

Report No: JYTSZE201008301

FCC REPORT

Applicant:	Remote Tech LLC				
Address of Applicant:	310 ALDER RD, DOVER DE 19904 USA				
Equipment Under Test (E	EUT)				
Product Name:	smart key				
Model No.:	RT-N143, RT-N144				
FCC ID:	2AOKM-NI7				
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.231				
Date of sample receipt:	22 Oct., 2020				
Date of Test:	23 Oct., to 30 Oct., 2020				
Date of report issue:	02 Nov., 2020				
Test Result:	PASS*				

^{*} In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	02 Nov., 2020	Original

Prepared By:

Test Engineer Date:

Check By:

Winner Thang

Date:

02 Nov., 2020

02 Nov., 2020

Project Engineer

3 Contents

	Page
COVER PAGE	
VERSION	
CONTENTS	3
GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	5
5.2 GENERAL DESCRIPTION OF E.U.T.	5
5.3 Test Mode	
5.6 Additions to, deviations, or exclusions from the method	5
5.9 TEST INSTRUMENTS LIST	6
TEST RESULTS AND MEASUREMENT DATA	7
6.1 ANTENNA REQUIREMENT	7
6.2 RADIATED EMISSION	
6.2.1 Field Strength Of The Fundamental Signal	
6.2.2 Spurious Emissions	
6.3 20DB BANDWIDTH	
6.4 DURATION TIME	
TEST SETUP PHOTOS	
EUT CONSTRUCTIONAL PHOTOS	
	VERSION CONTENTS TEST SUMMARY GENERAL INFORMATION 5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF E.U.T. 5.3 TEST MODE 5.4 DESCRIPTION OF SUPPORT UNITS 5.5 MEASUREMENT UNCERTAINTY 5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD 5.7 LABORATORY FACILITY 5.8 LABORATORY LOCATION 5.9 TEST INSTRUMENTS LIST TEST RESULTS AND MEASUREMENT DATA 6.1 ANTENNA REQUIREMENT 6.2 RADIATED EMISSION 6.2.1 Field Strength Of The Fundamental Signal 6.2.2 Spurious Emissions 6.3 20DB BANDWIDTH 6.4 DURATION TIME TEST SETUP PHOTOS

4 Test Summary

Те	est Item	Section in CFR 47	Result		
Antenna	a requirement	15.203	Pass		
Field strength of t	the fundamental signal	15.231 (b)	Pass		
Spuriou	us emissions	15.231 (b)/15.209	Pass		
20dB Bandwidth		15.231 (c)	Pass		
Duration Time		15.231 (a)(1)	Pass		
Conducted Emission		15.207	N/A		
Remarks: 1. Pass: The EUT complies with the essential requirements in the standard. 2. N/A: The EUT not applicable of the test item. ANSI C63.4-2014					
Test Method:	ANSI C63.10-2013				

5 General Information

5.1 Client Information

Applicant:	Remote Tech LLC		
Address:	310 ALDER RD, DOVER DE 19904 USA		
Manufacturer/ Factory:	Remote Tech LLC		
Address:	310 ALDER RD, DOVER DE 19904 USA		

5.2 General Description of E.U.T.

Product Name:	smart key
Model No.:	RT-N143, RT-N144
Operation Frequency:	433.92MHz
Channel numbers:	1
Modulation type:	FSK
Antenna Type:	PCB antenna
Antenna gain:	0 dBi
Power supply:	DC 3V (CR2032 battery)
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remark:	Models RT-N143, RT-N144 represent appearance of the key with 3 and 4 buttons on the shell. The PCB function is the same for all these models.

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with modulation (new battery used)						
Pre-Test Mode:							
JYTSZ has verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:							
Axis	X Y Z						
Field Strength(dBuV/m)	81.03 80.48 78.95						
Final Test Mode:							
According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup": X axis (see the test setup photo)							

5.4 Description of Support Units

N/A

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: <u>http://www.ccis-cb.com</u>

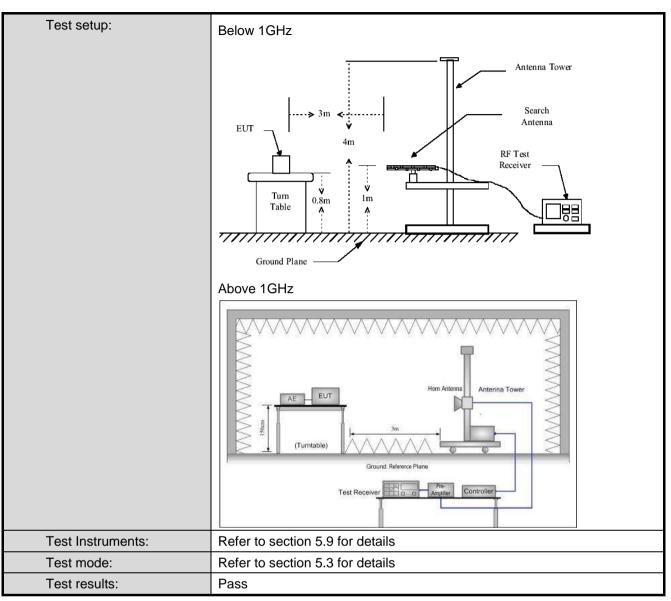
5.9 Test Instruments list

Radiated Emission:								
Test Equipment	Manufacturer	Model No.	Model No. Serial No.		Cal. Due date (mm-dd-yy)			
3m SAC	SAEMC	9m*6m*6m	966	07-22-2020	07-21-2021			
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021			
Broadband Antenna	SCHWARZBECK	VUBA9117	359	06-22-2020	06-21-2021			
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021			
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2020	06-21-2021			
Horn Antenna	SCHWARZBECK	BBHA9170	582	11-18-2019	11-17-2020			
Loop Antenna	SCHWARZBECK	FMZB1519B	00044 03-07-2020		03-06-2021			
EMI Test Software	AUDIX	E3	, v	Version: 6.110919	b			
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021			
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021			
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2020	03-06-2021			
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020			
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2020	03-06-2021			
Simulated Station	Anritsu	MT8820C	6201026545	03-07-2020	03-06-2021			
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021			
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021			
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021			

6 Test results and Measurement Data

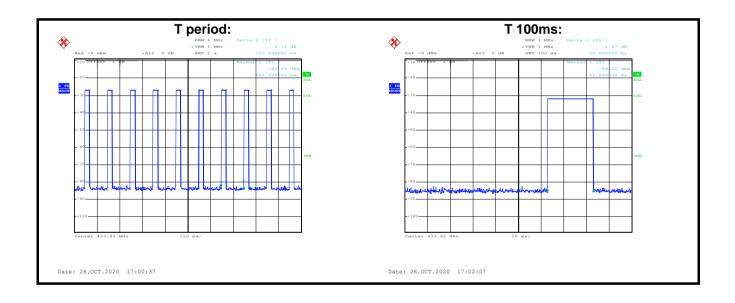
6.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203				
responsible party shall be us antenna that uses a unique of	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited.				
E.U.T Antenna:					
The EUT make use of a PCB	The EUT make use of a PCB antenna, The typical gain of the antenna is 0dBi.				



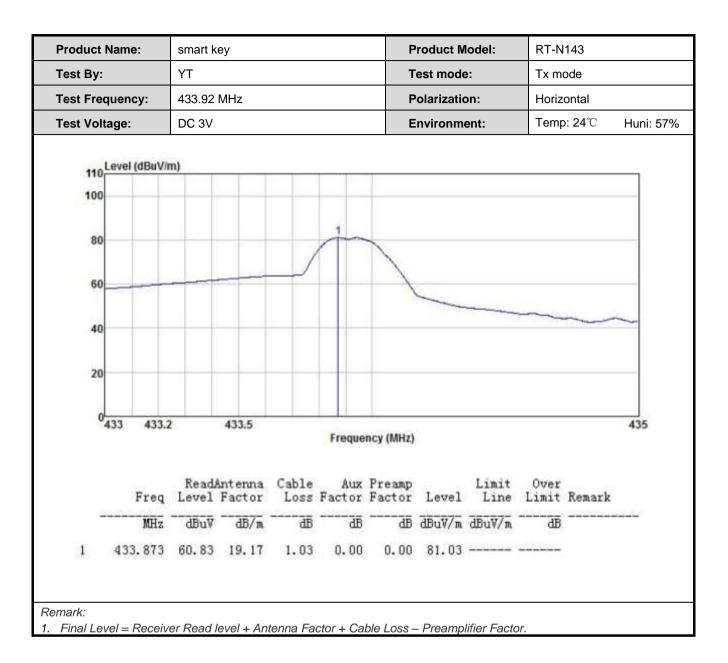
6.2 Radiated Emission

Test Requirement:	FCC Part15 C Section 15.231(a) and 15.209					
Test Frequency Range:	30MHz to 5000MHz					
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)					
Receiver setup:	Frequency	Frequency Detector RBW VBW		VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	z Quasi-peak Value	
	Above 1GHz	Peak	1MHz	3MHz	Peak Value	
Limit:	Frequency Limit (dBuV/m @3m) Remark		Remark			
(Field strength of the	433.92M	LI-7	80.83		Average Value	
fundamental signal)	433.9210	112	100.83		Peak Value	
Limit:	Frequen	cy L	imit (dBuV/m (@3m)	Remark	
(Spurious Emissions)	30MHz-88	MHz	40.0		Quasi-peak Value	
(-1	88MHz-216	SMHz	43.5		Quasi-peak Value	
	216MHz-96	0MHz	46.0		Quasi-peak Value	
	960MHz-1	GHz	54.0		Quasi-peak Value	
	Above 10		54.0		Average Value	
	Above 10		74.0		Peak Value	
Test Procedure:	Above 1GHz 54.0 Average Value					



	Peak value								
Frequency (MHz)	Read Level (dBuV)	Antenr Facto (dB/m	r Loss	Preamp Factor(dB)		evel Limit Line uV/m) (dBuV/m)			Polarization
433.92	47.32	19.17	1.03	0.00	6	7.52	100.83	-33.31	Vertical
433.92	60.83	19.17	1.03	0.00	8	1.03	100.83	-19.80	Horizontal
				Average value)				
Frequency (MHz)	Level (dBuV/r	n)	Duty Cycle factor	Average va (dBuV/m)			t Line uV/m)	Over Limit (dB)	Polarization
433.92	67.52		-13.72	53.80		80.83		-27.03	Vertical
433.92	81.03		-13.72	67.31		80).83	-13.52	Horizontal
Calculat	te Formula:	Duty	Average value=Peak value + Duty Cycle Factor Duty cycle factor = 20log(Duty cycle) Duty cycle = on time/100 milliseconds or period, whichever is less						
	T on time =20.60(ms)								
Test data:		Т ре	T period =100(ms)						
100			cycle =20.60%						
		Duty	cycle factor = 20	log(Duty cycle) = -1	3.72			

6.2.1 Field Strength Of The Fundamental Signal



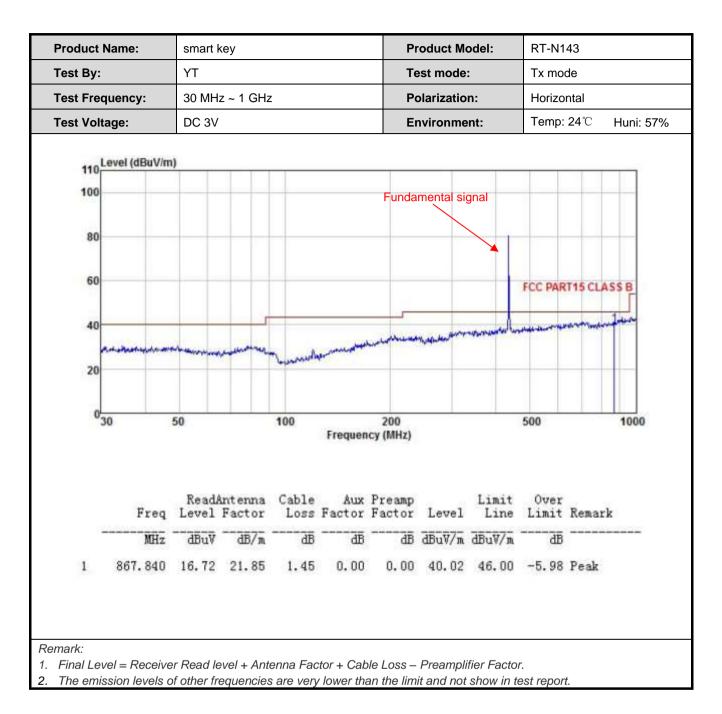
Test Plots:

Product Name:	Name: smart key			: RT-N1	RT-N143		
est By:	YT		Test mode:	Tx mo	Tx mode		
est Frequency:	433.92 MHz		Polarization:	ization: Vertical			
est Voltage:	DC 3V		Environment:	Temp	24℃ H	uni: 579	
Louis Lide and							
110 Level (dBuV/	m)					1	
100							
80							
		1					
60							
40					_		
				~~~	~~~~		
20							
0433 433.	2 433.5				4	35	
		Frequency (MH	z)				
	sharehan						
	ReadAntenna Cab	le Aux Pream	ap Li	mit Over			
Freq	Level Factor Lo	ss Factor Facto	or Level L	ine Limit	Remark		
MHz	dBuV dB/m	dB dB (	18 dBuV/m dBu	V/m dB		-	
1 433.871	47.32 19.17 1.	03 0.00 0.0	0 67.52				








#### 6.2.2 Spurious Emissions

#### **Test Plots:**

Product Name:	smart k	smart key YT			P	Product Model: Test mode:		RT-N143 Tx mode Vertical		
Test By:	ΥT				Т					
Test Frequency:				P	olarizatio	n:				
Test Voltage:				E	nvironme	ent:	Temp:	<b>24</b> ℃	Huni: 57	
110 Level (dBuV	(m)									
110	,									
100			-							
					Fund	amental s	ianal			
80			-				ignai			
60	_		-					FCC PAR	T15 CLA	SSB
					_					
40			-		_		manula	mander	and the second	- aunit
- partitione	durra giden	montener		warmer war	materie	-adadeses -	2010207			
20			an and the second						_	
20			Luneaver							
	50				200			500		1000
20 0 30	50		100		200 ncy (MHz)			500		1000
	50							500		1000
	50							500		1000
030	ReadA	Intenna	100 Cable	Frequer	ncy (MHz) Preamp		Limit	Over		
030	ReadA Level	intenna Factor	100 Cable Loss	Frequer Aux Factor	Preamp Factor		Line	Over Limit	Remark	
030	ReadA 1 Level	Intenna	100 Cable	Frequer	Preamp Factor	Level dBuV/m	Line	Over	Remark	
0 ₃₀ Free	Read& Level dBuV	Intenna Factor 	100 Cable Loss	Frequer Aux Factor	Preamp Factor dB		Line dBuV/m	Over Limit dB		
0 30 Free MDH:	Read& Level dBuV	Intenna Factor 	100 Cable Loss dB	Frequer Aux Factor dB	Preamp Factor dB	dBuV/m	Line dBuV/m	Over Limit dB		
0 30 Free MDH:	Read& Level dBuV	Intenna Factor 	100 Cable Loss dB	Frequer Aux Factor dB	Preamp Factor dB	dBuV/m	Line dBuV/m	Over Limit dB		
0 30 Free MDH:	Read& Level dBuV	Intenna Factor 	100 Cable Loss dB	Frequer Aux Factor dB	Preamp Factor dB	dBuV/m	Line dBuV/m	Over Limit dB		









Product Name:	smart key	Produe	Product Model: Test mode:		RT-N143 Tx mode		
Test By:	ΥT	Test m					
Test Frequency:	1 GHz ~ 5 GHz	GHz ~ 5 GHz Polarization: Vertical				Vertical	
Test Voltage:	DC 3V Environment: Temp: 24°C		24℃ Huni: 57%				
80 Level (dBuV/m	)						
70					FLU	PART 15 (PK)	
60				-	FCC	PART 15 (AV)	
50				5 6	7	8	
40		Ture purchased for	weber and	color horas	entranker	and the second s	
30	and a second	and a state of the					
30							
20						-	
10	_						
0							
1000 1200	1500	2000 Frequen	cy (MHz)			5000	
	ReadAntenna	Cable Aux	Preamp	Limit			
and a second	Level Factor	Loss Factor		vel Line		Remark	
MHz	dBuV dB/m	dB dB	dB dBu	W/m dBuV/n	u dE		
1 1302.060 2 1736.788	47.00 24.83 47.95 25.11	3.08 1.25 3.62 1.47			-38.88 -37.00		
3 2168.725	47.57 26.47	4.06 1.64	41.68 38	.06 74.00	-35.94	Peak	
4 2605.477 5 3040.803	48.79 27.54 52.24 28.43	4.49 1.75 4.93 1.92			-33.31		
6 3469.795	52.13 28.68	5.28 2.18	41.42 46	.85 74.00	-27.15	Peak	
7 3908.657 8 4339.709	50.77 29.20 47.59 29.86	5.69 2.20 6.02 2.31			-27.94		
0 1000.100	1100 20100		11102 10	100 11.00	00114	4 0 141	



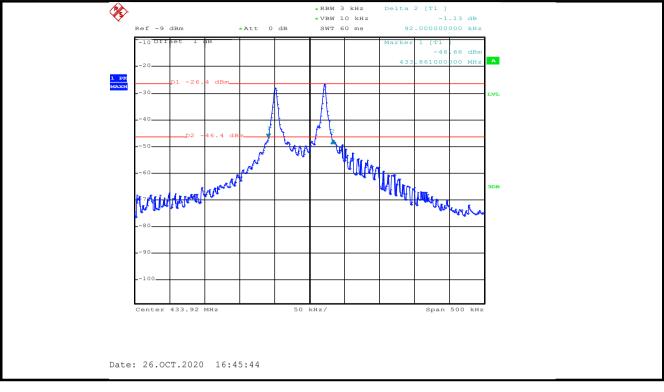
Product I	Name:	smart key YT			F	Product Model: Test mode:		RT-N143 Tx mode					
Test By:					1								
Test Fred	quency:	1 GHz ~	5 GHz			F	Polarization:		Horizontal		ization: Horizontal		
est Volt	age:	DC 3V		E	Environm	ent:	Temp:	24℃ Huni: 5					
	and (dDa)(im												
80	evel (dBuV/m	)							FCC P	ART 15 (PK)			
70													
60													
	_		-		-				FCC P	ART 15 (AV)			
50							5	ĥ	mulies	mapanhandree			
40		miliana	man	indima	who and	- Andrewse	-humorally	Arthodeling and re					
30	And and a second second									_			
20		_								_			
10													
10													
01	000 1200		1500		2000			<u>.</u>		5000			
		25			Frequen	cy (MHZ)							
	Freq		ntenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark			
-	MHz	dBuV	dB/m	dB	dB	dB	dBuV/m	dBuV/m	dB				
1	1302.060	46.79	24.83	3.08	1.25	41.04	34.91		-39.09				
2 3	1736.788 2168.725	48.72 47.19	25.11 26.47	3.62	1.47	41.15 41.68	37.77 37.68		-36.23				
4	2605.477	48.72	27.54	4.49	1.75	41.88	40.62	74.00	-33.38	Peak			
5	3040.803	53.24	28.43	4.93	1.92	41.49	47.03		-26.97				
6 7	3469.795 3908.657	52.07 55.26	28.68 29.20	5.28 5.69	2.18	41.42 41.80	46.79 50.55		-27.21				
8	4339.709	49.05	29.86	6.02	2.31		45.32		-28.68				
nark:													
	vel = Receive	r Road In	Nol 1 Ant	anna Eac	tor + Cab		Proamuli	fior Eacto	r				





## 6.3 20dB Bandwidth

Test Requirement:	FCC Part15 C Section 15.231 (c)		
Receiver setup:	RBW=1kHz, VBW=3kHz, detector: Peak		
Limit:	The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.		
Test Procedure:	<ol> <li>According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT.</li> <li>Set the EUT to proper test channel.</li> <li>Max hold the radiated emissions, mark the peak power frequency point and the -20dB upper and lower frequency points.</li> <li>Read 20dB bandwidth.</li> </ol>		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		


#### Measurement Data

20dB bandwidth (MHz)	Limit (MHz)	Results
0.092	1.0848	Passed

Note: Limit= Fundamental frequencyx0.25%=433.92x0.25%=1.0848MHz

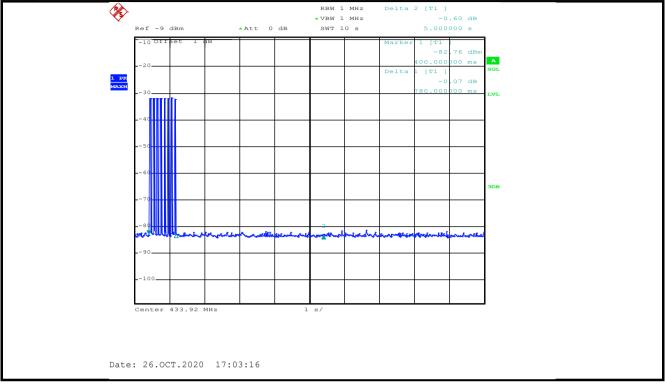


#### Test plot as follows:





## 6.4 Duration Time


Test Requirement:	FCC Part15 C Section 15.231 (a) (1)		
Receiver setup:	RBW=100kHz, VBW=300kHz, span=0Hz, detector: Peak		
Limit:	Not more than 5 seconds		
Test mode:	Transmitting mode		
Test Procedure:	<ol> <li>According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT.</li> <li>Set the EUT to proper test channel.</li> </ol>		
	3. Single scan the transmission, and read the transmission time.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

#### Measurement Data

Duration time (second)	Limit (second)	Result
0.780	<5.0	Pass



#### Test plot as follows:

