

TEST REPORT

FCC ID: 2AOLW5WFC

Product: Wireless charger

Model No.: K10-5W

Additional Model No.: K10, Q8, Q8-5W, M8, M8-5W, JT-M10, JT-K10-5W, JT-Q8, JT-Q8-5W, JT-M8, M8-5W, JT-M8-5W, C1, C2, C3, C4, C5, JT-C1, JT-C2, JT-C3,

JT-C4, JT-C5
Trade Mark: N/A

Report No.: TCT171227E002

Issued Date: Jan. 10, 2018

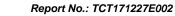
Issued for:

Shenzhen MHLL Technology Co., Limited
3 Floor, Building 3, Youpin Cultural Creative Park, Meilong Road, Minzhi,
Longhua New District, Shenzhen, China

Issued By:

Shenzhen Tongce Testing Lab.

1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China


TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TABLE OF CONTENTS

	est Certific est Result							3
	JT Descri _l		_					
	enera Info	•						
	I. Test envi							
	2. Description							
	acilities ar							
5.1	I. Facilities							7
	2. Location							
5.3	3. Measurer	nent Unce	rtainty		(0)		(0)	7
	est Result							
6.1	I. Antenna i	requireme	nt			((()		8
	2. Conducte							
	3. Radiated	_				•••••		13
	endix A: P endix B: P			-				

1. Test Certification

Report No.: TCT171227E002

Product:	Wireless char	ger					
Model No.:	K10-5W						
Additional Model No.:	JT-Q8-5W, JT		T-M8-5W, C1	K10-5W, JT-Q8, , C2, C3, C4, C5,			
Trade Mark:	N/A	(0)	(0)	(0)			
Applicant:	Shenzhen MH	ILL Technology	Co., Limited				
Address:	12 9 7	ng 3, Youpin Cu ua New District		e Park, Meilong Road, China	(2)		
Manufacturer:	Shenzhen MH	ILL Technology	Co., Limited				
Address:	3 Floor, Building 3, Youpin Cultural Creative Park, Meilong Road, Minzhi, Longhua New District, Shenzhen, China						
Date of Test:	Dec. 28, 2017	– Jan. 09, 2018	3				
Applicable Standards:	FCC CFR Title	e 47 Part 15 Su	bpart C				

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Garen

Reviewed By:

Joe Zhou

Joe Zhou

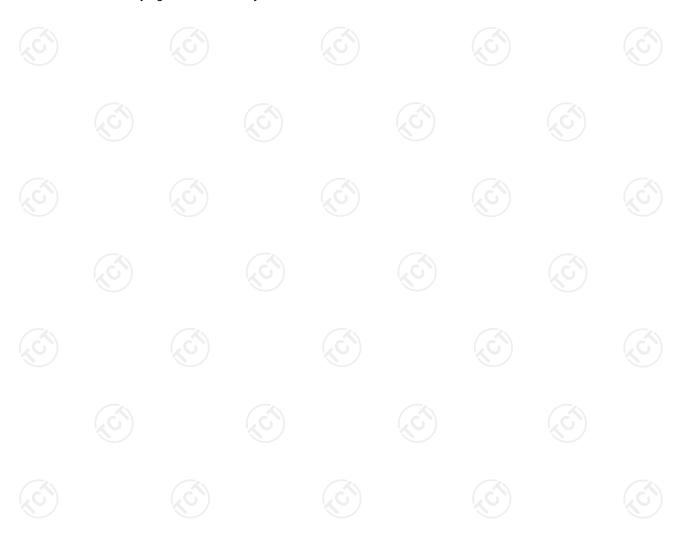
Joe Zhou

Tomsin

Date: Jan. 09, 2018

Date: Jan. 10, 2018

Jan. 10, 2018



2. Test Result Summary

Requirement	CFR 47 Section	Result	
Antenna requirement	§15.203	PASS	
AC Power Line Conducted Emission	§15.207	PASS	
Spurious Emission	§15.209(a)(f)	PASS	

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. EUT Description

Product:	Wireless charger				
Model No.:	K10-5W				
Additional Model No.:	K10, Q8, Q8-5W, M8, M8-5W, JT-M10, JT-K10-5W, JT-Q8, JT-Q8-5W, JT-M8, M8-5W, JT-M8-5W, C1, C2, C3, C4, C5, JT-C1, JT-C2, JT-C3, JT-C4, JT-C5				
Trade Mark:	N/A				
Hardware Version:	+V1.0				
Software Version:	+V1.0				
Operation Frequency:	110-205KHz				
Number of Channel:	20 Channels				
Modulation Technology:	MSK				
Antenna Type:	Inductive loop coil Antenna				
Antenna Gain:	0dBi				
Remark:	All models above are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement.				

Operation Frequency each of channel

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	0.110	6	0.135	11	0.160	16	0.185
2	0.115	7	0.140	12	0.165	17	0.190
3	0.120	8	0.145	13	0.170	18	0.195
4	0.125	9	0.150	14	0.175	19	0.200
5	0.130	10	0.155	15	0.180	20	0.205

4. Genera Information

4.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%) with Fully-charged battery.

The sample was placed (0.1m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	HW-059200CHQ	K68247F5H01734	1	HUAWEI
Mobilephone honor 9		5JPDU17610004560	1	honor

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District,

Shenzhen, Guangdong, China

TEL: +86-755-27673339

5.3. Measurement Uncertainty

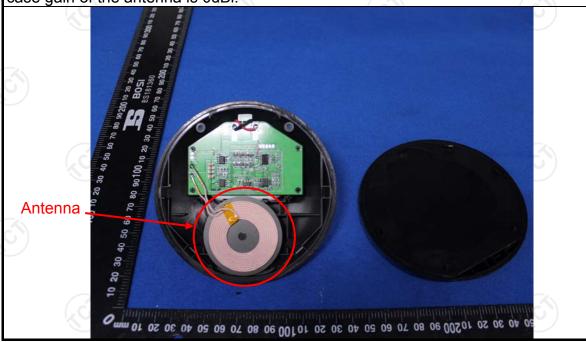
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement:


FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is inductive loop coil Antenna which permanently attached, and the best case gain of the antenna is 0dBi.

6.2. Conducted Emission

6.2.1. Test Specification

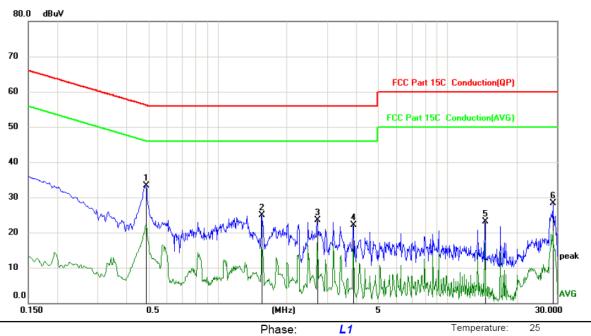
Tost Poquiroment	FCC Part15 C Section	15 207	(20)				
Test Requirement:							
Test Method:	ANSI C63.10:2013						
Frequency Range:	150 kHz to 30 MHz						
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56 60	(dBuV) Average 56 to 46* 46 50				
Test Setup:	Adapter Filter AC pow E.U.T Adapter Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network						
Test Mode:	Test table height=0.8m Charging + Transmittin	ng Mode					
Test Procedure:	 Charging + Transmitting Mode The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 						
Test Result:	PASS						

6.2.2. Test Instruments

NG CENTRE TECHNOLOGY Report No.: TCT171227E002

Conducted Emission Shielding Room Test Site (843)											
Equipment	Manufacturer	Model	Serial Number	Calibration Due							
Test Receiver	R&S	ESPI	101401	Jun. 12, 2018							
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 27, 2018							
Coax cable (9KHz-30MHz)	тст	CE-05	N/A	Sep. 27, 2018							
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A							

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).



6.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

Power: AC 120V/60Hz Humidity: 55 %

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBu∀	dB	Detector	Comment
1	*	0.4875	22.08	11.32	33.40	56.21	-22.81	peak	
2		1.5585	13.46	11.48	24.94	56.00	-31.06	peak	
3		2.7150	12.00	11.44	23.44	56.00	-32.56	peak	
4		3.8985	11.12	11.01	22.13	56.00	-33.87	peak	
5		14.5680	11.36	11.67	23.03	60.00	-36.97	peak	
6		28.7880	17.67	10.71	28.38	60.00	-31.62	peak	

Note:

Site

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

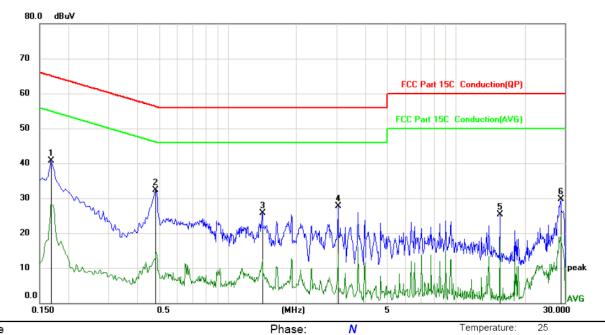
Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak


AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site Phase: N Temperature: 25
Limit: FCC Part 15C Conduction(QP) Power: AC 120V/60Hz Humidity: 55 %

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1680	29.13	11.49	40.62	65.06	-24.44	peak	
2 *	0.4830	21.06	11.32	32.38	56.29	-23.91	peak	
3	1.4190	14.38	11.42	25.80	56.00	-30.20	peak	
4	3.0525	16.47	11.32	27.79	56.00	-28.21	peak	
5	15.6075	13.66	11.57	25.23	60.00	-34.77	peak	
6	28.7880	18.91	10.71	29.62	60.00	-30.38	peak	

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

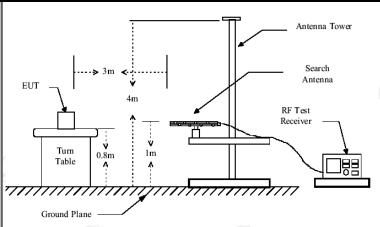
Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

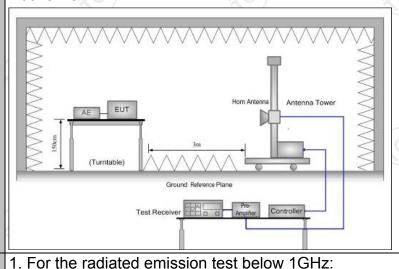
 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.


Page 12 of 28


6.3. Radiated Spurious Emission Measurement

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10	D: 2013							
Frequency Range:	9 kHz to 25 (GHz							
Measurement Distance:	3 m	· ·			100				
Antenna Polarization:	Horizontal & Vertical								
Operation mode:	Refer to item 4.1								
	Frequency 9kHz- 150kHz 150kHz-	Detector Quasi-pea Quasi-pea	k 200Hz	VBW 1kHz 30kHz	Quas	Remark si-peak Value si-peak Value			
Receiver Setup:	30MHz 30MHz-1GHz	Quasi-pea	k 100KHz	300KHz	Quas	si-peak Value eak Value			
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz		erage Value			
	Frequen	-	Field Str (microvolts	s/meter)	Measurement Distance (meters)				
	0.009-0.4 0.490-1.7		2400/F(KHz) 24000/F(KHz)		300 30				
	1.705-3	30		30					
	30-88	100		3					
	88-216		150		3				
Limit:	216-96		200			3			
	Above 9	60	500			3			
		5		(C, C)		1 _K C			
	Frequency		eld Strength ovolts/meter)	Distar	Measurement Distance Det (meters)				
	Above 1GHz	,	500	3	(c	Average			
	Above IGIIz	_	5000	3		Peak			
Test setup:	For radiated Some state of the	Distance = 3m Turn table	is below 3	0MHz	 [_	Computer			

Above 1GHz

The EUT was placed on a turntable with 0.8 meter

Test Procedure:

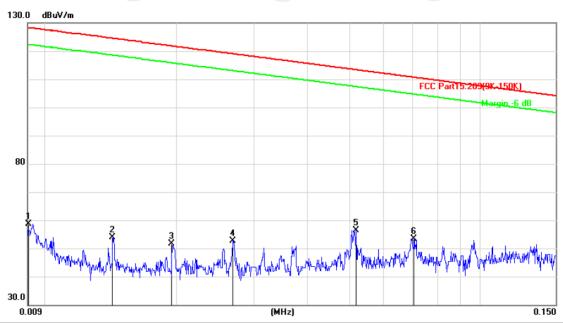
above ground. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high PASS filter are used for the test in order to get better signal level. For the radiated emission test above 1GHz: Place the measurement antenna on a turntable with 1.5 meter above ground, which is away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final

T 通测检测	
TESTING CENTRE TECHNOLOGY	Report No.: TCT171227EC measurement antenna elevation shall be that which
	maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 2. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission
	level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured;
	 (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement.
	For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW \geqslant 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 4.1 for details
Test results:	PASS (C)

6.3.2. Test Instruments

	Radiated Emission Test Site (966)										
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due							
Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Sep. 27, 2018							
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ	200061	Sep. 27, 2018							
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 27, 2018							
Pre-amplifier	HP	8447D	2727A05017	Sep. 27, 2018							
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 27, 2018							
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 27, 2018							
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 27, 2018							
Horn Antenna	Schwarzbeck	BBH 9170	582	Jun. 07, 2018							
Antenna Mast	Keleto	CC-A-4M	N/A	N/A							
Coax cable (9KHz-1GHz)	тст	RE-low-01	N/A	Sep. 27, 2018							
Coax cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 27, 2018							
Coax cable (9KHz-1GHz)	тст	RE-low-03	N/A	Sep. 27, 2018							
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 27, 2018							
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A							

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


6.3.3. Test Data

Report No.: TCT171227E002

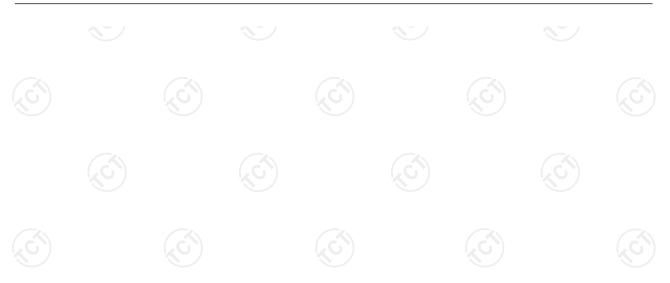
Please refer to following diagram for individual

9KHz-30MHz

9KHz-150KHz:

Site Polarization: Vertical Temperature: 25 Limit: FCC Part15.209(9K-150K) Power: AC 120V/60Hz Humidity: 55 %

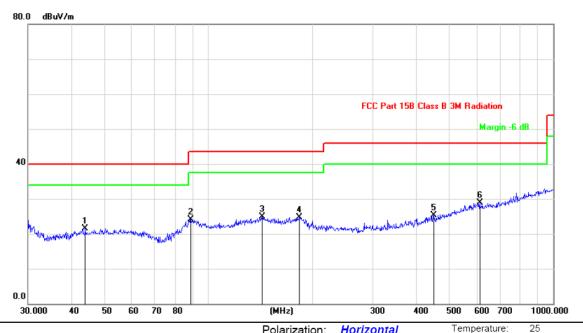
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		0.0091	58.58	0.00	58.58	128.4	-69.83	peak			
2		0.0142	32.48	21.47	53.95	124.5	-70.61	peak			
3		0.0194	33.01	18.72	51.73	121.8	-70.12	peak			
4		0.0269	33.76	18.86	52.62	119.0	-66.39	peak			
5	*	0.0517	35.91	20.51	56.42	113.3	-56.92	peak			
6		0.0704	31.51	21.79	53.30	110.6	-57.36	peak			



150KHz-30MHz:

Site Polarization: Vertical Temperature: 25 Limit: FCC Part15.209(150K-30M) Power: AC 120V/60Hz Humidity: 55 %

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	0.1658	34.04	26.07	60.11	103.2	-43.12	peak			
2	0.2255	31.88	25.75	57.63	100.5	-42.92	peak			
3 *	1.1834	33.56	24.94	58.50	66.16	-7.66	peak			
4	2.5266	34.10	24.66	58.76	69.50	-10.74	peak			
5	2.9152	34.41	24.64	59.05	69.50	-10.45	peak			
6	4.7968	27.41	24.51	51.92	69.50	-17.58	peak			



55 %

30MHz-1GHz

Horizontal:

Site Polarization: Horizontal Temperature:
Limit: FCC Part 15B Class B 3M Radiation Power: AC 120V/60Hz Humidity:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		43.9658	34.23	-12.75	21.48	40.00	-18.52	peak			
2		88.9637	38.23	-14.04	24.19	43.50	-19.31	peak			
3		143.3260	40.80	-15.94	24.86	43.50	-18.64	peak			
4		183.2005	38.52	-13.77	24.75	43.50	-18.75	peak			
5		449.5557	29.83	-4.47	25.36	46.00	-20.64	peak			
6	*	612.0642	29.59	-0.67	28.92	46.00	-17.08	peak			

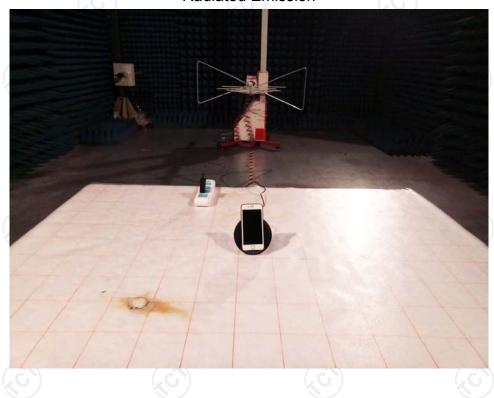
Vertical:

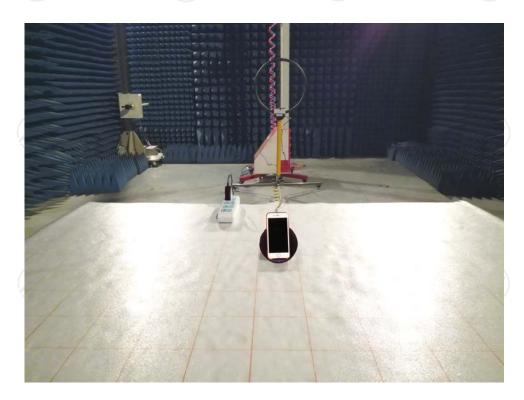
Site Polarization: Vertical Temperature: 25
Limit: FCC Part 15B Class B 3M Radiation Power: AC 120V/60Hz Humidity: 55 %

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	30.3173	34.35	-13.76	20.59	40.00	-19.41	peak			
2	46.0164	32.56	-12.71	19.85	40.00	-20.15	peak			
3	54.2610	34.37	-12.98	21.39	40.00	-18.61	peak			
4	74.9191	39.22	-17.27	21.95	40.00	-18.05	peak			
5	89.2764	34.95	-13.93	21.02	43.50	-22.48	peak			
6 *	146.3735	42.29	-15.88	26.41	43.50	-17.09	peak			

Note

Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier




Page 20 of 28

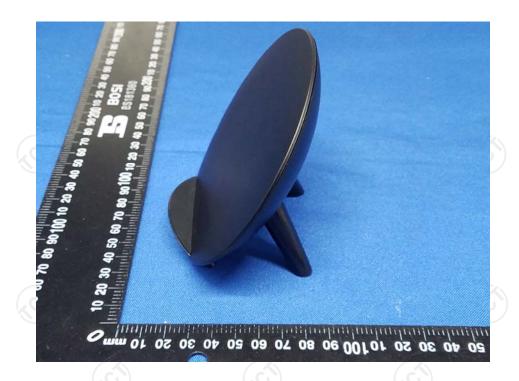
Appendix A: Photographs of Test Setup Product: Wireless charger

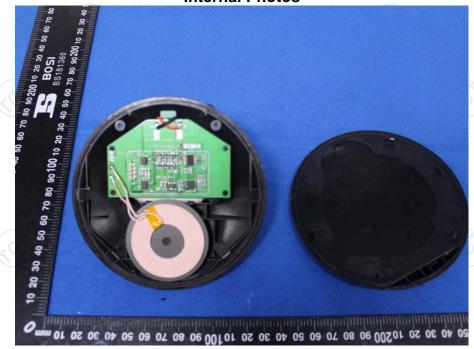
Product: Wireless charger
Model: K10-5W
Radiated Emission

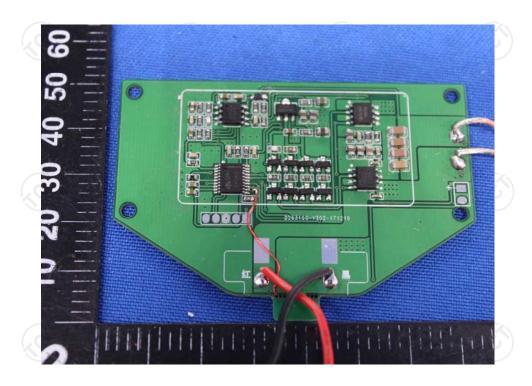
CE

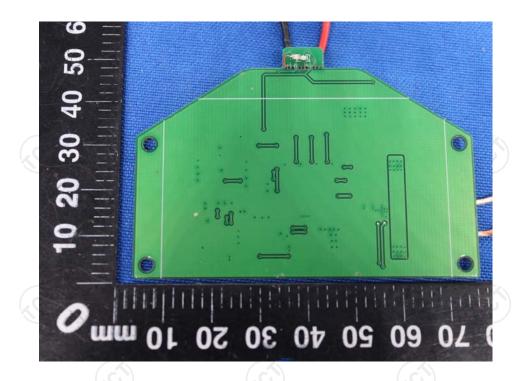
Appendix B: Photographs of EUT

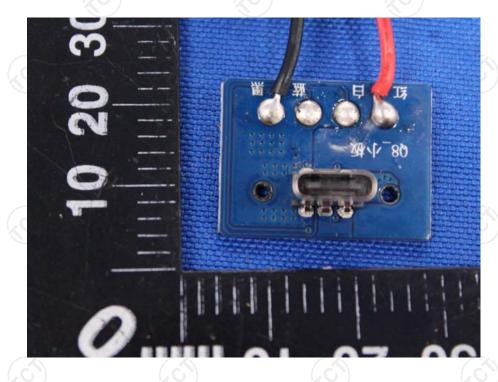
Product: Wireless charger Model: K10-5W External Photos










Product: Wireless charger Model: K10-5W Internal Photos

