

Shenzhen Toby Technology Co., Ltd.

DFS Test Report

FCC ID: 2AOKI-WIFI2Q379UWP1 IC: 23460-WFQ379UWP1 Product: WiFi Module Model No.: WIFI-2-Q379UWP1 Additional Model No.: N/A Trade Mark: N/A Report No.: TB-FCC165644 Issued Date: Apr. 18, 2019

Issued for:

Sichuan Al-Link Technology Co., Ltd. Anzhou, Industrial park, Mianyang, Sichuan, China

Issued By:

Shenzhen Toby Technology Co., Ltd. 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, China TEL: +86 75526509301 FAX: +86 75526509195

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Toby Technology Co., Ltd., This document may be altered or revised by Shenzhen Toby Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	Test Certification	3
2.	Test Result Summary	4
3.	EUT Description	5
4.	Genera Information	6
	4.1. RF GENERAL INFORMATION	6
	4.2. DESCRIPTION OF SUPPORT UNITS	6
	4.3. TEST INSTRUMENTS LIST	7
5.	Facilities and Accreditations	8
	5.1. FACILITIES	8
	5.2. LOCATION	8
	5.3. MEASUREMENT UNCERTAINTY	8
6.	Dynamic Frequency Selection (DFS) Test Result	9
	6.1. GENERAL DFS INFORMATION	9
	6.2. RADAR TEST WAVEFORM CALIBRATION1	2
	6.3. UNII DETECTION BANDWIDTH1	7
	6.4. CHANNEL AVAILABILITY CHECK (CAC)1	8
	6.5. IN-SERVICE MONITORING1	
	6.6. STATISTICAL PERFORMANCE CHECK2	4
	6.6.1. STATISTICAL PERFORMANCE CHECK LIMIT2	4
	6.6.2. MEASURING INSTRUMENTS2	4
Ар	pendix A: Photographs of Test Setup 2	7

1. Test Certification

Product:	WiFi Module		
Model No.:	WIFI-2-Q379UWP1		
Additional Model No.:	N/A		
Trade Mark:	N/A		
Applicant:	Sichuan Al-Link Technology Co., Ltd.		
Address:	Anzhou, Industrial park, Mianyang, Sichuan, China		
Manufacturer: Sichuan Al-Link Technology Co., Ltd.			
Address: Anzhou, Industrial park, Mianyang, Sichuan, China			
Date of Test:	Mar. 13, 2019 – Apr. 19, 2019		
Applicable Standards:	47 CFR FCC Part 15.407 RSS-247 Issue 2 KDB905462 D02 UNII DFS Compliance Procedures New Rules v02 KDB 905462 D03 UNII Clients Without Radar Detection New Rules v01r02		

The above equipment has been tested by Shenzhen Toby Testing Lab., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:	Jason xu	Date:	Apr. 19, 2019
Reviewed By:	Jason Xu	Date:	Apr. 22, 2019
Approved By:	Ivan Su TOBI	Date:	Apr. 22, 2019
	Ray Lai HS *		

2. Test Result Summary

Conformance Test Specifications							
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result		
UNII Detection Bandwidth	7.8.1	DFS: UNII Detection Bandwidth Measurement	N/A	100% of the 99% BW	N/A		
Channel Availability Check	7.8.2.1	DFS: Initial Channel Availability Check Time	N/A	CAC ≥ 60 sec	N/A		
Channel Availability Check	7.8.2.2	DFS: Radar Burst at the Beginning of the Channel Availability Check Time	N/A	Detection Threshold: -62dBm	N/A		
Channel Availability Check			N/A	Detection Threshold: -62dBm	N/A		
In-service Monitoring 7.8.3 DFS: In-Service Monitoring for Channel Move Time (CMT)		CMT ≤ 10sec	CMT ≤ 10sec	Complied			
In-service Monitoring 7.8.3 DFS: In-Service Monitoring for Channel Closing Transmission Time (CCTT)		CCTT ≤ 60 ms starting at CMT 200ms	CCTT ≤ 60 ms starting at CMT 200ms	Complied			
In-service Monitoring	/83		NOP > 30 min	NOP ≥ 30 min	Complied		
Statistical Performance 7.8.4 DFS: Statistical Check Performance Check		Complied	Table 5 - 7 (KDB 905462)	Complied			

3. EUT Description

Product Name:	WiFi Module
Model :	WIFI-2-Q379UWP1
Additional Model:	N/A
Trade Mark:	N/A
EUT type	Client only device, no radar detection Capability
Operation Frequency:	Band II: 5250MHz~5350MHz Band III: 5470MHz~5725MHz
Channel Separation:	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz.80MHz
Modulation Technology:	Orthogonal Frequency Division Multiplexing(OFDM)
Antenna Type:	Integral Antenna
Antenna Gain:	Band II: 5250MHz~5350MHz: 2dBi Band III: 5470MHz~5725MHz: 2dBi
Power Supply:	DC 5V
First Channel operating:	This device selects the operating frequency with randomly in the DFS operation frequency.

4. Genera Information

4.1. RF General information

IEEE Std. 802.11	Channel Bandwidth (MHz)
a/n/ac (HT20)	20
n/ac (HT40)	40
ac(VHT80)	80

802.11a/n/ac uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Remark: All test are performed with conducted method

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	IC ID	Trade Name
AP	R6300v2	3GM24478A 0282	PY313200227	4054A-13200227	NTEGEAR
PC	Insprion3668	CNOYUJCX	1		DELL

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.3. Test Instruments List

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 18, 2018	Jul. 17, 2019
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 15, 2018	Sep. 14, 2019
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 15, 2018	Sep. 14, 2019
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Sep. 15, 2018	Sep. 14, 2019
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Sep. 15, 2018	Sep. 14, 2019
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Sep. 15, 2018	Sep. 14, 2019
Signal analyzer	Agilent	N9020A	MY499100060	Sep. 15, 2018	Sep. 14, 2019
Vector signal generator	Agilent	N5182A	MY49060042	Sep. 15, 2018	Sep. 14, 2019

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

5. Facilities and Accreditations

5.1. Facilities

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

5.2. Location

Shenzhen Toby Technology Co., Ltd.

Address: 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, China

TEL: +86 75526509301

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

6. Dynamic Frequency Selection (DFS) Test Result

6.1. General DFS Information

6.1.1. DFS Parameters

Table D.1:	DFS requirement values
Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second periods. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the 99% power bandwidth See Note 3.
generated. • For the Long Pulse radar Test Signa the radar transmission. Note 2: The <i>Channel Closing Transmission</i>	est Signal, this instant is the end of the last radar <i>Burst</i> al this instant is the end of the 12 second period defining <i>Time</i> is comprised of 200 milliseconds starting at the
to facilitate <i>Channel</i> changes (an ag 10 second period. The aggregate d between transmissions. Note 3: During the <i>U-NII Detection Bandwic</i>	e plus any additional intermittent control signals required ggregate of 60 milliseconds) during the remainder of the uration of control signals will not count quiet periods in <i>Ith</i> detection test, radar type 1 is used and for each tage of detection is 90%. Measurements are performed

Table D.2: Interference threshold values				
Maximum Transmit Power Value (see note)				
≥ 200 milliwatt	-64 dBm			
< 200 milliwatt -62 dBm				

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

6.1.2. Applicability of DFS Requirements Prior to Use of a Channel

	DFS Operational mode			
Requirement	Master	Client without radar detection	Client with radar detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
Uniform Spreading	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

6.1.3. Applicability of DFS Requirements during Normal Operation

		e	
Requirement	Master	Client without radar detection	Client with radar detection
DFS Detection Threshold	Yes	Not required	Yes
Channel Closing Transmission Time	Yes	Yes	Yes
Channel Move Time	Yes	Yes	Yes
U-NII Detection Bandwidth	Yes	Not required	Yes

6.1.4. Uniform Spreading

Manufacturer Declare the Uniform Spreading

For the 5250-5350 MHz and 5470-5725 MHz bands, the Master device provides, on aggregate, uniform loading of the spectrum across all devices by selecting an operating channel among the available channels using a Gaussian random algorithm.

6.1.5. User Access Restrictions

User Access Restrictions

DFS controls (hardware or software) related to radar detection are NOT accessible to the user. Manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user.

6.1.6. Channel Loading/Data Streaming

IP Based (Load Based) - stream the test file from the Master to the Client

The client device is link with the master device and plays the WAV audio file from master device to client device. Test file download in NTIA website (http://ntiacsd.ntia.doc.gov/dfs/) The client device is link with the master device and plays the MPEG file (6 1/2 Magic Hours) from master device to client device. Test file download in NTIA website (http://ntiacsd.ntia.doc.gov/dfs/)

Alternative streaming e.g., FTP with about 17 to 20% loading and submit proposal to FCC.

□ Frame Based - stream the test file from the Master to the Client.

fixed talk/listen ratio, set the ratio to 45%/55%

6.2. Radar Test Waveform Calibration

6.2.1. Short Pulse Radar Test Waveforms

Table 5 – Short Pulse Radar Test Waveforms									
Radar	Pulse Width	PRI	Number of Pulses	Minimum	Minimum				
Type	(µsec)	(µsec)		Percentage of	Number of				
				Successful	Trials				
				Detection					
0	1	1428	18	See Note 1	See Note 1				
1	1	Test A: 15 unique	$\left[\left(\begin{array}{c} 1 \end{array} \right) \right]$	60%	30				
		PRI values	$\left(\frac{1}{360}\right)$						
		randomly selected	Roundup { Sou }						
		from the list of 23	(19.10 ⁶)						
		PRI values in Table							
		5a	$\left(\left[PRI_{\musec} \right] \right)$						
		Test B: 15 unique							
		PRI values							
		randomly selected							
		within the range of							
		518-3066 µsec,							
		with a minimum							
		increment of 1							
		µsec, excluding							
		PRI values selected							
		in Test A							
2	1-5	150-230	23-29	60%	30				
3	6-10	200-500	16-18	60%	30				
4	11-20	200-500	12-16	60%	30				
Aggregate (Radar Types 1-	4)		80%	120				
Note 1, Sh	ort Dulco Dada	" Trme () should be u	and for the detection he	ndwidth tast ab	annal maria				

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the short pulse radar types 2 through 4. For short pulse radar type 1, the same waveform is used a minimum of 30 times. If more than 30 waveforms are used for short pulse radar types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

6.2.2. Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	ChirpWidth (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of <i>Burst</i> s	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Each waveform is defined as follows:

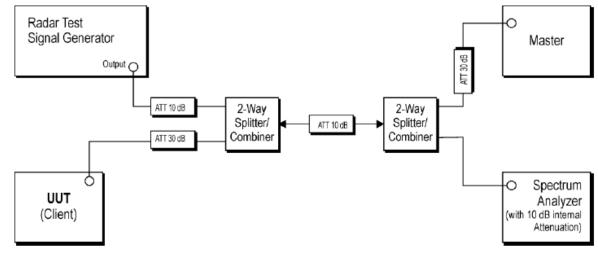
- The transmission period for the Long Pulse Radar test signal is 12 seconds.
- There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst Count.
- Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.
- The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse widths.
- Each pulse has a linear FM chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a Burst will have the same chirp width. Pulses in different Bursts may have different chirp widths. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and ends at 5310 MHz.
- If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the time between the first and second pulses is chosen independently of the time between the second and third pulses.
- The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst_Count. Each interval is of length (12,000,000 / Burst_Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12,000,000 / Burst_Count) (Total Burst Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen independently.

6.2.3. Frequency Hopping Radar Test Waveform

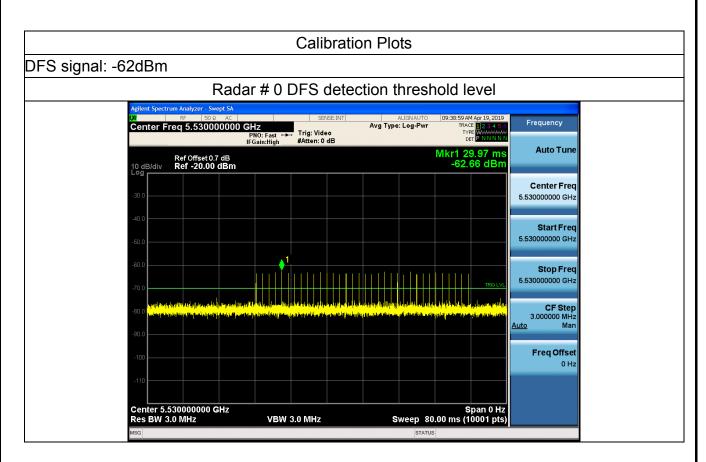
Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (ms)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	0.333	300	70%	30

The FCC Type 6 waveform uses a static waveform with 100 bursts in the instruments ARB. In addition, the RF list mode is operated with a list containing 100 frequencies from a randomly generated list and it had be ensured that at least one of the random frequencies falls into the UNII Detection Bandwidth of the DUT. Each burst from the waveform file initiates a trigger pulse at the beginning that switches the RF list from one item to the next one.

6.2.4. DFS Threshold Level


DFS Threshold Level				
DFS Threshold level: -62 dBm	□ at the antenna connector			
	in front of the antenna			

The Interference **Radar Detection Threshold Level** is -62 dBm. That had been taken into account the output power range and antenna gain.



6.2.5. Test Set up

Setup for Client with injection at the Master

6.3. UNII Detection Bandwidth

6.3.1. UNII Detection Bandwidth Limit

Channel Bandwidth (MHz)	99% Power Bandwidth (MHz)	UNII Detection Bandwidth (MHz)
20	N/A	N/A
40	N/A	N/A
80	N/A	N/A

UNII Detection Bandwidth is minimum 100% of the 99% power bandwidth. A single radar Burst is generated for a minimum of 10 trials, and the response of the UUT is noted. The UUT must detect the Radar Waveform 90% or more of the time.

6.3.2. Measuring Instruments

Refer a test equipment and calibration data table in this test report.

6.3.3. Test Procedures

Test Method

Refer as KDB905462 D02 UNII DFS Compliance Procedures New Rules v02, clause 7.8.1 for UNII Detection Bandwidth test. During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic. The EUT is set up as a standalone device (no associated Client and no traffic). The radar frequency is increased in 1 MHz steps, repeating the above test sequence, until the detection rate falls below 90%. The highest frequency at which detection is greater than or equal to 90% is denoted as FH. The radar frequency is decreased in 1 MHz steps, repeating the above test sequence, until the detection sequence for the above test sequence, until the detection is greater than or equal to 90%. The lowest frequency at which detection is greater than or equal to 90%. The lowest frequency at which detection is greater than or equal to 90%. The lowest frequency at which detection is greater than or equal to 90%. The lowest frequency at which detection is greater than or equal to 90%. The lowest frequency at which detection is greater than or equal to 90% is denoted as FL. UNII Detection Bandwidth = FH -FL

Test result: Not required

6.4. Channel Availability Check (CAC)

6.4.1. Channel Availability Check Limit

Channel Availability Check Limit

The EUT shall perform a Channel Availability Check to ensure that there is no radar operating on the channel. After power-up sequence, receive at least 1 minute (60 sec) on the intended operating frequency.

6.4.2. Measuring Instruments

Refer a test equipment and calibration data table in this test report

6.4.3. Test Procedures

Test Method

Refer as KDB905462 D02 UNII DFS Compliance Procedures New Rules v02, clause 7.8.2.1 for Initial Channel Availability Check Time. The EUT does not emit beacon, control, or data signals on the test Channel until the power-up sequence has been completed and the UNII device checks for Radar Waveforms for one minute on the test Channel. This test does not use any Radar Waveforms.

Refer as FCC 06-96 Appendix, clause 7.8.2.2 for Radar Burst at the Beginning of the Channel Availability Check Time. To verify successful radar detection on the selected Channel during a period equal to the Beginning of the Channel Availability Check Time.

Refer as FCC 06-96 Appendix, clause 7.8.2.3 for Radar Burst at the End of the Channel Availability Check Time. To verify successful radar detection on the selected Channel during a period equal to the End of the Channel Availability Check Time.

Test result: Not required

6.5. In-service Monitoring

6.5.1. In-service Monitoring Limit

In-service Monitoring Limit					
Channel Move Time	10 sec				
Channel Closing Transmission Time	200 ms + an aggregate of 60 ms over remaining 10 sec periods.				
Non-occupancy period	Minimum 30 minutes				

6.5.2. Measuring Instruments

Refer a test equipment and calibration data table in this test report

6.5.3. Test Procedures

Test Method

Refer as KDB905462 D02 UNII DFS Compliance Procedures New Rules v02, clause 7.8.3 verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Compare the Channel Move Time and Channel Closing Transmission Time limits.

Refer as KDB905462 D02 UNII DFS Compliance Procedures New Rules v02, clause 8.3 verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. One 10 sec plot needs to be reported for the Short Pulse Radar Types 1-4 and one for the Long Pulse Radar Type in a 22 sec plot. And zoom-in a 600 ms plot verified channel closing time for the aggregate transmission time starting from 200ms after the end of the radar signal to the completion of the channel move.

Refer as KDB905462 D02 UNII DFS Compliance Procedures New Rules v02, clause 7.8.3 verified during In-Service Monitoring; Non-Occupancy Period. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Non-Occupancy Period). Compare the Non-Occupancy Period limits.

6.5.4. Test Result of In-service Monitoring

Modulation Freq. Radar			Channel Closing	Transmission Time	Channel M	Channel Move Time	
Mode	(MHz)	Туре	Result(ms)	Limit (ms)	Result(S)	Limit (S)	
acVHT80	5290	0	207.2	<260	0.708	<10	
	· ·		ms)/Sweep point bins				
Channel Closi	ng Transmis	sion Time(20	,	$er(6) \times Dwell(1.2ms) < 2$	260		
			12 sec Tim	ing Plot			
	LXI L	rum Analyzer - Swept SA RF 50 Ω AC req 5.290000000	SENSE:INT	ALIGNAUTO 02:26:48 PM Apr 19, 2 Avg Type: Log-Pwr TRACE	2019 Frequency		
	Center	req 5.29000000	PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 10 dB	Avg Type: Log-Pwr TRACE 2 3 TYPE WAAA DET P NN	NN N		
	10 dB/div	Ref Offset 1.2 dB Ref 0.00 dBm		Mkr3 10.0 -68.75 dE			
	-10.0	Kel 0.00 uBill			Center Freq		
	-20.0				5.290000000 GHz		
	-30.0				Start Freq		
	-50.0			3	5.290000000 GHz		
	-70.0			n de la la sette de la constance	Stop Freq		
	-80.0				5.290000000 GHz		
	Center 5.	290000000 GHz		Span 0	Hz CF Step		
	Res BW		#VBW 1.0 MHz	Sweep 12.00 s (10001 p	ots) 1.000000 MHz		
	1 N 2 N	t t	200.0 ms -69.37 dBm 708.0 ms -69.69 dBm				
	3 N 4	1 t	10.00 s -68.75 dBm		Freq Offset 0 Hz		
	6						
	9 10						
	11				>		
	MSG			STATUS			

	Non-Oo	cupanc	y Period Result				
	Non-Oc			on-Occuj	ipancy Period		
Modulation Mode	Freq. (MHz)		Measured	L	imit	Result	
acVHT80	5290		>30min	30min		Complied	
	2000	sec Tim	ing Plot	•	<u>.</u>		
	If Gain:Low #A Ref Offset 1.2 dB Ref Offset 1.2 dB 10 dB/div Ref 0.00 dBm		Avg Type: Log-Pwr		Frequency Auto Tune Center Freq 5.29000000 GHz Start Freq 5.29000000 GHz Stop Freq 5.29000000 GHz Man Freq Offset 0 Hz		

	Cha	nnel Closing	g Transmission Time :	and Channel Move Ti	me Result	
Modulation	Freq.	Channel	Move Time			
Mode	(MHz)	Туре	Result	Limit	Result	Limit
acVHT80	5530	0	209.6	<260ms	742.8ms	<10s
		sion Time(20		er(8) x Dwell(1.2ms) <		
			osing Transmission T	ime& Channel Move	Time	
	LXI L	m Analyzer - Swept SA RF 50 Ω AC SQ 5.530000000 (ALIGNAUTO 03:29:19 PM Apr 19, 201 Avg Type: Log-Pwr TRACE 12, 34 F Type W		
		Ref Offset 1.2 dB Ref 0.00 dBm	PN0:Fast ⊶ Trg:rree kun IFGain:Low #Atten: 10 dB	Mkr3 10.00 -68.68 dBr	S Auto Tune	
	-10.0 -20.0 -30.0				Center Freq 5.530000000 GHz	
	-40.0 -50.0 -60.0	2		3	Start Freq 5.530000000 GHz	
	-70.0			depensary on the analysis of the second s The second s The second se The second secon	Stop Freq 5.53000000 GHz	
	Res BW 1.0		#VBW 1.0 MHz	Span 0 H Sweep 12.00 s (10001 pt		
	MKR MODE TRC 1 N 1 2 N 1 3 N 1 4 - - 6 - - 7 - - 8 - - 9 - -	t t	Y FUNCTIO -68.69 dBm 742.8 ms -67.50 dBm 10.00 s -69.68 dBm	FUNCTION WIDTH FUNCTION VALUE	Freq Offset	
			an a	STATUS	<	

Freq.						
⊢req.			N	on-Occu	oancy Per	iod
Freq. (MHz)		req. (MHZ)	Measured	Lin	nit	Result
55		5530	>30min	30n	nin	Complied
		2000 se	c Timing Plot			
	u <mark>m Analyzer - S</mark> RF 50		E:INT ALIGNAUTO 03	00 00 PM 4 00 0010		
30000000 G	eq 5.5300	0000 GHz PNO: Fast +++ Trig: Free I	Avg Type: Log-Pwr Run	36:32 PM Apr 19, 2019 TRACE 123456 TYPE WWWWWWW DET PNNNNN	Frequency	
		IFGain:Low #Atten: 10		kr1 1.800 ks	Auto Tune	•
00 dBm	Ref Offset 1 Ref 0.00	Bm		0.19 dB		
					Center Fred 5.530000000 GHz	
					Otort Error	
					Start Fred 5.530000000 GHz	
a an internet and a state of a st				142	Stop Free	1
					5.530000000 GHz	
000 GHz	530000000 .0 MHz	Hz	0 :	Span 0 Hz	CF Step	
×	C SCL		FUNCTION FUNCTION WIDTH	ks (10001 pts)	1.000000 MHz <u>Auto</u> Mar	
1	t (Δ) t	1.800 ks (∆) 0.19 d 30.41 s -70.40 dBi	B n		Freq Offse	t
					0 Hz	z
				~		
		UL.	STATUS			
				×		

6.6. Statistical Performance Check

6.6.1. Statistical Performance Check Limit

Radar Type	Minimum Percentage of Successful Detection (Pd)	Minimum Trials
1	60%	30
2	60%	30
3	60%	30
4	60%	30
Aggregate (Radar Types 1-4)	80%	120
5	80%	30
6	70%	30

The percentage of successful detection is calculated by:

Total Waveform Detections Total Waveform Trails ×100= Probability of DetectionRadar Waveform

In addition an aggregate minimum percentage of successful detection across all Short Pulse Radar Types 1-4 is required and is calculated as follows:

Pd1+Pd2+Pd3+Pd4 4

6.6.2. Measuring Instruments

Refer a test equipment and calibration data table in this test report

6.6.3. Test Procedures

Test Method

Refer as KDB905462 D02 UNII DFS Compliance Procedures New Rules v02, clause 7.8.4 for Statistical Performance Check test. Stream the MPEG test file from the Master Device to the Client Device on the test Channel for the entire period of the test. Observe the transmissions of the UUT at the end of the Burst on the Operating Channel for duration greater than 10 seconds for Short Pulse Radar Types 1-4 and 6 to ensure detection occurs. Then Observe the transmissions of the UUT at the end of the Burst on the Operating Channel for duration greater than 22 seconds for Long Pulse Radar Type 5 to ensure detection occurs. The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trial runs.

6.6.4. Test Result

Statistical Performance Check Result – VHT20/5260						
Radar Signal (#)	Test Trail #	Detect Trail #	Pd (%)	Limit Pd (%)	Result	
1	30	28	93.33	60	Complied	
2	30	27	90.00	60	Complied	
3	30	30	100.00	60	Complied	
4	30	28	93.33	60	Complied	
Aggregate 1 - 4	120	113	94.17	80	Complied	
5	30	27	90.00	80	Complied	
6	30	29	96.67	70	Complied	

Statistical Performance Check Result – VHT20/5500						
Radar Signal (#)	Test Trail #	Detect Trail #	Pd (%)	Limit Pd (%)	Result	
1	30	30	100.00	60	Complied	
2	30	28	93.33	60	Complied	
3	30	29	96.67	60	Complied	
4	30	30	100.00	60	Complied	
Aggregate 1 - 4	120	117	97.50	80	Complied	
5	30	30	100.00	80	Complied	
6	30	29	96.67	70	Complied	

Statistical Performance Check Result – VHT40/5270						
Radar Signal (#)	Test Trail #	Detect Trail #	Pd (%)	Limit Pd (%)	Result	
1	30	30	100.00	60	Complied	
2	30	30	100.00	60	Complied	
3	30	27	90.00	60	Complied	
4	30	28	93.33	60	Complied	
Aggregate 1 - 4	120	115	95.83	80	Complied	
5	30	29	96.67	80	Complied	
6	30	30	100.00	70	Complied	

Statistical Performance Check Result – VHT40/5510						
Radar Signal (#)	Test Trail #	Detect Trail #	Pd (%)	Limit Pd (%)	Result	
1	30	28	93.33	60	Complied	
2	30	29	96.67	60	Complied	
3	30	30	100.00	60	Complied	
4	30	30	100.00	60	Complied	
Aggregate 1 - 4	120	117	97.50	80	Complied	
5	30	30	100.00	80	Complied	
6	30	28	93.33	70	Complied	

Statistical Performance Check Result – VHT80/5290						
Radar Signal (#)	Test Trail #	Detect Trail #	Pd (%)	Limit Pd (%)	Result	
1	30	30	100.00	60	Complied	
2	30	28	93.33	60	Complied	
3	30	27	90.00	60	Complied	
4	30	30	100.00	60	Complied	
Aggregate 1 - 4	120	115	95.83	80	Complied	
5	30	29	96.67	80	Complied	
6	30	30	100.00	70	Complied	

Statistical Performance Check Result – VHT80/5530						
Radar Signal (#)	Test Trail #	Detect Trail #	Pd (%)	Limit Pd (%)	Result	
1	30	29	96.67	60	Complied	
2	30	30	100.00	60	Complied	
3	30	28	93.33	60	Complied	
4	30	29	96.67	60	Complied	
Aggregate 1 - 4	120	116	96.67	80	Complied	
5	30	30	100.00	80	Complied	
6	30	30	100.00	70	Complied	

Appendix A: Photographs of Test Setup

*****END OF REPORT*****