	と 気 U SHNOLOGY		
	TEST REPC	RT	
FCC ID :	2AON7-7998		
Test Report No:	TCT220407E021	(\mathcal{C})	(\mathbf{c}^{\prime})
Date of issue:	May 07, 2022		
Testing laboratory::	SHENZHEN TONGCE TES	TING LAB	X\
Testing location/ address:	TCT Testing Industrial Park Street, Bao'an District Shen Republic of China		
Applicant's name::	TZUMI Electronics, LLC		(\mathbf{c}^{*})
Address:	16 EAST 34TH STREET 16 United States	TH FLOOR, NEW YO	RK 10016,
Manufacturer's name :	Shenzhen Qi'Ao Communic	ation Tech Co., Ltd	
Address:	16/F, Block C, 2nd Phase o Shenzhen, China	f Central Avenue, Baoa	an District,
Standard(s):	FCC CFR Title 47 Part 15 S	Subpart C	
Product Name::	Task Lamp		No.
Trade Mark:	ATMOSPERES		_
Model/Type reference :	7998		
Rating(s):	DC 5V		
Date of receipt of test item	Apr. 07, 2022		(C)
Date (s) of performance of test:	Apr. 07, 2022 - May 07, 202	22	-25
Tested by (+signature) :	Rleo LIU	Pheo by ronge	ETR
Check by (+signature) :	Beryl ZHAO	BoyComTC	TING
Approved by (+signature):	Tomsin	Tomsmis	

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1.	General Pro	oduct Inf	ormation				3
	1.1. EUT desc	cription					3
	1.2. Model(s)	list				 	3
2.	Test Result	Summa	ry				4
3.	General Info	ormation				 \sim	5
	3.1. Test envi						
	3.2. Descripti	on of Sup	port Units				5
4.	Facilities ar	nd Accre	ditations				6
	4.1. Facilities						
	4.2. Location		<u> </u>		<u> </u>		6
	4.3. Measurer	ment Unce	ertainty			 	6
5.	Test Result	s and Me	easureme	ent Data		 	7
	5.1. Antenna	requireme	ent				7
	5.2. Conducte						
	5.3. Radiated	Spurious	Emission	Measuren	nent	 	12
Ар	pendix A: P	hotogra	phs of Te	est Setup			
Ар	pendix B: P	hotogra	phs of E	UT			

1. General Product Information

1.1.EUT description

Product Name:	Task Lamp		
Model/Type reference:	7998		S
Sample Number:	TCT220407E021-0101		
Operation Frequency:	110.58kHz - 172.76kHz		Ś
Modulation Technology:	Load modulation		
Antenna Type:	Inductive loop coil Antenna	$\langle \mathcal{C} \rangle$	
Rating(s):	DC 5V		

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2.Model(s) list

None.

Page 3 of 32

Report No.: TCT220407E021

2. Test Result Summary

Requirement	(CFR 47 Se		Result		
Antenna requirement		§15.20	PASS			
AC Power Line Conducted Emission		§15.20)7		PASS	
Spurious Emission		§15.209((a)(f)		PASS	
lote: 1. PASS: Test item meets the req 2. Fail: Test item does not meet th						Real of the second seco
3. N/A: Test case does not apply 4. The test result judgment is deci	to the test objec		rd.			
Hotline: 400-6611-140 Tel: 8	36-755-27673				Page	e 4 of 3

3. General Information

3.1. Test environment and mode

Operating Environment:

Condition	Conducted Emission	Radiated Emission					
Temperature:	25 °C	25.1 °C					
Humidity:	55 % RH	50 % RH					
Atmospheric Pressure:	1010 mbar	1010 mbar					
Test Mode:							

Test Mode:

Engineering mode: Keep the	EUT in continuous transmitting (5W Max).
----------------------------	--

The sample was placed 0.8m for the measurement below above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Mobile Phone	SM-G9350	R28HA2ER3GT	/	SAMSUNG
Adapter	EP-TA200	R37M4PR3QD1SE3	/	SAMSUNG

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

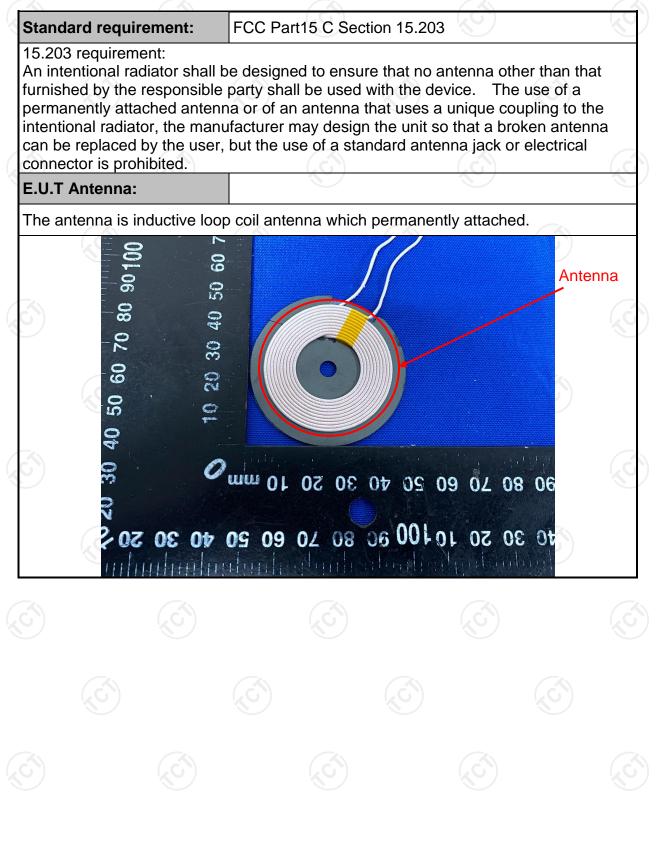
4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty


The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	🕙 ± 4.22 dB 🔮
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Page 7 of 32

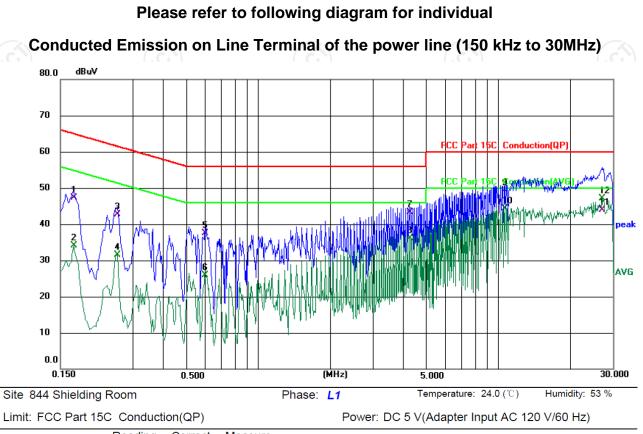
5.2. Conducted Emission

5.2.1. Test Specification

 Test Procedure: impedance stabilization network (L.I.S.N.). The provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the material power through a LISN that provides a 500hm/50u coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup are photographs). Both sides of A.C. line are checked for maximute conducted interference. In order to find the maximute mission, the relative positions of equipment and all the interface cables must be changed according ANSI C63.10: 2013 on conducted measurement. 	.z.i. rest specification								
Frequency Range: 150 kHz to 30 MHz Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limits: Frequency range Limit (dBuV) 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Ferture Plane Reference Plane ELINT Adapter Test Setup: Test table/Insulation plane Reference Plane Remark ELISIN ELISIN Test Mode: Transmitting Mode 1. The E.U.T is connected to an adapter through a lini impedance stabilization network (L.I.S.N.). The provides a 500hm/50uH coupling impedance for the measuring equipment. Test Procedure: Test Procedure: Set of A.C. line are checked for maximu conducted interference. In order to find the maximu conducted i	Test Requirement:	FCC Part15 C Section 15.207							
Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limits: Frequency range Limit (dBuV) (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Test Setup: Reference Plane Test Mode: Transmitting Mode 1 The E.U.T is connected to an adapter through a lini impedance stabilization network (L.I.S.N). Th <t< td=""><td>Test Method:</td><td colspan="8">ANSI C63.10:2013</td></t<>	Test Method:	ANSI C63.10:2013							
Limits: Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 46 5-30 60 50 Reference Plane Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2"Colspan="2	Frequency Range:	150 kHz to 30 MHz							
Limits: Image: Construct of the second s	Receiver setup:	RBW=9 kHz, VBW=30	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
Limits: (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Image: Colspan="2">Image: Colspan="2">Colspan="2"Colspan=		Frequency range	Limit (dBuV)					
Limits: 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Image: Colspan="2">Image: Colspan="2" Test Setup: Colspan="2" Test table/Insulation plane Test Mode: Test Mode: Transmitting Mode 1. The E.U.T is connected to an adapter through a lime impedance stabilization network (L.I.S.N.). The provides a 500hm/50UH coupling impedance for the measuring equipment. Test Procedure: Test Procedure: Test Procedure: Test Procedure: Oblic Minite Test Impediate Colspan= 2 Colspan="2">Colspan= 2 Colspan= 2 Colspan="2">Colspan= 2 Colspan= 2 Colspan="2">Colspan= 2 Colspan= 2 Colspan="2">Colspan= 2 Colspan= 2 Colsp				/					
0.5-5 56 46 5-30 60 50 Reference Plane Image: Colspan="2">Image: Colspan="2" Colspan=	Limits:								
Test Setup: Reference Plane Image: Test Setup: Image: Test table/Insulation plane Remark: E.U.T E.U.T Adapter Test Mode: Transmitting Mode 1. The E.U.T is connected to an adapter through a lin impedance stabilization network (L.I.S.N.). The provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the map power through a LISN that provides a 500hm/50uc coupling impedance with 500hm termination. (Pleas refer to the block diagram of the test setup ar photographs). 3. Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emission, the relative positions of equipment and all the interface cables must be changed according ANSI C63.10: 2013 on conducted measurement.		0.5-5	56						
Test Setup: Image: Constraint of the set setup of the setup		5-30	60	50					
Test Setup: Image: Constraint of the set o		Refere	nce Plane						
 Test Procedure: 1. The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). The provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the material power through a LISN that provides a 500hm/50u coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup are photographs). 3. Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emission, the relative positions of equipment and all the interface cables must be changed according ANSI C63.10: 2013 on conducted measurement. 	Test Setup:	Image: Constraint of the second system Image: Constraint of the second system Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network							
 Test Procedure: impedance stabilization network (L.I.S.N.). The provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the material power through a LISN that provides a 500hm/50u coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup are photographs). Both sides of A.C. line are checked for maximute conducted interference. In order to find the maximute mission, the relative positions of equipment and all the interface cables must be changed according ANSI C63.10: 2013 on conducted measurement. 	Test Mode:	Transmitting Mode							
	Test Procedure:	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 							
	Test Result:	PASS							

5.2.2. Test Instruments

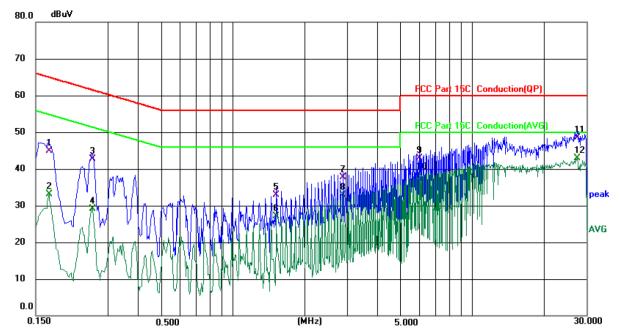
(Conducted Emission Shielding Room Test Site (843)											
N	Equipment	Manufacturer	Model	Serial Number	Calibration Due							
	EMI Test Receiver	R&S	ESCI3	100898	Jul. 07, 2022							
	Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck NSLK 8126		8126453	Feb. 24, 2023							
(Line-5	тст	CE-05	N/A	Jul. 07, 2022							
Ň	EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A							



Page 9 of 32

5.2.3. Test data

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∀	dB	Detector	Comment
1		0.1700	36.82	10.56	47.38	64.96	-17.58	QP	
2		0.1700	23.45	10.56	34.01	54.96	-20.95	AVG	
3		0.2580	32.44	10.31	42.75	61.50	-18.75	QP	
4		0.2580	21.22	10.31	31.53	51.50	-19.97	AVG	
5		0.5979	27.34	10.14	37.48	56.00	-18.52	QP	
6		0.5979	15.85	10.14	25.99	46.00	-20.01	AVG	
7		4.2619	33.16	10.12	43.28	56.00	-12.72	QP	
8		4.2619	26.08	10.12	36.20	46.00	-9.80	AVG	
9		10.7260	39.04	10.24	49.28	60.00	-10.72	QP	
10		10.7260	34.09	10.24	44.33	50.00	-5.67	AVG	
11		27.0820	33.22	10.59	43.81	60.00	-16.19	QP	
12	*	27.0820	36.52	10.59	47.11	50.00	-2.89	AVG	


Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Humidity: 53 %

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Limit: FCC Part 15C Conduction(QP)

Temperature: 24.0 (℃) Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

No. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBu∨	dBuV	dB	Detector	Comment
1	0.1700	34.35	10.50	44.85	64.96	-20.11	QP	
2	0.1700	22.67	10.50	33.17	54.96	-21.79	AVG	
3	0.2580	32.44	10.31	42.75	61.50	-18.75	QP	
4	0.2580	18.81	10.31	29.12	51.50	-22.38	AVG	
5	1.5220	22.75	10.16	32.91	56.00	-23.09	QP	
6	1.5220	16.98	10.16	27.14	46.00	-18.86	AVG	
7	2.8900	27.50	10.18	37.68	56.00	-18.32	QP	
8	2.8900	22.66	10.18	32.84	46.00	-13.16	AVG	
9	6.0100	32.60	10.25	42.85	60.00	-17.15	QP	
10	6.0100	28.31	10.25	38.56	50.00	-11.44	AVG	
11	27.4700	37.94	10.52	48.46	60.00	-11.54	QP	
12 *	27.4700	32.47	10.52	42.99	50.00	-7.01	AVG	

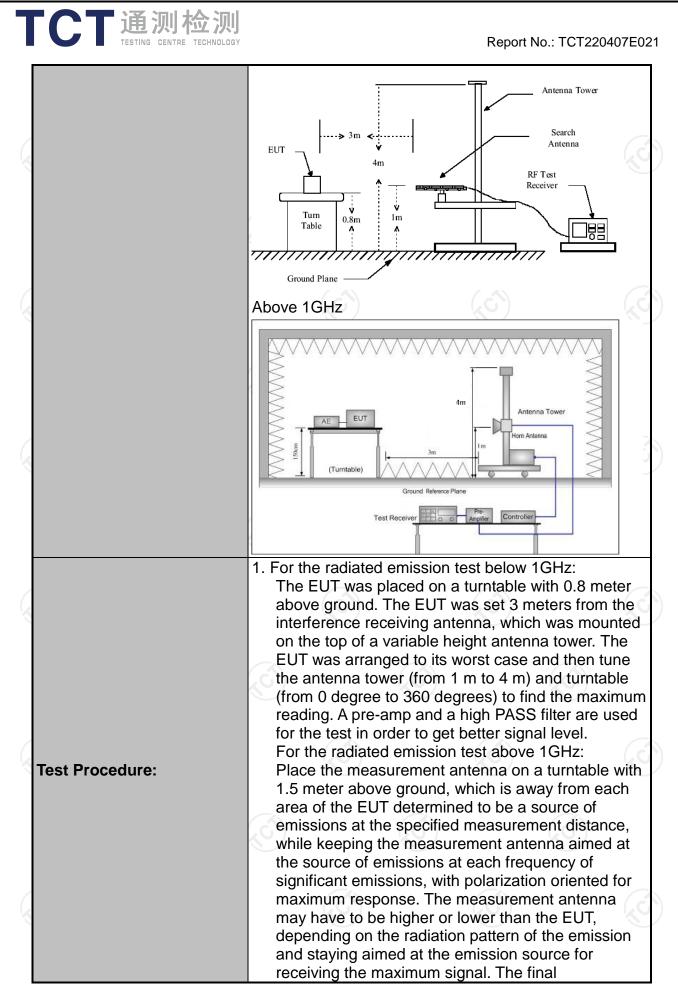
Phase: N

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V) = Reading level (dB\mu V) + Corr. Factor (dB)$ Limit $(dB\mu V) = Limit$ stated in standard Margin (dB) = Measurement (dB μ V) – Limits (dB μ V) Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Page 11 of 32

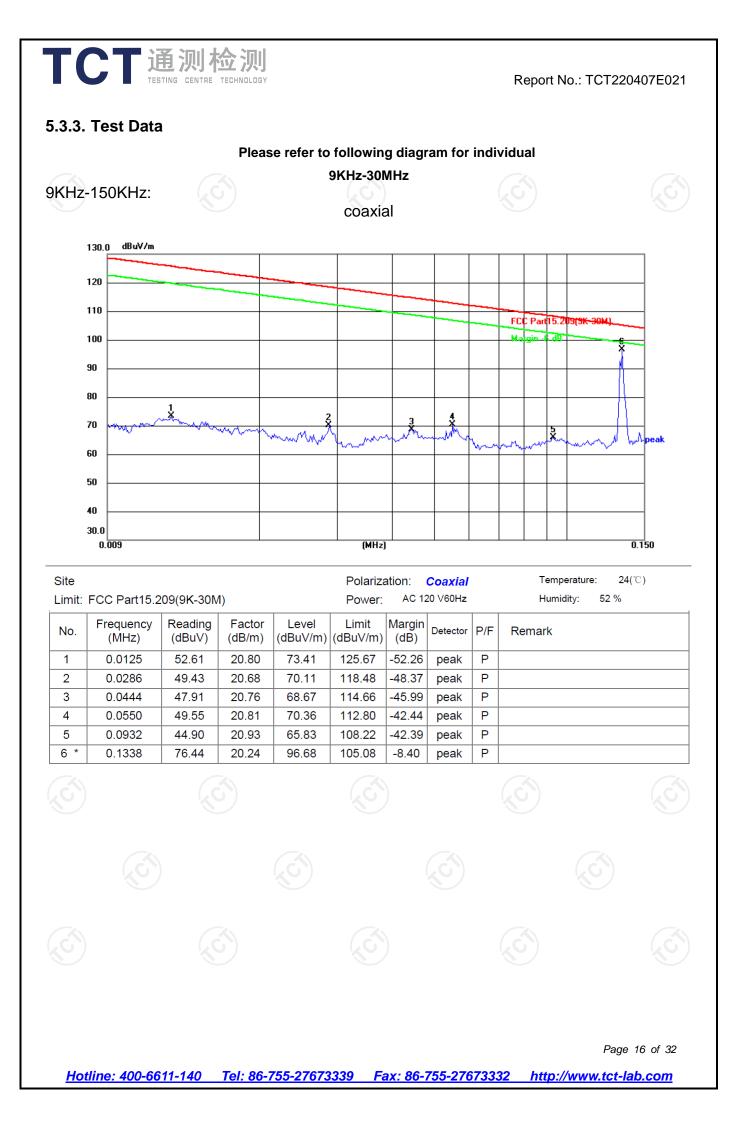

5.3. Radiated Spurious Emission Measurement

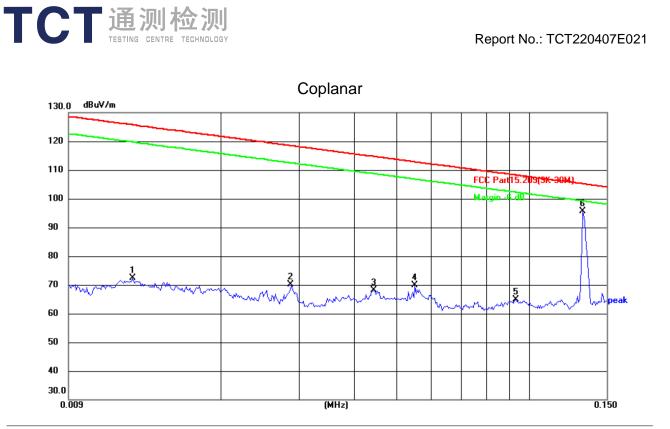
5.3.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.209										
Test Method:	ANSI C63.10: 2013										
Frequency Range:	9 kHz to 25 GHz										
Measurement Distance:	3 m										
Antenna Polarization:	Horizontal & Vertical										
Operation mode:	Refer to item 3.1										
	Frequency	Detector	RBW	VBW	Remark						
	9kHz- 150kHz	Quasi-peal	< 200Hz	1kHz	Quasi-peak Valu						
Receiver Setup:	150kHz- 30MHz	Quasi-peal	9kHz	30kHz	Quasi-peak Valu						
····	30MHz-1GHz	Quasi-peal	120KHz	300KHz	Quasi-peak Valu						
		Peak	1MHz	3MHz	Peak Value						
	Above 1GHz	Peak	1MHz	10Hz	Average Value						
	Frequen	су	Field Stro (microvolts)		Measurement Distance (meters						
	0.009-0.4	190	2400/F(I	,	300						
	0.490-1.7	705	24000/F	(KHz)	30						
	1.705-3	0	30		30						
	30-88		100	3							
	88-216		150	3							
Limit:	216-96	0	200		3						
	Above 9	60	500	3							
				X							
	Frequency		d Strength ovolts/meter)	Measure Distan (meter	ce Detector						
	Above 1GHz	,	500	3 Avera							
	Above ronz	-	5000	3	Peak						
Test setup:	For radiated emissions below 30MHz Distance = 3m Computer Pre -Amplifier 0.3m EUT Turn table Receiver										
	30MHz to 1GHz										

Page 12 of 32

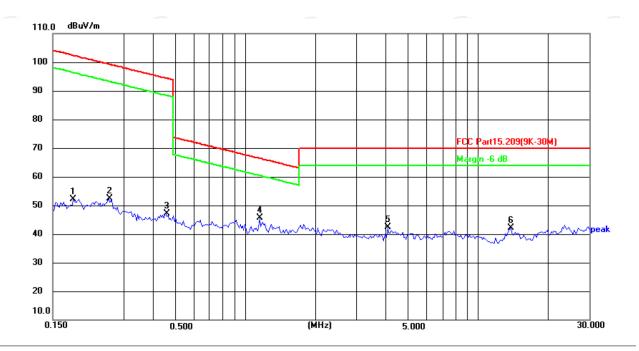



TCT通测检测 TESTING CENTRE TECHNOLOGY	Report No.: TCT220407E021
	 measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission
	 measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured;
	 (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement.
	For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW \ge 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 3.1 for details
Test results:	PASS C

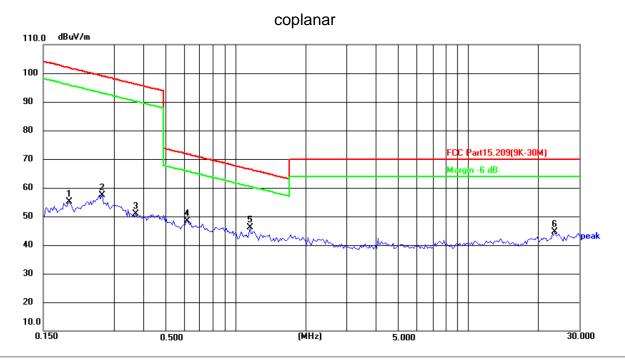
5.3.2. Test Instruments

Radiated Emission Test Site (966)								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
EMI Test Receiver	R&S	ESIB7	100197	Jul. 07, 2022				
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 07, 2022				
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 24, 2023				
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 24, 2023				
Pre-amplifier	HP	8447D	2727A05017	Jul. 07, 2022				
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022				
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022				
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022				
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023				
Antenna Mast	Keleto	RE-AM	N/A	N/A				
Coaxial cable	SKET	RC_DC18G-N	N/A	Feb. 24, 2023				
Coaxial cable	SKET	RC-DC18G-N	N/A	Feb. 24, 2023				
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 07, 2022				
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A				

Page 15 of 32


Site Limit:	Site .imit: FCC Part15.209(9K-30M)				Polarization: Coplanar Power: AC 120 V60Hz				Temperature: 24(℃) Humidity: 52 %
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	0.0125	51.61	20.80	72.41	125.67	-53.26	peak	Ρ	
2	0.0286	49.43	20.68	70.11	118.48	-48.37	peak	Ρ	
3	0.0444	47.41	20.76	68.17	114.66	-46.49	peak	Ρ	
4	0.0550	49.05	20.81	69.86	112.80	-42.94	peak	Ρ	
5	0.0932	43.90	20.93	64.83	108.22	-43.39	peak	Ρ	
6 *	0.1323	75.39	20.21	95.60	105.17	-9.57	peak	Ρ	

Page 17 of 32


150KHz-30MHz:

coaxial

Site	Polarization: Coaxial							Temperature: 24(℃)	
Limit:	FCC Part15.2		Power:	Power: AC 120 V60Hz			Humidity: 52 %		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	0.1836	31.59	20.62	52.21	102.33	-50.12	peak	Ρ	
2	0.2606	31.50	20.88	52.38	99.28	-46.90	peak	Ρ	
3	0.4582	25.60	21.51	47.11	94.38	-47.27	peak	Ρ	
4 *	1.1567	22.71	22.88	45.59	66.36	-20.77	peak	Ρ	
5	4.1025	13.55	28.87	42.42	70.00	-27.58	peak	Ρ	
6	13.7980	22.46	19.59	42.05	70.00	-27.95	peak	Ρ	
				6.15			1 12		

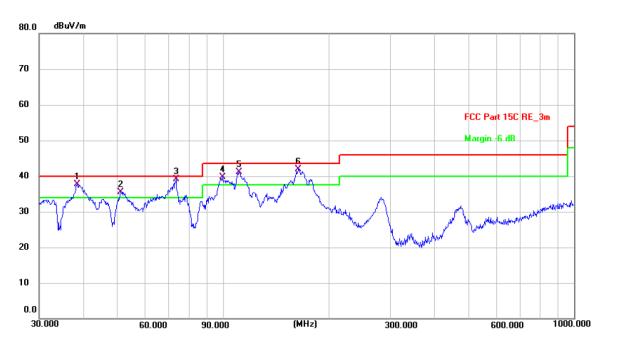
Page 18 of 32


TCT通测检测 TESTING CENTRE TECHNOLOGY

Site	ite				Polariza	ation:	Coplana	ir	Temperature: 24(℃)
Limit:	Limit: FCC Part15.209(9K-30M)					AC 1	20 V60Hz	Humidity: 52 %	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	0.1935	34.43	20.65	55.08	101.87	-46.79	peak	Ρ	
2	0.2691	36.50	20.91	57.41	99.01	-41.60	peak	Ρ	
3	0.3744	29.69	21.23	50.92	96.14	-45.22	peak	Р	
4	0.6239	26.51	21.86	48.37	71.71	-23.34	peak	Ρ	
5 *	1.1567	23.21	22.88	46.09	66.36	-20.27	peak	Ρ	
6	23.4877	24.64	20.01	44.65	70.00	-25.35	peak	Р	

Page 19 of 32

30MHz-1GHz

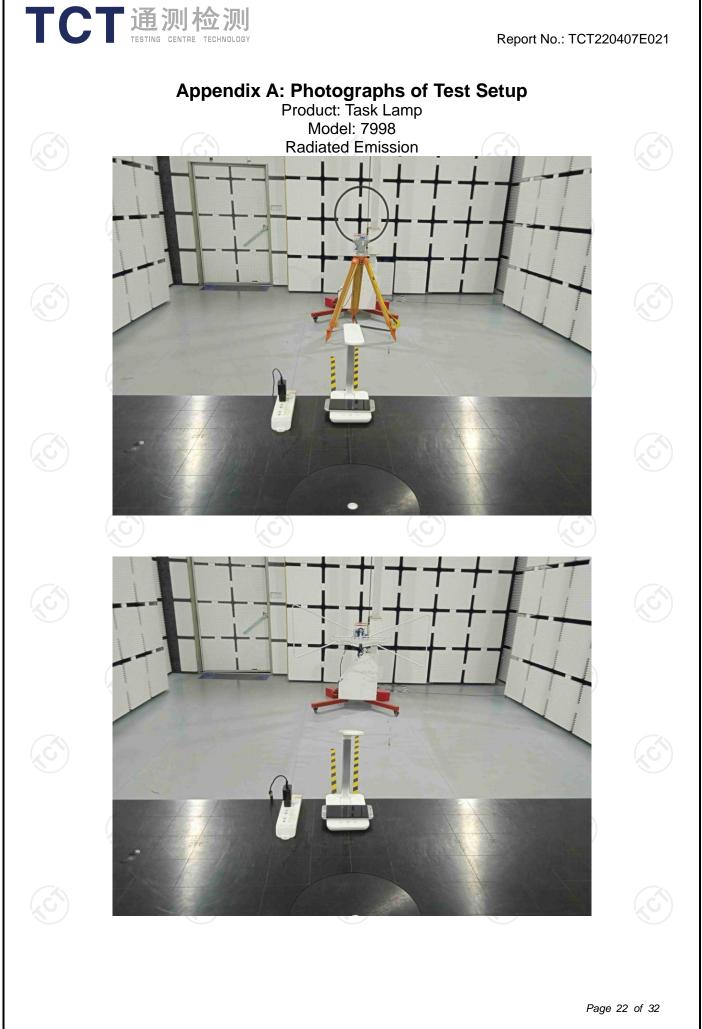


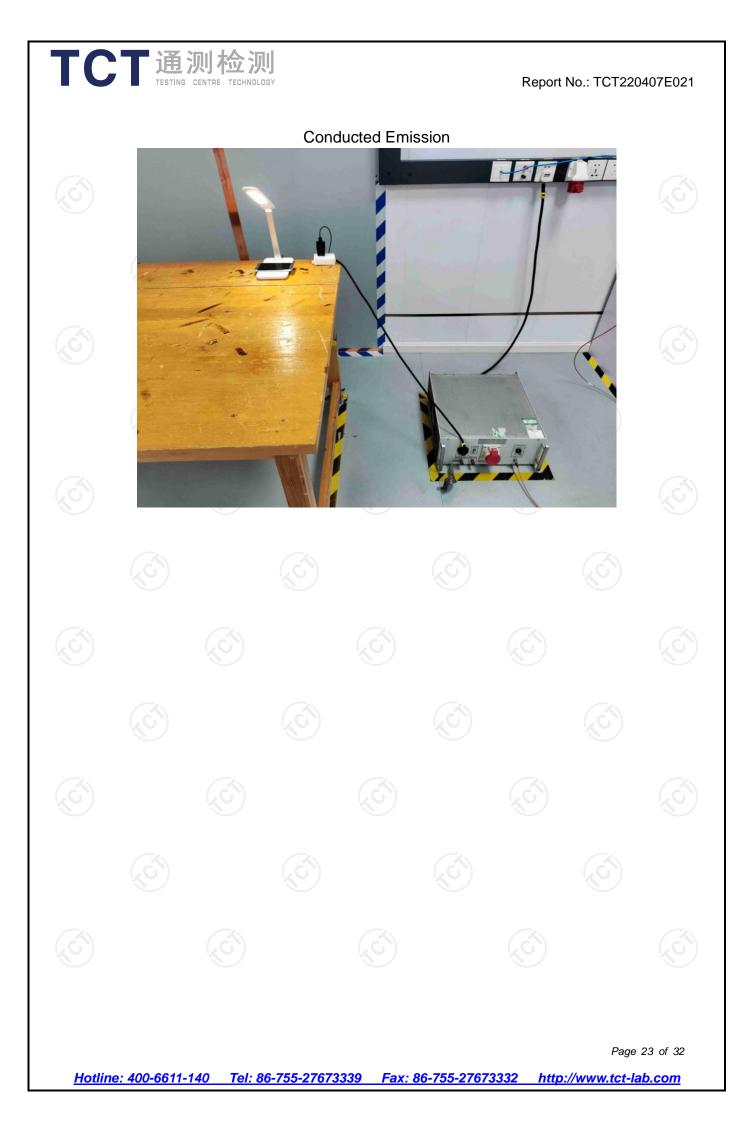
Site #2 3m Anechoic ChamberPolarization:HorizontalTemperature: 23.8(C)Humidity: 56 %Limit: FCC Part 15C RE_3mPower: DC 5 V(Adapter Input AC 120 V/60 Hz)

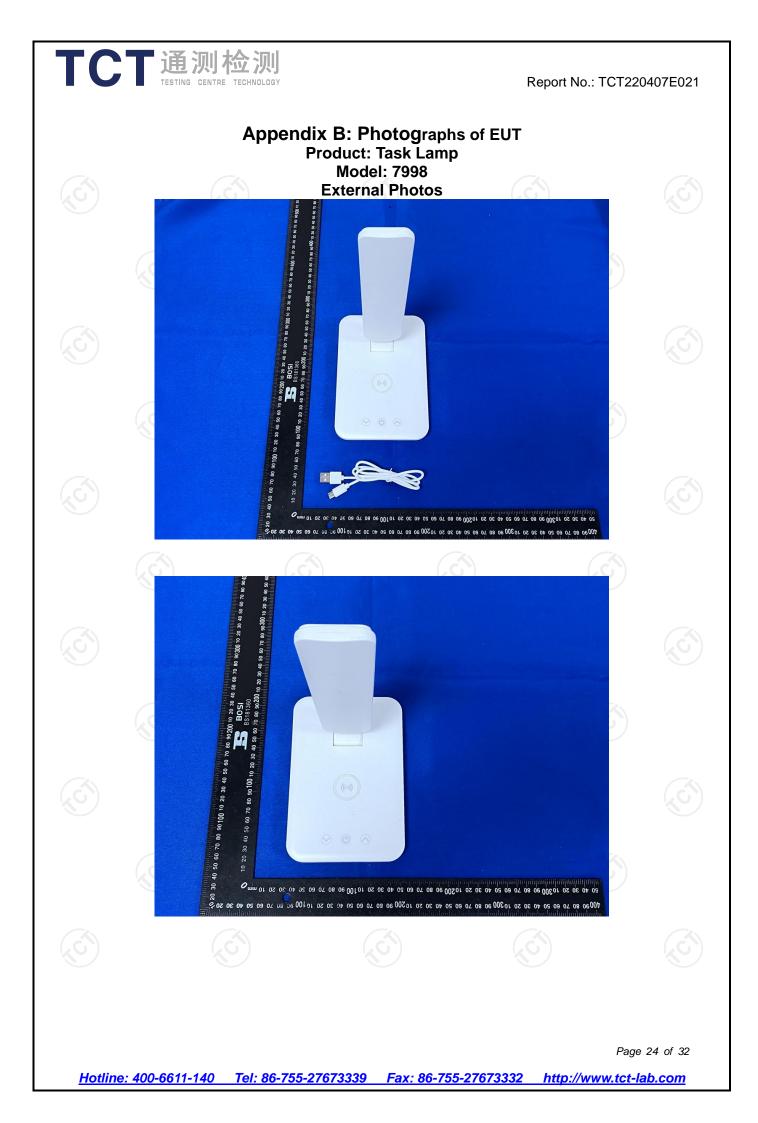
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	38.8877	24.84	13.84	38.68	40.00	-1.32	QP	Ρ	
2 !	51.1208	21.10	13.71	34.81	40.00	-5.19	QP	Ρ	
3	77.8653	21.90	9.69	31.59	40.00	-8.41	QP	Ρ	
4	103.0800	24.53	10.65	35.18	43.50	-8.32	QP	Ρ	
5	149.4857	19.75	13.33	33.08	43.50	-10.42	QP	Ρ	
6	284.9766	21.76	14.04	35.80	46.00	-10.20	QP	Ρ	

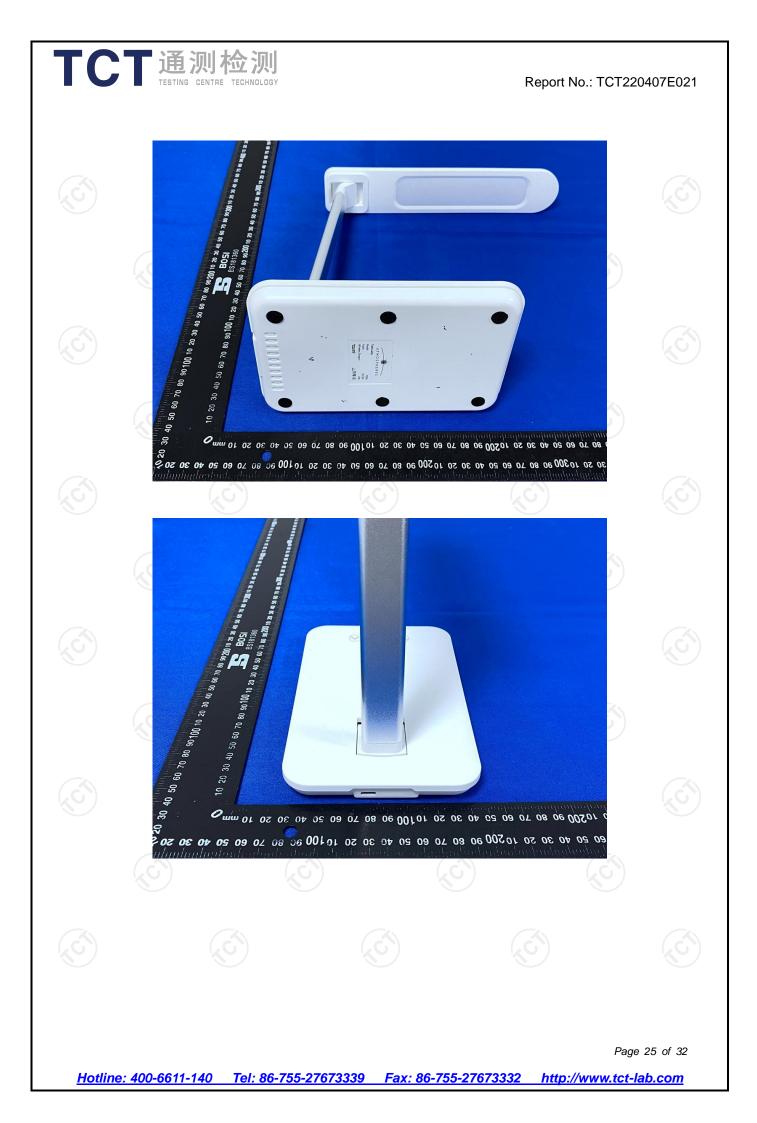
Page 20 of 32

TCT 通测检测 TESTING CENTRE TECHNOLOGY


	[∉] 2 3m Anecho FCC Part 150		r	Polarization: Vertical Power: DC 5 V(Adap					mperature: 23.8(C) Humidity: 56 % nput AC 120 V/60 Hz)
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 !	38.4808	23.99	13.78	37.77	40.00	-2.23	QP	Ρ	
2!	51.1208	21.83	13.71	35.54	40.00	-4.46	QP	Ρ	
3 *	73.6170	28.59	10.44	39.03	40.00	-0.97	QP	Ρ	
4 !	99.8777	29.23	10.40	39.63	43.50	-3.87	QP	Ρ	
5!	111.3468	29.79	11.30	41.09	43.50	-2.41	QP	Ρ	
6 !	163.7547	28.86	13.02	41.88	43.50	-1.62	QP	Ρ	


Note:


Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier


Page 21 of 32

Report No.: TCT220407E021

