

# JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZE201008501

# **FCC REPORT**

Applicant: Remote Tech LLC

Address of Applicant: 310 ALDER RD, DOVER DE 19904 USA

**Equipment Under Test (EUT)** 

Product Name: smart key

Model No.: RT-N145

FCC ID: 2AOKM-NI9

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.231

Date of sample receipt: 22 Oct., 2020

**Date of Test:** 23 Oct., to 30 Oct., 2020

Date of report issue: 02 Nov., 2020

Test Result: PASS\*

\* In the configuration tested, the EUT complied with the standards specified above.

#### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





**Version** 

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 02 Nov., 2020 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Test Engineer Prepared By: Date: 02 Nov., 2020

Check By: Date: 02 Nov., 2020

**Project Engineer** 





# 3 Contents

|   |       |                                                         | Page |
|---|-------|---------------------------------------------------------|------|
| 1 | COV   | /ER PAGE                                                | 1    |
| 2 | VER   | SION                                                    | 2    |
| 3 | CON   | NTENTS                                                  | 3    |
| 4 | TES   | T SUMMARY                                               | 4    |
| 5 | GEN   | IERAL INFORMATION                                       | 5    |
|   | 5.1   | CLIENT INFORMATION                                      | 5    |
|   | 5.2   | GENERAL DESCRIPTION OF E.U.T.                           | 5    |
|   | 5.3   | TEST MODE                                               |      |
|   | 5.4   | DESCRIPTION OF SUPPORT UNITS                            | 5    |
|   | 5.5   | MEASUREMENT UNCERTAINTY                                 | 5    |
|   | 5.6   | ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD |      |
|   | 5.7   | LABORATORY FACILITY                                     | 6    |
|   | 5.8   | LABORATORY LOCATION                                     | 6    |
|   | 5.9   | TEST INSTRUMENTS LIST                                   | 6    |
| 6 | TES   | T RESULTS AND MEASUREMENT DATA                          | 7    |
|   | 6.1   | ANTENNA REQUIREMENT                                     | 7    |
|   | 6.2   | RADIATED EMISSION                                       | 8    |
|   | 6.2.1 | 1 Field Strength Of The Fundamental Signal              | 10   |
|   | 6.2.2 | 2 Spurious Emissions                                    | 13   |
|   | 6.3   | 20dB Bandwidth                                          |      |
|   | 6.4   | DURATION TIME                                           | 19   |
| 7 | TES   | T SETUP PHOTOS                                          | 21   |
| Ω | FUT   | CONSTRUCTIONAL PHOTOS                                   | 22   |





# 4 Test Summary

| Test Item                                | Section in CFR 47 | Result |
|------------------------------------------|-------------------|--------|
| Antenna requirement                      | 15.203            | Pass   |
| Field strength of the fundamental signal | 15.231 (b)        | Pass   |
| Spurious emissions                       | 15.231 (b)/15.209 | Pass   |
| 20dB Bandwidth                           | 15.231 (c)        | Pass   |
| Duration Time                            | 15.231 (a)(1)     | Pass   |
| Conducted Emission                       | 15.207            | N/A    |

### Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: The EUT not applicable of the test item.
- The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

| Test Method: | ANSI C63.4-2014  |
|--------------|------------------|
|              | ANSI C63.10-2013 |



# 5 General Information

### **5.1 Client Information**

| Applicant:                                | Remote Tech LLC                  |  |
|-------------------------------------------|----------------------------------|--|
| Address:                                  | 310 ALDER RD, DOVER DE 19904 USA |  |
| Manufacturer/ Factory: Remote Tech LLC    |                                  |  |
| Address: 310 ALDER RD, DOVER DE 19904 USA |                                  |  |

# 5.2 General Description of E.U.T.

| Product Name:          | smart key                                                                     |
|------------------------|-------------------------------------------------------------------------------|
| Model No.:             | RT-N145                                                                       |
| Operation Frequency:   | 433.92MHz                                                                     |
| Channel numbers:       | 1                                                                             |
| Modulation type:       | FSK                                                                           |
| Antenna Type:          | PCB antenna                                                                   |
| Antenna gain:          | 0 dBi                                                                         |
| Power supply:          | DC 3V (CR2032 battery)                                                        |
| Test Sample Condition: | The test samples were provided in good working order with no visible defects. |

### 5.3 Test mode

| Transmitting mode:                                                                                                                                                                                                    | Ansmitting mode: Keep the EUT in transmitting mode with modulation (new battery used) |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Pre-Test Mode:                                                                                                                                                                                                        |                                                                                       |  |  |  |  |  |  |  |
| JYT has verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows: |                                                                                       |  |  |  |  |  |  |  |
| Axis                                                                                                                                                                                                                  | Axis X Y Z                                                                            |  |  |  |  |  |  |  |
| Field Strength(dBuV/m) 86.90 86.97 87.13                                                                                                                                                                              |                                                                                       |  |  |  |  |  |  |  |
| Final Test Mode:                                                                                                                                                                                                      |                                                                                       |  |  |  |  |  |  |  |
| According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup": Z axis (see the test setup photo)                                                                                    |                                                                                       |  |  |  |  |  |  |  |

# 5.4 Description of Support Units

N/A

5.5 Measurement Uncertainty

| <u> </u>                            |                      |
|-------------------------------------|----------------------|
| Parameters                          | Expanded Uncertainty |
| Radiated Emission (9kHz ~ 30MHz)    | ±3.12 dB (k=2)       |
| Radiated Emission (30MHz ~ 1000MHz) | ±4.32 dB (k=2)       |
| Radiated Emission (1GHz ~ 18GHz)    | ±5.16 dB (k=2)       |
| Radiated Emission (18GHz ~ 40GHz)   | ±3.20 dB (k=2)       |

# 5.6 Additions to, deviations, or exclusions from the method

No





### 5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

### ● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

### • A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

### 5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

### 5.9 Test Instruments list

| Radiated Emission: |                 |                      |            |                         |                             |  |  |  |
|--------------------|-----------------|----------------------|------------|-------------------------|-----------------------------|--|--|--|
| Test Equipment     | Manufacturer    | Model No. Serial No. |            | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |  |  |
| 3m SAC             | SAEMC           | 9m*6m*6m             | 966        | 07-22-2020              | 07-21-2021                  |  |  |  |
| BiConiLog Antenna  | SCHWARZBECK     | VULB9163             | 497        | 03-07-2020              | 03-06-2021                  |  |  |  |
| Broadband Antenna  | SCHWARZBECK     | VUBA9117             | 359        | 06-22-2020              | 06-21-2021                  |  |  |  |
| Horn Antenna       | SCHWARZBECK     | BBHA9120D            | 916        | 03-07-2020              | 03-06-2021                  |  |  |  |
| Horn Antenna       | SCHWARZBECK     | BBHA9120D            | 1805       | 06-22-2020              | 06-21-2021                  |  |  |  |
| Horn Antenna       | SCHWARZBECK     | BBHA9170             | 582        | 11-18-2019              | 11-17-2020                  |  |  |  |
| Loop Antenna       | SCHWARZBECK     | FMZB1519B            | 00044      | 03-07-2020              | 03-06-2021                  |  |  |  |
| EMI Test Software  | AUDIX           | E3                   | •          | Version: 6.110919b      |                             |  |  |  |
| Pre-amplifier      | HP              | 8447D                | 2944A09358 | 03-07-2020              | 03-06-2021                  |  |  |  |
| Pre-amplifier      | CD              | PAP-1G18             | 11804      | 03-07-2020              | 03-06-2021                  |  |  |  |
| Spectrum analyzer  | Rohde & Schwarz | FSP30                | 101454     | 03-07-2020              | 03-06-2021                  |  |  |  |
| Spectrum analyzer  | Rohde & Schwarz | FSP40                | 100363     | 11-18-2019              | 11-17-2020                  |  |  |  |
| EMI Test Receiver  | Rohde & Schwarz | ESRP7                | 101070     | 03-07-2020              | 03-06-2021                  |  |  |  |
| Simulated Station  | Anritsu         | MT8820C              | 6201026545 | 03-07-2020              | 03-06-2021                  |  |  |  |
| Cable              | ZDECL           | Z108-NJ-NJ-81        | 1608458    | 03-07-2020              | 03-06-2021                  |  |  |  |
| Cable              | MICRO-COAX      | MFR64639             | K10742-5   | 03-07-2020              | 03-06-2021                  |  |  |  |
| Cable              | SUHNER          | SUCOFLEX100          | 58193/4PE  | 03-07-2020              | 03-06-2021                  |  |  |  |



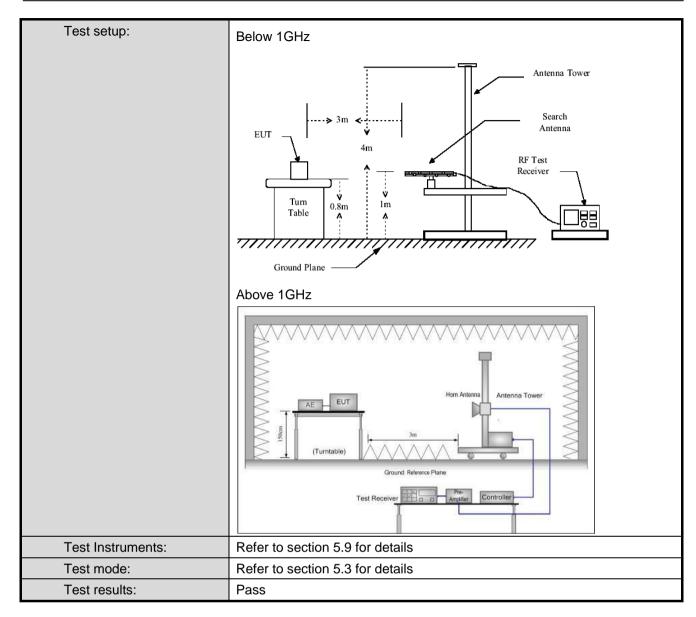


# 6 Test results and Measurement Data

# 6.1 Antenna requirement

| Standard requirement:                                    | CC Part15 C Section 15.203                                                                                                                                                                                                                                                                            |  |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| responsible party shall be us antenna that uses a unique | be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited. |  |  |  |  |
| E.U.T Antenna:                                           |                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| The EUT make use of a PCB                                | antenna, The typical gain of the antenna is 0dBi.                                                                                                                                                                                                                                                     |  |  |  |  |

JianYan Testing Group Shenzhen Co., Ltd.
No.110~116, Building B, Jinyuan Business Building, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Tel: +86-755-23118282, Fax: +86-755-23116366

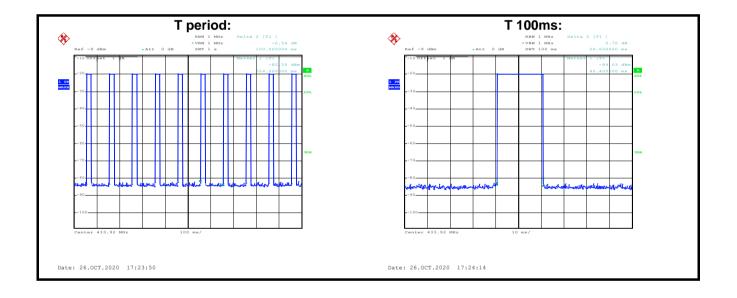





# 6.2 Radiated Emission

| O.Z Radiated Elliission | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |        |                  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|------------------|--|--|
| Test Requirement:       | FCC Part15 C Section 15.231(a) and 15.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |        |                  |  |  |
| Test Frequency Range:   | 30MHz to 5000MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |        |                  |  |  |
| Test site:              | Measurement Distance: 3m (Semi-Anechoic Chamber)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |        |                  |  |  |
| Receiver setup:         | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Frequency Detector RBW VBV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | VBW    | Remark           |  |  |
|                         | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120kHz             | 300kH: |                  |  |  |
|                         | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1MHz               | 3MHz   |                  |  |  |
| Limit:                  | Frequen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | су                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit (dBuV/m @3m) |        | Remark           |  |  |
| (Field strength of the  | 433.92M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80.83              |        | Average Value    |  |  |
| fundamental signal)     | +33.92IVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100.83             |        | Peak Value       |  |  |
| Limit:                  | Frequen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | су                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit (dBuV/m (    | @3m)   | Remark           |  |  |
| (Spurious Emissions)    | 30MHz-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.0               |        | Quasi-peak Value |  |  |
|                         | 88MHz-216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SMHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43.5               |        | Quasi-peak Value |  |  |
|                         | 216MHz-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.0               |        | Quasi-peak Value |  |  |
|                         | 960MHz-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.0               |        | Quasi-peak Value |  |  |
|                         | Above 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hz .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54.0               |        | Average Value    |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 74.0               |        |                  |  |  |
| Test Procedure:         | strength.  a. The EUT of the Albert of the EUT of the E | Or The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level whichever limit permits higher field strength.  a. The EUT was placed on the top of a rotating table 0.8m(below 1GHz) /1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.  b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.  c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.  d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.  e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.  f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi- |                    |        |                  |  |  |



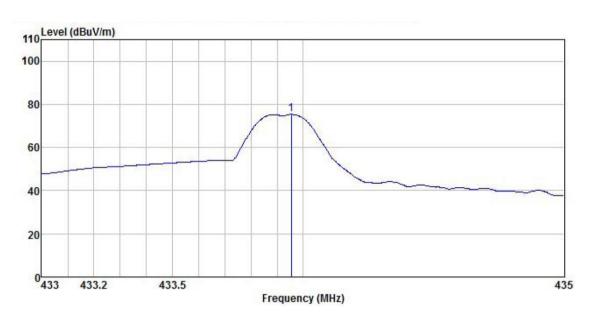







6.2.1 Field Strength Of The Fundamental Signal

|                    | Peak value           |                                                                             |                                                                    |                      |                    |                 |                       |        |              |
|--------------------|----------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------|--------------------|-----------------|-----------------------|--------|--------------|
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Antenr<br>Facto<br>(dB/m                                                    | r Loss                                                             | Preamp<br>Factor(dB) |                    | .evel<br>BuV/m) | Limit Line<br>(dBuV/m |        | Polarization |
| 433.92             | 55.15                | 19.17                                                                       | 1.03                                                               | 0.00                 | 7                  | 5.35            | 100.83                | -25.48 | Vertical     |
| 433.92             | 66.93                | 19.17                                                                       | 1.03                                                               | 0.00                 | 8                  | 7.13            | 100.83                | -13.70 | Horizontal   |
|                    |                      |                                                                             |                                                                    | Average value        | )                  |                 |                       |        |              |
| Frequency<br>(MHz) |                      | Level Duty Cycle Average value Limit Line (dBuV/m) factor (dBuV/m) (dBuV/m) |                                                                    |                      | Over Limit<br>(dB) | Polarization    |                       |        |              |
| 433.92             | 433.92 75.35         |                                                                             | -13.72                                                             | 61.63                |                    | 80.83           |                       | -19.20 | Vertical     |
| 433.92             | 87.13                |                                                                             | -13.72                                                             | 73.41                |                    | 80              | 0.83                  | -7.42  | Horizontal   |
|                    |                      | Aver                                                                        | age value=Peak                                                     | value + Duty C       | ycle I             | Factor          |                       |        |              |
| Calculat           | te Formula:          | Duty                                                                        | Duty cycle factor = 20log(Duty cycle)                              |                      |                    |                 |                       |        |              |
|                    |                      | Duty                                                                        | Duty cycle = on time/100 milliseconds or period, whichever is less |                      |                    |                 |                       |        |              |
|                    |                      | T on                                                                        | T on time =20.60(ms)                                               |                      |                    |                 |                       |        |              |
| Test data:         |                      | Тре                                                                         | T period =100(ms)                                                  |                      |                    |                 |                       |        |              |
|                    |                      | Duty                                                                        | Duty cycle =20.60%                                                 |                      |                    |                 |                       |        |              |
|                    |                      | Duty                                                                        | Duty cycle factor = 20log(Duty cycle) = -13.72                     |                      |                    |                 |                       |        |              |



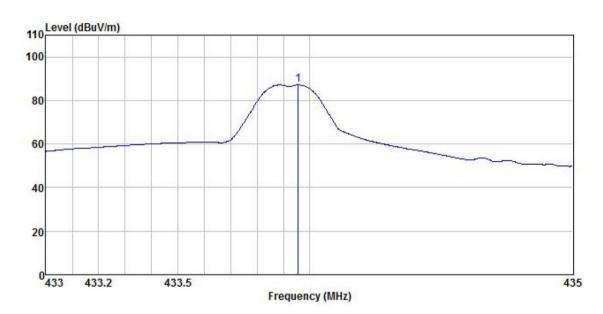





### **Test Plots:**

| Product Name:   | smart key  | Product Model: | RT-N145             |
|-----------------|------------|----------------|---------------------|
| Test By:        | YT         | Test mode:     | Tx mode             |
| Test Frequency: | 433.92 MHz | Polarization:  | Vertical            |
| Test Voltage:   | DC 3V      | Environment:   | Temp: 24℃ Huni: 57% |




|   | Freq    |       | Antenna<br>Factor             |            |            |           |        |                     |           |  |
|---|---------|-------|-------------------------------|------------|------------|-----------|--------|---------------------|-----------|--|
|   | MHz     | dBu₹  | $-\overline{dB}/\overline{m}$ | <u>d</u> B | <u>d</u> B | <u>dB</u> | dBuV/m | $\overline{dBuV/m}$ | <u>dB</u> |  |
| 1 | 433.955 | 55.15 | 19.17                         | 1.03       | 0.00       | 0.00      | 75.35  |                     |           |  |

### Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

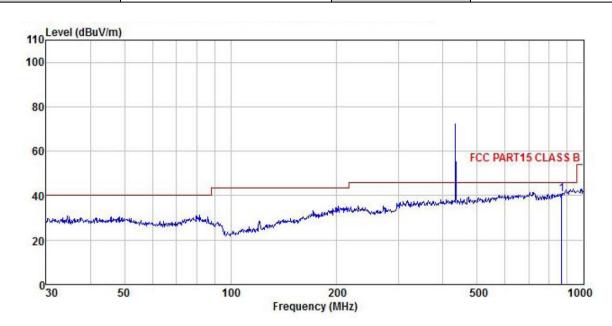


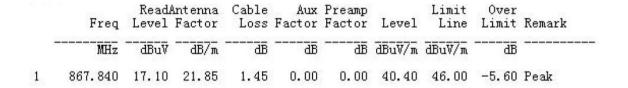
| Product Name:   | smart key  | Product Model: | RT-N145             |
|-----------------|------------|----------------|---------------------|
| Test By:        | YT         | Test mode:     | Tx mode             |
| Test Frequency: | 433.92 MHz | Polarization:  | Horizontal          |
| Test Voltage:   | DC 3V      | Environment:   | Temp: 24℃ Huni: 57% |



|   | Freq    | Read<br>Level | Antenna<br>Factor | Cable<br>Loss | Aux<br>Factor | Preamp<br>Factor | Level               | Limit<br>Line | Over<br>Limit | Remark |
|---|---------|---------------|-------------------|---------------|---------------|------------------|---------------------|---------------|---------------|--------|
|   | MHz     | −−dBuV        | dB/m              | <u>d</u> B    | <u>d</u> B    | <u>dB</u>        | $\overline{dBuV/m}$ | dBuV/m        | <u>dB</u>     |        |
| 1 | 433.957 | 66.93         | 19.17             | 1.03          | 0.00          | 0.00             | 87.13               |               |               |        |

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.



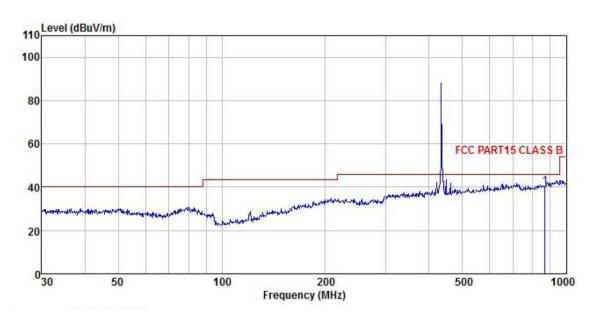




### 6.2.2 Spurious Emissions

#### **Test Plots:**

| Product Name:   | smart key      | Product Model: | RT-N145              |
|-----------------|----------------|----------------|----------------------|
| Test By:        | YT             | Test mode:     | Tx mode              |
| Test Frequency: | 30 MHz ~ 1 GHz | Polarization:  | Vertical             |
| Test Voltage:   | DC 3V          | Environment:   | Temp: 24°C Huni: 57% |



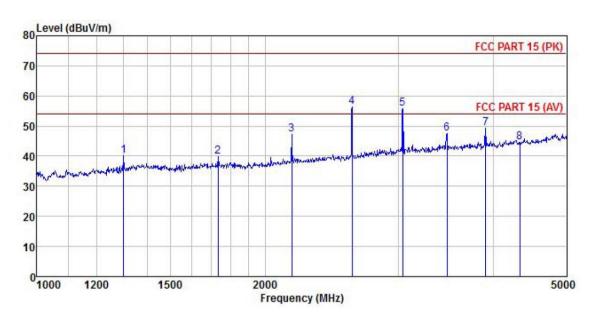



### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product Name:   | smart key      | Product Model: | RT-N145             |
|-----------------|----------------|----------------|---------------------|
| Test By:        | YT             | Test mode:     | Tx mode             |
| Test Frequency: | 30 MHz ~ 1 GHz | Polarization:  | Horizontal          |
| Test Voltage:   | DC 3V          | Environment:   | Temp: 24℃ Huni: 57% |

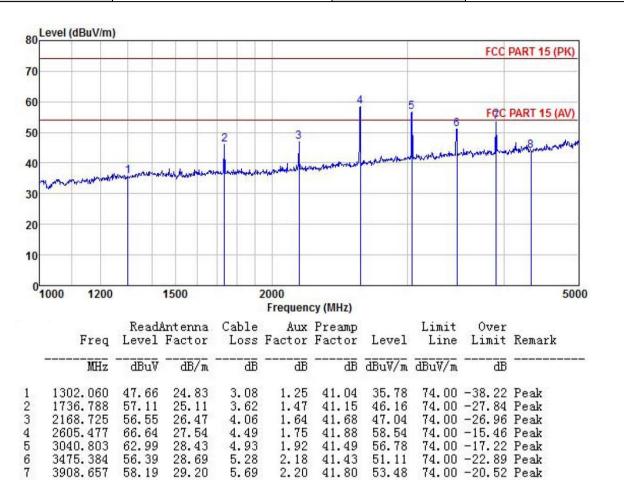



|   | Freq    |       | Antenna<br>Factor |      |           |           |        |        |           |      |
|---|---------|-------|-------------------|------|-----------|-----------|--------|--------|-----------|------|
|   | MHz     | dBu∀  |                   | dB   | <u>dB</u> | <u>dB</u> | dBuV/m | dBuV/m | <u>dB</u> |      |
| 1 | 867.840 | 16.87 | 21.85             | 1.45 | 0.00      | 0.00      | 40.17  | 46.00  | -5.83     | Peak |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product Name:   | smart key     | Product Model: | RT-N145              |
|-----------------|---------------|----------------|----------------------|
| Test By:        | YT            | Test mode:     | Tx mode              |
| Test Frequency: | 1 GHz ~ 5 GHz | Polarization:  | Vertical             |
| Test Voltage:   | DC 3V         | Environment:   | Temp: 24°C Huni: 57% |




|   | Freq     |       | Antenna<br>Factor |      |            | Preamp<br>Factor |                     | Limit<br>Line | Over<br>Limit | Remark |
|---|----------|-------|-------------------|------|------------|------------------|---------------------|---------------|---------------|--------|
| 2 | MHz      | dBu₹  | <u>dB</u> /m      |      | <u>d</u> B | dB               | $\overline{dBuV/m}$ | dBuV/m        | <u>dB</u>     |        |
| 1 | 1302.060 | 51.89 | 24.83             | 3.08 | 1.25       | 41.04            | 40.01               | 74.00         | -33.99        | Peak   |
| 2 | 1733.995 | 50.80 | 25.10             | 3.62 | 1.47       | 41.14            | 39.85               | 74.00         | -34.15        | Peak   |
| 3 | 2168.725 | 56.71 | 26.47             | 4.06 | 1.64       | 41.68            | 47.20               | 74.00         | -26.80        | Peak   |
| 4 | 2605.477 | 64.53 | 27.54             | 4.49 | 1.75       | 41.88            | 56.43               | 74.00         | -17.57        | Peak   |
| 5 | 3040.803 | 61.92 | 28.43             | 4.93 | 1.92       | 41.49            | 55.71               | 74.00         | -18.29        | Peak   |
| 6 | 3475.384 | 52.78 | 28.69             | 5.28 | 2.18       | 41.43            | 47.50               | 74.00         | -26.50        | Peak   |
| 7 | 3908.657 | 53.87 | 29.20             | 5.69 | 2.20       | 41.80            | 49.16               | 74.00         | -24.84        | Peak   |
| 8 | 4339.709 | 48.37 | 29.86             | 6.02 | 2.31       | 41.92            | 44.64               | 74.00         | -29.36        | Peak   |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Highest AV=PK-13.72=56.43-13.72=42.71dBuV/m<60.8dBuV/m



| Product Name:   | smart key     | Product Model: | RT-N145              |
|-----------------|---------------|----------------|----------------------|
| Test By:        | YT            | Test mode:     | Tx mode              |
| Test Frequency: | 1 GHz ~ 5 GHz | Polarization:  | Horizontal           |
| Test Voltage:   | DC 3V         | Environment:   | Temp: 24°C Huni: 57% |



4339.709

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

29.86

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.02

2.31

41.92

43.87

74.00 -30.13 Peak

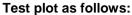
3. Highest AV=PK-13.72=58.54-13.72=44.82dBuV/m<60.8dBuV/m

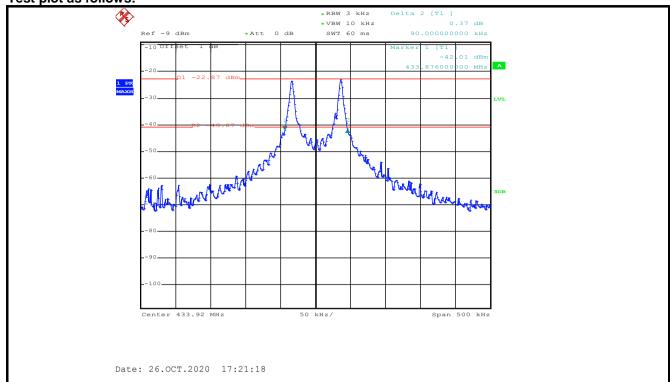
47.60





### 6.3 20dB Bandwidth


| Test Requirement: | FCC Part15 C Section 15.231 (c)                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Receiver setup:   | RBW=1kHz, VBW=3kHz, detector: Peak                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Limit:            | The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.            |  |  |  |  |
| Test Procedure:   | <ol> <li>According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT.</li> <li>Set the EUT to proper test channel.</li> <li>Max hold the radiated emissions, mark the peak power frequency point and the -20dB upper and lower frequency points.</li> <li>Read 20dB bandwidth.</li> </ol> |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                   |  |  |  |  |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |


### **Measurement Data**

| 20dB bandwidth (MHz) | Limit (MHz) | Results |
|----------------------|-------------|---------|
| 0.090                | 1.0848      | Passed  |

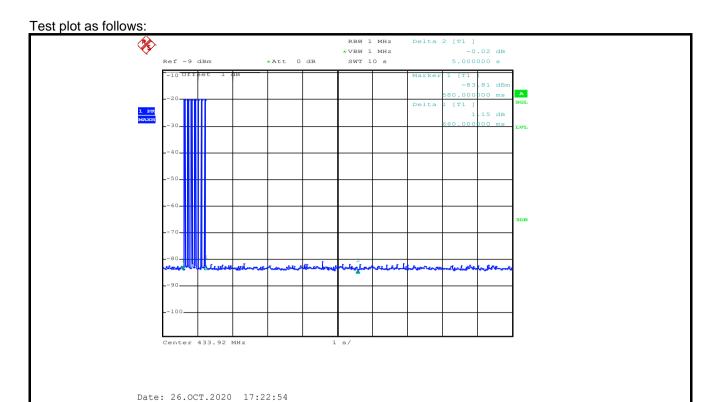
Note: Limit= Fundamental frequency × 0.25% = 433.92 × 0.25% = 1.0848 MHz










# 6.4 Duration Time

| Test Requirement: | FCC Part15 C Section 15.231 (a)(1)                                                                                                                                              |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Receiver setup:   | RBW=100kHz, VBW=300kHz, span=0Hz, detector: Peak                                                                                                                                |  |
| Limit:            | Not more than 5 seconds                                                                                                                                                         |  |
| Test mode:        | Transmitting mode                                                                                                                                                               |  |
| Test Procedure:   | <ol> <li>According to the follow Test-setup, keep the relative position between<br/>the artificial antenna and the EUT.</li> <li>Set the EUT to proper test channel.</li> </ol> |  |
|                   | 3. Single scan the transmission, and read the transmission time.                                                                                                                |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                           |  |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                |  |
| Test results:     | Passed                                                                                                                                                                          |  |

### **Measurement Data**

| Duration time (second) | Limit (second) | Result |
|------------------------|----------------|--------|
| 0.660                  | <5.0           | Pass   |



