
10		7.4860	9.07	9.88	18.95	50.00	-31.05	AVG			
11		13.1140	16.80	9.99	26.79	60.00	-33.21	QP			
12		13.1140	11.82	9.99	21.81	50.00	-28.19	AVG			

*:Maximum data x:Over limit !:over margin

Receiver: ESPI_1 L.I.S.N:

Spectrum Analyzer:

ESPI

Reference Only

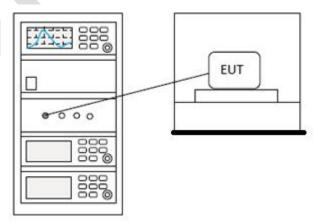
Test Result: Pass

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.


Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2					
Test Mode (Pre-Scan)	ТХ					
Test Mode (Final Test)	ТХ					
Tester	Jozu					
Temperature	25°C					
Humidity	60%					

11 CONDUCTED BAND EDGES MEASUREMENT

11.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

11.2 BLOCK DIAGRAM OF TEST SETUP

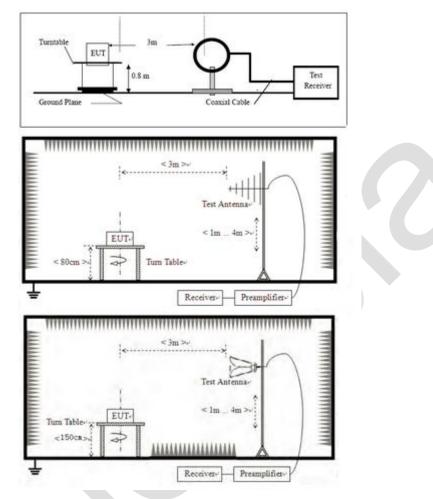
Report No.: BLA-EMC-202310-A2402 Page 18 of 76

11.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

12 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	ТХ					
Tester	Jozu					
Temperature	25°C					
Humidity	60%					


12.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

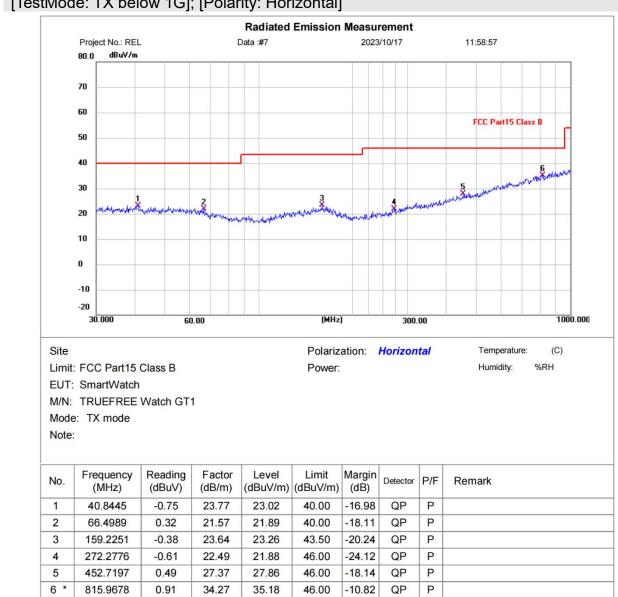
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

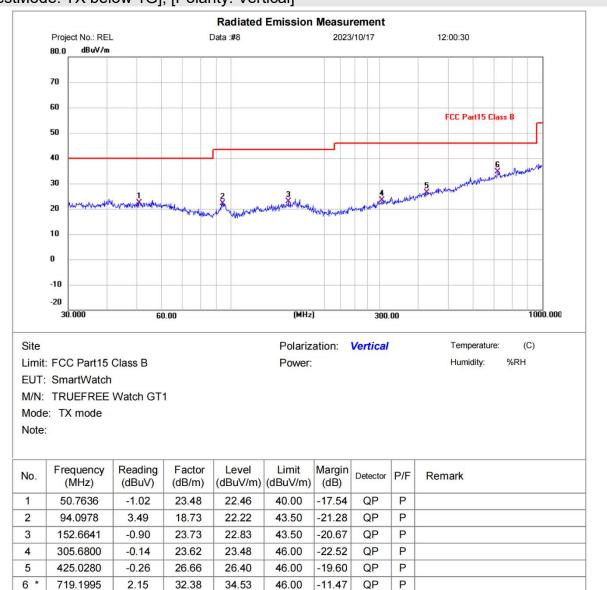
2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.

4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

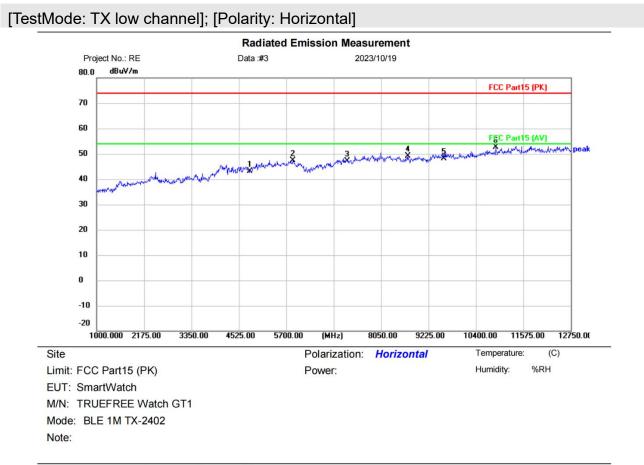
12.4 TEST DATA



[TestMode: TX below 1G]; [Polarity: Horizontal]

*:Maximum data x:Over limit !:over margin

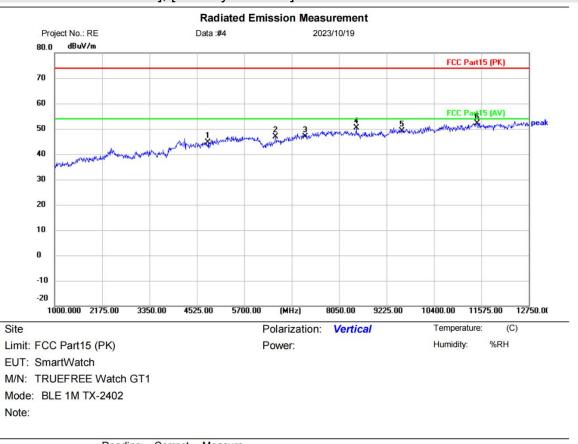
Test Result: Pass


[TestMode: TX below 1G]; [Polarity: Vertical]

*:Maximum data x:Over limit !:over margin

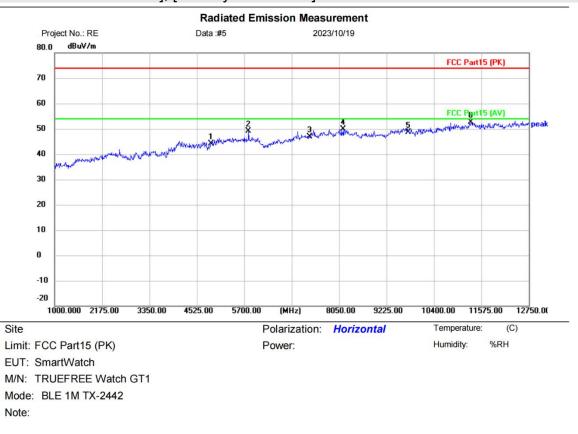
Test Result: Pass

Remark: During the test, pre-scan the BLE1M, BLE2M mode, and found the BLE1M mode which it is worse case.



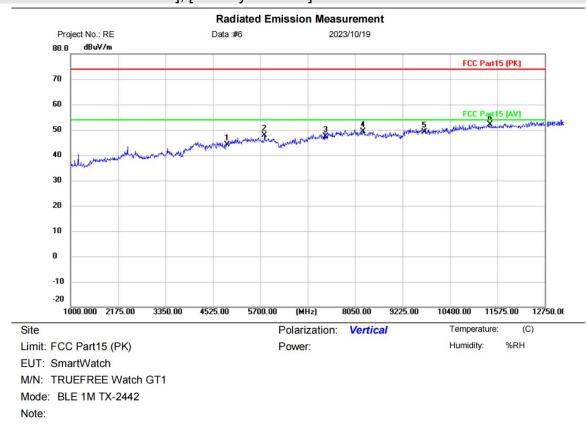
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000	39.02	4.05	43.07	74.00	-30.93	peak	
2		5864.500	40.65	6.80	47.45	74.00	-26.55	peak	
3		7206.000	39.13	7.93	47.06	74.00	-26.94	peak	
4		8708.000	39.95	9.22	49.17	74.00	-24.83	peak	
5		9608.000	37.17	10.90	48.07	74.00	-25.93	peak	
6	*	10893.50	39.41	13.28	52.69	74.00	-21.31	peak	

*:Maximum	data	x:Over limit	!:over margin			(Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
st Result:	Pas	S				


[TestMode: TX low channel]; [Polarity: Vertical]

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000	40.54	4.05	44.59	74.00	-29.41	peak	
2		6475.500	41.04	5.88	46.92	74.00	-27.08	peak	
3		7206.000	39.04	7.93	46.97	74.00	-27.03	peak	
4		8473.000	41.19	9.12	50.31	74.00	-23.69	peak	
5		9608.000	38.15	10.90	49.05	74.00	-24.95	peak	
6	*	11469.25	38.48	13.66	52.14	74.00	-21.86	peak	
		^							

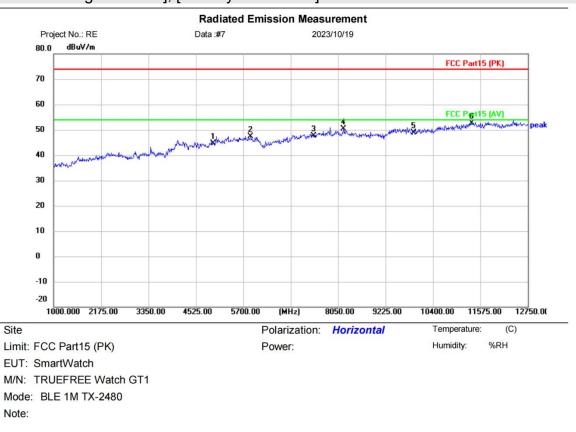
*:Maximum	data	x:Over limit	l:over margin			(Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
est Result	: Pas	S				



[TestMode: TX mid channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4884.000	39.75	4.37	44.12	74.00	-29.88	peak	
2		5805.750	42.35	6.76	49.11	74.00	-24.89	peak	
3		7326.000	38.71	8.21	46.92	74.00	-27.08	peak	
4		8155.750	40.94	8.97	49.91	74.00	-24.09	peak	
5		9768.000	37.39	<mark>11.31</mark>	48.70	74.00	-25.30	peak	
6	*	11316.50	39.11	13.59	52.70	74.00	-21.30	peak	

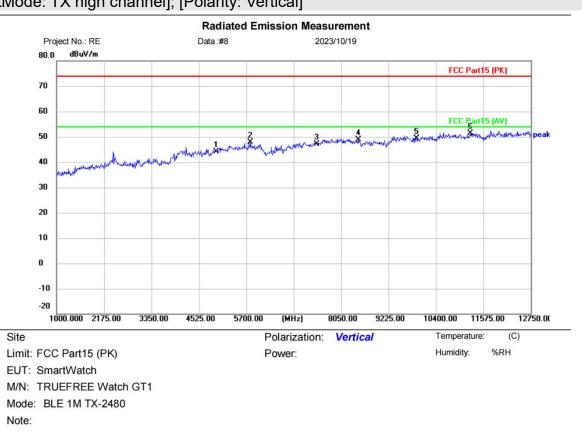
*:Maximum da	ata x:Over I	imit !:over margin			(Reference Only
Receiver:	ESR_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9120D 1G-18	G	Engineer Signature		
st Result: I	Pass				



[TestMode: TX mid channel]; [Polarity: Vertical]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4884.000	39.81	4.37	44.18	74.00	-29.82	peak	
2		5805.750	41.15	6.76	47.91	74.00	-26.09	peak	
3		7326.000	39.05	8.21	47.26	74.00	-26.74	peak	
4		8249.750	40.33	9.01	49.34	74.00	-24.66	peak	
5		9768.000	37.84	<mark>11.31</mark>	49.15	74.00	-24.85	peak	
6	*	11387.00	38.48	13.63	52.11	74.00	-21.89	peak	

*:Maximum	data	x:Over limit	!:over margin			(Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
est Result:	Pas	S				



[TestMode: TX high channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	39.32	5.42	44.74	74.00	-29.26	peak	
2	ļ	5876.250	40.66	6.81	47.47	74.00	-26.53	peak	
3		7440.000	39.07	8.48	47.55	74.00	-26.45	peak	
4	ł	8179.250	41.30	8.98	50.28	74.00	-23.72	peak	
5	1	9920.000	37.15	11.69	48.84	74.00	-25.16	peak	
6	*	11363.50	39.08	13.62	52.70	74.00	-21.30	peak	

*:Maximum o	data	x:Over limit	l:over margin			(Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
st Result:	Pas	S				

[TestMode ⁺	TX high	channell.	[Polarity:	Vortical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	38.81	5.42	44.23	74.00	-29.77	peak	
2		5805.750	41.09	6.76	47.85	74.00	-26.15	peak	
3		7440.000	38.72	8.48	47.20	74.00	-26.80	peak	
4		8473.000	39.75	9.12	48.87	74.00	-25.13	peak	
5		9920.000	37.69	11.69	49.38	74.00	-24.62	peak	
6	*	11257.75	37.93	13.57	51.50	74.00	-22.50	peak	

*:Maximum	data	x:Over limit	!:over margin			(Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
st Result:	Pas	s				

Report No.: BLA-EMC-202310-A2402 Page 30 of 76

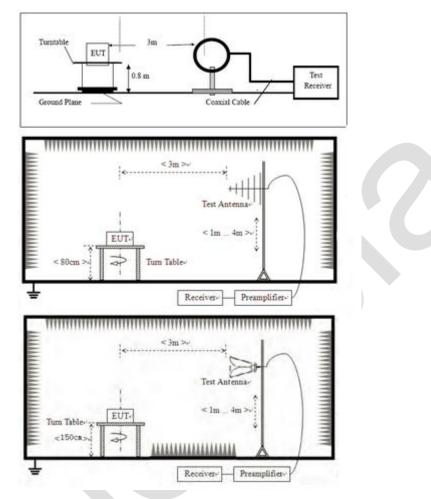
Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

13 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 6.10.5				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Jozu				
Temperature	25°C				
Humidity	60%				


13.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

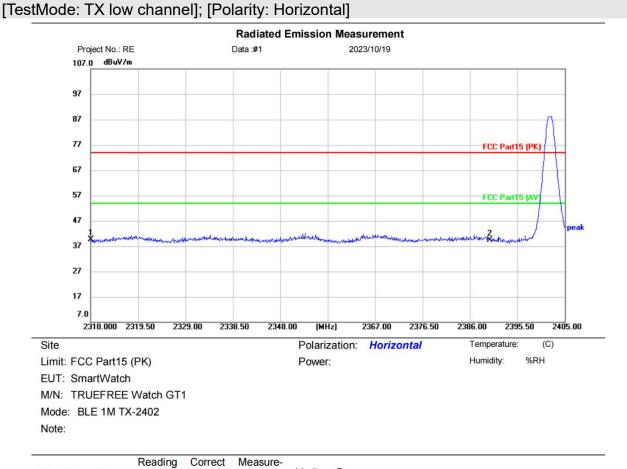
f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

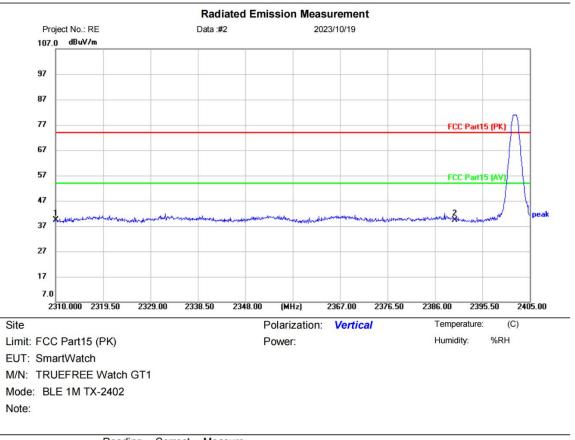
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.


Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

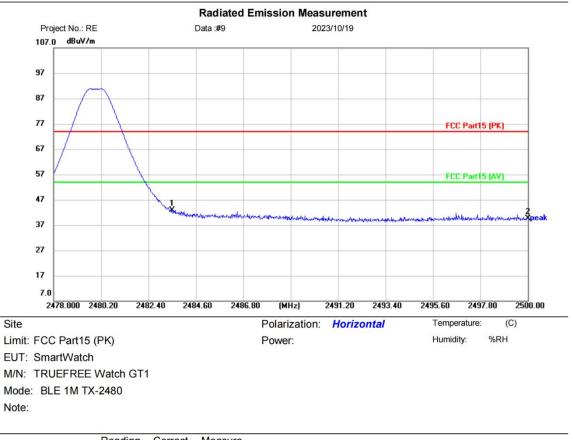
Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

13.4 TEST DATA


Remark: During the test, pre-scan the BLE1M, BLE2M mode, and found the BLE1M mode which it is worse case.

No.	N	<mark>٨</mark> k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	23	310.000	43.93	-4.27	39.66	74.00	-34.34	peak		
2		23	390.000	43.30	-3.82	39.48	74.00	-34.52	peak		

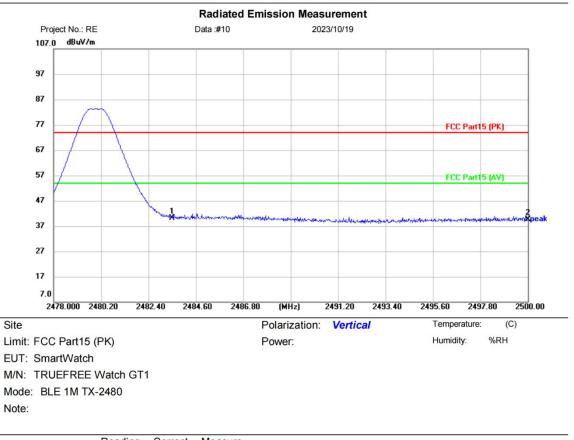
Test Result: Pass



[TestMode: TX low channel]; [Polarity: Vertical]

No.	M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2310.000	43.60	-4.27	39.33	74.00	-34.67	peak	
2		2390.000	43.15	-3.82	39.33	74.00	-34.67	peak	

*:Maximum da	ta x:Over limit	!:over margin			Reference Only
Receiver:	ESR_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9120D 1G-18G		Engineer Signature		
st Result: F	Pass				



[TestMode: TX high channel]; [Polarity: Horizontal]

No.	M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2483.500	46.75	-3.96	42.79	74.00	-31.21	peak	
2		2500.000	43.74	-4.00	39.74	74.00	-34.26	peak	

*:Maximum	data	x:Over limit	l:over margin			Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
st Result:	Pas	S				

[TestMode: TX high channel]; [Polarity: Vertical]

No.	. 1	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		* 2	2483.500	44.21	-3.96	40.25	74.00	-33.75	peak	
2		2	2500.000	43.57	-4.00	39.57	74.00	-34.43	peak	

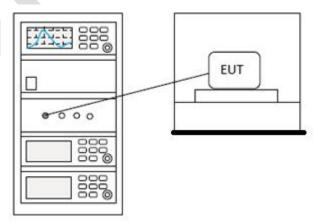
*:Maximum	data	x:Over limit	l:over margin			(Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
st Result	: Pas	S				

Report No.: BLA-EMC-202310-A2402 Page 38 of 76

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com


14 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Jozu				
Temperature	25°C				
Humidity	60%				

14.1 LIMITS

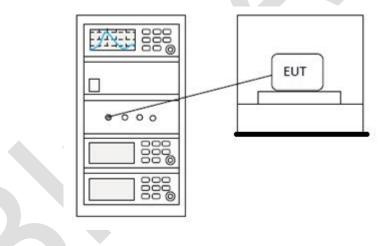
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

14.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202310-A2402 Page 40 of 76

14.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


15 POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 11.10.2				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Jozu				
Temperature	25 ℃				
Humidity	60%				

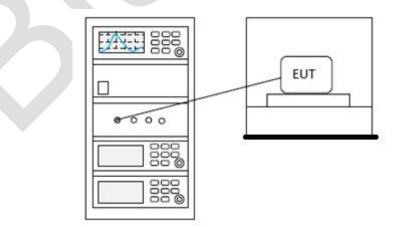
15.1 LIMITS

Limit: \leq 8dBm in any 3 kHz band during any time interval of continuous transmission

15.2 BLOCK DIAGRAM OF TEST SETUP

15.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


16 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.5				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Jozu				
Temperature	25 ℃				
Humidity	60%				

16.1 LIMITS

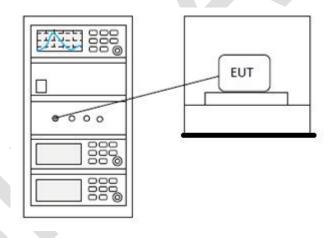
Frequency range(MHz)	Output power of the intentional radiator(watt)		
	1 for \geq 50 hopping channels		
902-928	0.25 for $25 \le$ hopping channels < 50		
	1 for digital modulation		
	1 for ≥75 non-overlapping hopping channels		
2400-2483.5	0.125 for all other frequency hopping systems		
	1 for digital modulation		
5725 5950	1 for frequency hopping systems and digital		
5725-5850	modulation		

16.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202310-A2402 Page 43 of 76

16.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


17 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.8.1
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%

17.1 LIMITS

Limit: \geq 500 kHz

17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

18 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A

18.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The best case gain of the antenna is -4.95dBi.

19 APPENDIX

Appendix1

Maximum Conducted Output Power

Condition	Mode	Frequency	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
		(MHz)				
NVNT	BLE 1M	2402	Antl	-3.348	30	Pass
NVNT	BLE 1M	2442	Ant1	-3.956	30	Pass
NVNT	BLE 1M	2480	Ant1	-3.785	30	Pass
NVNT	BLE 2M	2402	Ant1	-3.299	30	Pass
NVNT	BLE 2M	2442	Antl	-3.931	30	Pass
NVNT	BLE 2M	2480	Ant1	-3.708	30	Pass

Power NVNT BLE 1M 2402MHz Ant1

Power NVNT BLE 1M 2442MHz Ant1

Power NVNT BLE 1M 2480MHz Ant1



Power NVNT BLE 2M 2402MHz Ant1

Power NVNT BLE 2M 2442MHz Ant1

Power NVNT BLE 2M 2480MHz Ant1

T RF 50 Ω AC	SENSE:INT	ALIGN AUTO	10:31:33 AM Oct 23, 2023
ter Freq 2.480000000 GHz		Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N
Ref Offset 2.58 dB B/div Ref 20.00 dBm		M	kr1 2.479 946 GHz -3.708 dBm
	1		
ter 2.480000 GHz s BW 2.0 MHz	#VBW 6.0 MHz	Sween	Span 10.00 MHz 1.333 ms (10001 pts)

-

-6dB Bandwidth

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE 1M	2402	Ant1	0.642	0.5	Pass
NVNT	BLE 1M	2442	Ant1	0.685	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.648	0.5	Pass
NVNT	BLE 2M	2402	Ant1	1.086	0.5	Pass
NVNT	BLE 2M	2442	Ant1	1.107	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.069	0.5	Pass

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

Agilent Spectrum Analyzer - Occupied	3W					
R T RF 50 Ω AC Center Freq 2.44200000) GHz	SENSE:INT Center Freq: 2.4420000 . Trig: Free Run #Atten: 30 dB	ALIGN AUTO DOO GHz Avg Hold: 100/100		10:06:27 AMC dio Std: None dio Device: B'	,
Ref Offset 2.53 c 0 dB/div Ref 22.53 dB	IB				2.44231	5 GHz
_og						
12.5						
2.53		\bigcirc	▲3			
7.47	- Vymmen	and the second sec	and a superior			
17.5	- Martin			m		
27.5				m	n	
37.5 mmmy www.					Nollina and	And a stranger
47.5		C		12	2	
57.5						
-67.5					10	
Center 2.442 GHz #Res BW 100 kHz		#VBW 300 k	Hz		Spar Sweep 1	1 2 MHz 333 ms
Occupied Bandwid	th	Total Power	1.69 dBm			
1.	0458 MHz					
Transmit Freq Error	-26.898 kHz	OBW Power	99.00 %			
x dB Bandwidth	684.7 kHz	x dB	-6.00 dB			
ISG			STATUS			

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2442MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2480MHz Ant1

gilent Spectrum Analyzer - Occupie	d BW				
enter Freq 2.4800000	00 GHz #IFGain:Low	SENSE:INT Center Freq: 2.480000 Trig: Free Run #Atten: 30 dB	ALIGNAUTO 000 GHz Avg Hold: 100/100		10:31:45 AMOct 23, 202 dio Std: None dio Device: BTS
Ref Offset 2.58 D dB/div Ref 22.58 dl				Mkr3	2.480531 GH -10.580 dBn
2.6					
58		1			
2	\wedge^2	A	3		
4	and the part of th	and a Church	more a free from the second	A AND A	0
4 monorman a	5			1 1 1 W	wwww
1 martin					marin
1 MW	2			2	h
1					
4			2		
nter 2.48 GHz es BW 100 kHz		#VBW 300 k	Hz		Span 3 MH Sweep 1.333 m
Occupied Bandwidth		Total Power	2.03 dBm		
	2.0543 MHz				
Transmit Freq Error	-3.296 kHz	OBW Power	99.00 %		
k dB Bandwidth	1.069 MHz	x dB	-6.00 dB		
1					
			STATUS		

Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.0315
NVNT	BLE 1M	2442	Ant1	1.0343
NVNT	BLE 1M	2480	Ant1	1.0270
NVNT	BLE 2M	2402	Ant1	2.0263
NVNT	BLE 2M	2442	Ant1	2.0478
NVNT	BLE 2M	2480	Ant1	2.0318

OBW NVNT BLE 1M 2402MHz Ant1

OBW NVNT BLE 1M 2442MHz Ant1

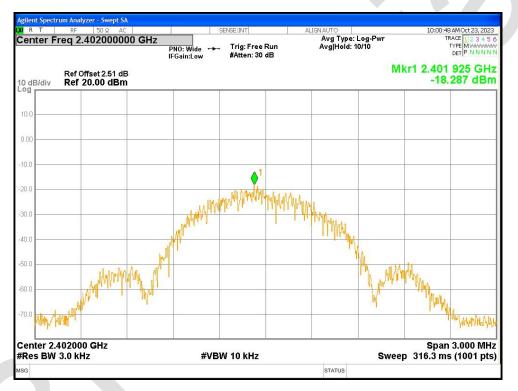


OBW NVNT BLE 1M 2480MHz Ant1

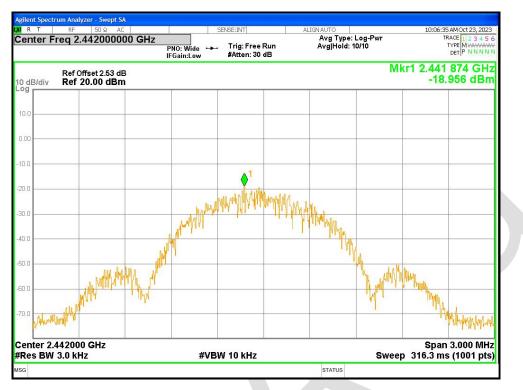
OBW NVNT BLE 2M 2402MHz Ant1

OBW NVNT BLE 2M 2442MHz Ant1

OBW NVNT BLE 2M 2480MHz Ant1


Center Freq 2.48000000 GHz #IFGain:Low Center Freq: 2.480000000 GHz Trig: Free Run Avg Hold: 100/100 Radio Device: BTS Ref Offset 2.58 dB Ref 22.58 dB Center 2.48 GHz Center 2.48 GHz Span 3 MH	Agilent Spectrum Analyzer - Occupied BW	/			
10 dB/dlv Ref 22.58 dBm 	R T RF 50Ω AC Center Freq 2.480000000		Center Freq: 2.480000 Trig: Free Run	000 GHz	
1226 258 242 274 274 274 274 274 274 274					
228 7.42 7.42 7.42 7.42 7.42 7.44 7.44 7.44 7.44 7.44 7.44 7.44 7.44 7.44 7.44 7.44 7.45 7.4 7.45 7.					
7.42	//90944				
27.4 47.4			~		
37.4 37.4 37.4 57.4 37.4 37.4 57.4 37.4 57.4 37.4 57.4 37.4 57.4 37.4 57.4 37.4 57.4 37.4 57.4 37.4 57.4 37.4 57.4 37.4 57.4 37.4 57.4 37.4 57.4 37.4 57.4 37.4 57.4 37.4 57.4 37.4 57.4 37.4 57.4 37.4 57.4 57.4 57.4	7.4	mon	amer Maymon	man	
A7.4	27.4	8		1 And P	Man
Total Power 1.91 dBm Cocupied Bandwidth Total Power 1.91 dBm 2.0318 MHz OBW Power 99.00 %					mm
Transmit Freq Error T.056 kHz OBW Power 99.00 %	<u></u>				7
Res BW 30 kHz Span 3 MH Res BW 30 kHz Sweep 3.333 m Occupied Bandwidth Total Power 1.91 dBm 2.0318 MHz Transmit Freq Error 7.056 kHz OBW Power 99.00 %					V
Res BW 30 kHz #VBW 100 kHz Sweep 3.333 m Occupied Bandwidth Total Power 1.91 dBm 2.0318 MHz Transmit Freq Error 7.056 kHz OBW Power 99.00 %	57.4				
2.0318 MHz Transmit Freq Error 7.056 kHz OBW Power 99.00 %	enter 2.48 GHz Res BW 30 kHz		#VBW 100 k	Hz	Span 3 MHz Sweep 3.333 ms
2.0318 MHz Transmit Freq Error 7.056 kHz OBW Power 99.00 %	Occupied Bandwidth	1	Total Power	1.91 dBm	
x dB Bandwidth 2.439 MHz x dB -26.00 dB	Transmit Freq Error	7.056 kHz	OBW Power	99.00 %	
	x dB Bandwidth	2.439 MHz	x dB	-26.00 dB	
SG STATUS					

	-	•				
Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-18.287	8	Pass
NVNT	BLE 1M	2442	Ant1	-18.956	8	Pass
NVNT	BLE 1M	2480	Ant1	-20.037	8	Pass
NVNT	BLE 2M	2402	Ant1	-21.532	8	Pass
NVNT	BLE 2M	2442	Ant1	-21.554	8	Pass
NVNT	BLE 2M	2480	Ant1	-21.684	8	Pass


Maximum Power Spectral Density Level

PSD NVNT BLE 1M 2402MHz Ant1

PSD NVNT BLE 1M 2442MHz Ant1

PSD NVNT BLE 1M 2480MHz Ant1

PSD NVNT BLE 2M 2402MHz Ant1