

TEST REPORT

APPLICANT	:	Anker Innovations Limited

PRODUCT NAME : Keypad

- MODEL NAME : T8960
- BRAND NAME : eufy SECURITY
- FCC ID : 2AOKB-T8960
- STANDARD(S) : 47 CFR Part 15 Subpart C
- **RECEIPT DATE** : 2020-02-21
- **TEST DATE** : 2020-02-26 to 2020-03-09
- **ISSUE DATE** : 2020-03-10

Edited by:

Yong /Vhi

Peng Mi (Rapporteur)

Approved by:

Peng Huarui (Supervisor)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 8

Http://www.morlab.cn

Fax: 86-755-36698525 E-mail: service@morlab.cr

DIRECTORY

1. Te	echnical Information ····································	1
1.1.	Applicant and Manufacturer Information ······	ļ
1.2.	Equipment Under Test (EUT) Description	ļ
1.3.	The Channel Number and Frequency ······	5
1.4.	Test Standards and Results ······	5
1.5.	Environmental Conditions ·······	3
2. 47	7 CFR Part 15C Requirements ······ 7	7
2.1.	Antenna Requirement ······	7
2.2.	Bandwidth ······ 8	3
2.3.	Conducted Emission ······11	
2.4.	Field Strength of Fundamental ······15	5
2.5.	Radiated Emission and Field Strength of Harmonics17	7
Anne	ex A Test Uncertainty ······24	1
Anne	ex B Testing Laboratory Information ······28	5

Change History					
Version Date Reason for change					
1.0	2020-03-10	First edition			

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Anker Innovations Limited	
Applicant Address:	Room 1318-19, Hollywood Plaza,610 Nathan Road, Mongkok,	
	Kowloon, Hong Kong	
Manufacturer:	Anker Innovations Limited	
Manufacturer Address:	Room 1318-19, Hollywood Plaza,610 Nathan Road, Mongkok,	
	Kowloon, Hong Kong	

1.2. Equipment Under Test (EUT) Description

Product Name:	Keypad			
Serial No:	(N/A, marked #1 by te	est site)		
Hardware Version:	V03			
Software Version:	V0.0.0.8			
Modulation Type:	GFSK			
Operating Frequency Range:	920.0MHz – 920.8MH	Z		
Channel Number:	5			
Antenna Type:	Spring Antenna			
Antenna Gain:	0dBi			
	Battery			
	Brand Name:	N/A		
Accessory Information	Model No.:	CMICR18650F8		
Accessory Information:	Capacity: 2600mAh			
	Rated Voltage:	3.7V		
	Charge Limit: 4.2V			

Note 1: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. The Channel Number and Frequency

Channel	Frequency (MHz)
1	920.0
2	920.2
3	920.4
4	920.6
5	920.8

1.4. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 15	Radio Frequency Devices

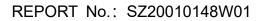
Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Test Engineer	Result	Method determination /Remark
1	15.203	Antenna Requirement	N/A	N/A	PASS	No deviation
2	15.215	Bandwidth	Feb 26, 2020	Tu Yanan	PASS	No deviation
3	15.207	Conducted Emission	Mar 04, 2020	Huang Zhiye	PASS	No deviation
4	15.249	Field strength	Mar 09, 2020	Li Zihao	PASS	No deviation
5	15.209, 15.249	Radiated Emission and field strength of harmonics	Mar 09, 2020	Li Zihao	PASS	No deviation

Note 1: The tests were performed according to the method of measurements prescribed in ANSIC63.10-2013.

Note 2: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

1.5. Environmental Conditions


During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15-35
Relative Humidity (%):	30-60
Atmospheric Pressure (kPa):	86-106

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

Page 6 of 27

2.47 CFR Part 15C Requirements

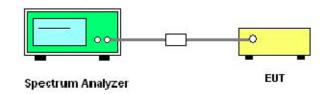
2.1. Antenna Requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

Inside of the EUT has a permanently attached spring antenna fixed to PCB with solder. Please refer to the EUT internal photos.



2.2.1. Requirement

Refer to FCC 15.215

2.2.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 10 kHz. In order to make an accurate measurement, set the span greater than RBW.

2.2.3. Test Result

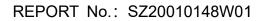
A. Test Verdict:

Channel	Frequency (MHz)	20 dB Bandwidth (kHz)	Result
1	920.0	103.5	PASS
3	920.4	101.7	PASS
5	920.8	101.2	PASS

B. Test Plots:

- Occupied BV 04:18:04 PMFeb 26, 2020 Radio Std: None ALIGN AUT Meas Setup Sense:Polse: Source OFF Alignat Center Freq: 920.000000 MHz Trig: Free Run Avg|Hold:>10/10 #Atten: 34 dB Ref Value 30.00 dBm ÷. Radio Device: BTS Avg/Hold Num #IFGain:Low Off <u>On</u> Ref 30.00 dBm og Avg Mode Exp Repeat **OBW** Power 99.00 % Span 300 kHz Sweep 40.87 ms Center 920 MHz #Res BW 3 kHz #VBW 10 kHz Occupied Bandwidth Total Power 21.0 dBm 101.90 kHz x dB 15.326 kHz -20.00 dB Transmit Freq Error **OBW Power** 99.00 % x dB Bandwidth 103.5 kHz x dB -20.00 dB More 1 of 2 STATUS

(Channel 1, 920.0MHz)



(Channel 3, 920.4 MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

Agilent Spectrum Analyzer - Occupied BW							
Center Freg 920.800000 M	- Cer	SENSE:PULSE SOURCE OFF	ALIGN AUTO	04:20:35 P Radio Std	MFeb 26, 2020	M	leas Setup
	Trig		ld:>10/10	Radio Dev	iao: BTC	A.	
#	IFGain:Low #Att	ten: 34 db		Radio Dev	ice: BIS	AV	g/Hold Num 10
						<u> On</u>	Off
10 dB/div Ref 30.00 dBm				1			
20.0							Avg Mode
10.0						Exp	Repeat
0.00	^	Conner and C	~~~				
-10.0			"North				
-20.0	and the second s			\sim			
-30.0				hun	monor		
-40.0							
-50.0							OBW Power
-60.0							99.00 %
-55.5							
Center 920.8 MHz					n 300 kHz		
#Res BW/3 kHz		#VBW 10 kHz		Sweep	40.87 ms		
Occupied Bandwidth		Total Power	20.2	2 dBm			
96	.330 kHz						y dD
							x dB -20.00 dB
Transmit Freq Error	15.716 kHz	OBW Power	99	9.00 %			-20.00 dB
x dB Bandwidth	101.2 kHz	x dB	-20.	00 dB			
							More
							1 of 2
MSG			STATU			_	

(Channel 5, 920.8 MHz)

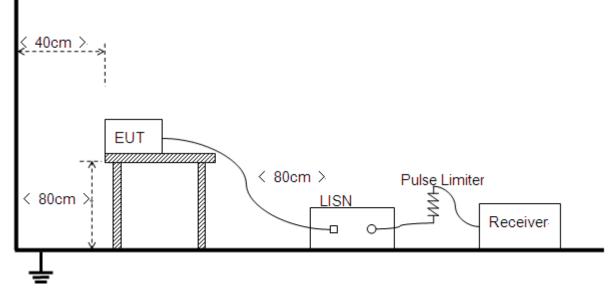
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.3. Conducted Emission

2.3.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency ra	ange	Conducted Limit (dBµV)		
(MHz)		Quai-peak	Average	
0.15 - 0.50		66 to 56	56 to 46	
0.50 - 5		56	46	
5 - 30		60	50	


NOTE:

(a) The lower limit shall apply at the band edges.

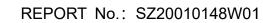
(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

2.3.2. Test Description

Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

2.3.3. Test Result

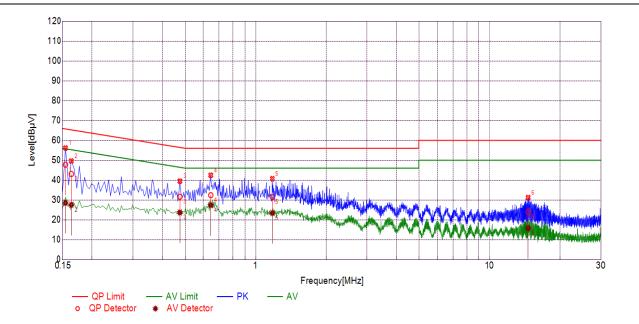

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Note: Both of the test voltage AC 120V/60Hz and AC 230V/50Hz were considered and tested respectively, only the results of the worst case AC 120V/60Hz were recorded in this report.

A. Test Setup:


Test Mode: <u>EUT+Adapter+TX mode</u> Test Voltage: <u>AC 120V/60Hz</u> The measurement results are obtained as below: E [dB μ V] =U_R + L_{Cable loss} [dB] + A_{Factor} U_R: Receiver Reading A_{Factor}: Voltage division factor of LISN

B. Test Plots:



(L Phase)

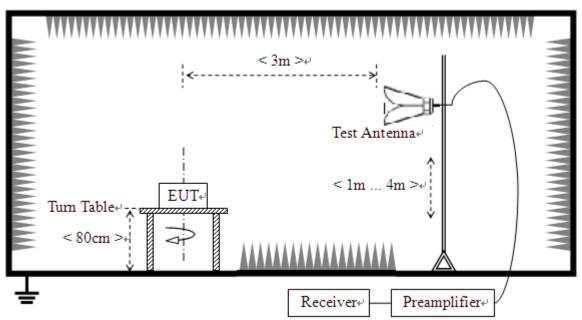
NO.	Fre.	Emission L	.evel (dBµV)	Limit (dBµV)	Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.1817	35.19	25.81	64.41	54.41		PASS
2	0.4691	32.56	22.67	56.53	46.53		PASS
3	0.7531	32.41	22.66	56.00	46.00	Line	PASS
4	1.2484	32.43	22.41	56.00	46.00	LINE	PASS
5	1.7611	28.93	19.33	56.00	46.00		PASS
6	14.4578	26.44	13.70	60.00	50.00		PASS

(N Phase)	
-----------	--

NO.	Fre.	Emission Level (dBµV)		Limit (dBµV)		Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.1544	47.77	28.48	65.76	55.76		PASS
2	0.1636	43.09	27.49	65.28	55.28	Í	PASS
3	0.4739	31.64	23.69	56.44	46.44	Noutral	PASS
4	0.6451	32.42	27.37	56.00	46.00	Neutral	PASS
5	1.1754	31.47	23.42	56.00	46.00	Ī	PASS
6	14.6396	24.01	15.82	60.00	50.00		PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.4. Field Strength of Fundamental


2.4.1. Requirement

According to FCC section 15.249(a), except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

2.4.2. Test Description

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

2.4.3. Test Procedure

Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 120 kHz VBW ≥ RBW Sweep = auto Detector function = quasi-peak Trace = max hold

2.4.4. Test Result

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor AT and AFactor were built in test software.

Note: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report

Frequency (MHz)	Detector	Antenna	Receiver Reading U _R (dBuV)	A _T (dB)	A _{Factor} (dB@3m)	Max. Emission E (dBµV/m)	Limit (dBµV/m)	Verdict
920.0	QP	Horizontal	99.23	-30.33	22.45	91.35	93.97	PASS
920.4	QP	Horizontal	100.22	-30.33	22.45	92.34	93.97	PASS
920.8	QP	Horizontal	100.04	-30.33	22.45	92.16	93.97	PASS

2.5. Radiated Emission and Field Strength of Harmonics

2.5.1. Requirement

According to section 15.249(a), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)		
902-928 MHz	50	500		
2400-2483.5 MHz	50	500		
5725-5875 MHz	50	500		
24.0-24.25 GHz	250	2500		

According to section 15.249(d), Emission Radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50dB below the level of the fundamental or to the general radiated emission limits in Section 15.209:

Frequency	Field Strength	Measurement	Field Strength Limitation at 3m Measurement Distance		
(MHz)	(µV/m)	Distance (m)	(uV/m)	(dBuV/m)	
0.009 - 0.490	2400/F(kHz)	300	10000* 2400/F(KHz)	20log 2400/F(KHz) + 80	
0.490 - 1.705	24000/F(kHz)	30	100* 2400/F(KHz)	20log 2400/F(KHz) + 40	
1.705 - 30.0	30	30	100*30	20log 30 + 40	
30 - 88	100	3	100	20log 100	
88 - 216	150	3	150	20log 150	
216 - 960	200	3	200	20log 200	
Above 960	500	3	500	20log 500	

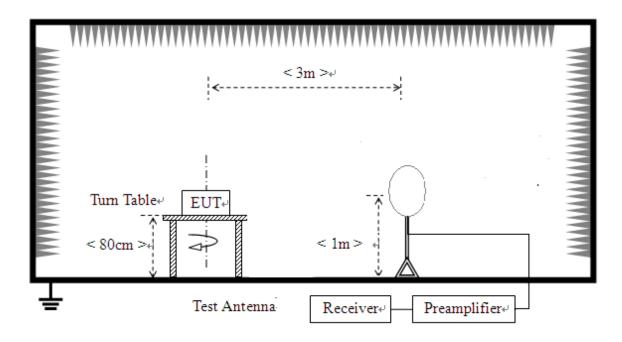
According to section 15.249(e), for frequencies above 1000MHz, the above field strength limits are based on average limits. The peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20dB under any condition of modulation. **Note:**

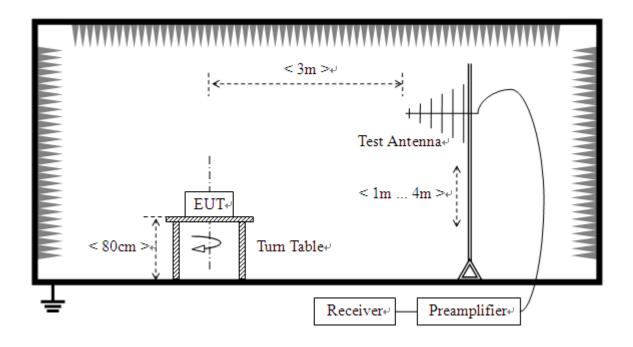
1) The tighter limit shall apply at the boundary between two frequency range.

2) Limitation expressed in dBuV/m is calculated by 20log Emission Level(uV/m).

3) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using theformula of Ld1 = Ld2 * $(d2/d1)^{2}$.

Example: F.S Limit at 30m distance is 30uV/m, then F.S Limitation at 3m distance is adjusted as Ld1 = L1 = $30uV/m * (10)^2 = 100 * 30uV/m$

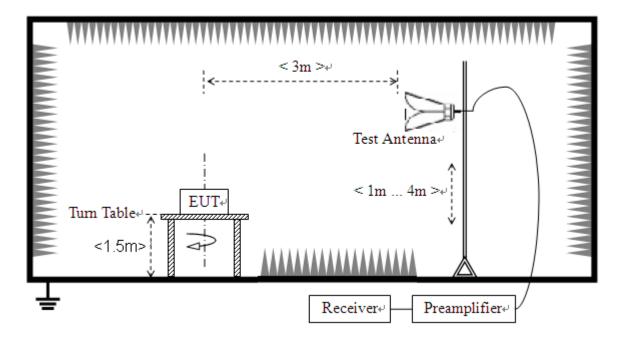



2.5.2. Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz. Test site have a minimum area of the ground plane covered with RF absorbing material as specified in Figure 6 of ANSI C63.4: 2014.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10:2013. For radiated emissions below or equal to 1GHz, The EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10:2013.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

(a) In the frequency range of 9 kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

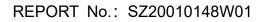
(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant

emissions, with polarization oriented for maximum response. The test antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

2.5.3. Test Result

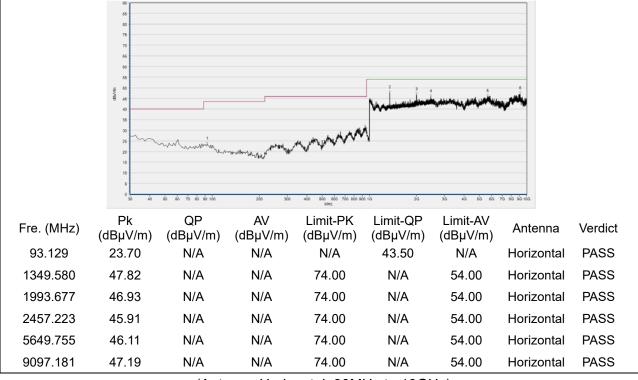
According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

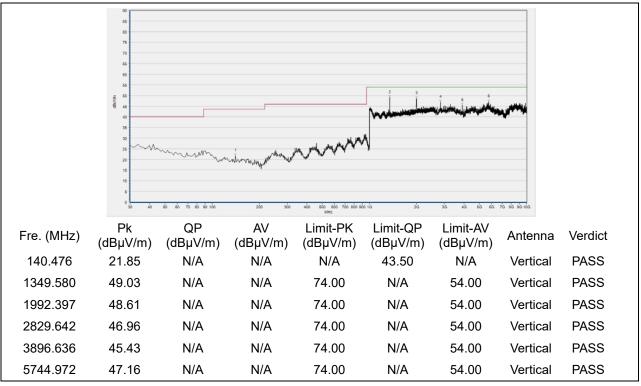
The measurement results are obtained as below:


E $[dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB]-G_{preamp} [dB]$ A_T: Total correction Factor except Antenna U_R: Receiver Reading G_{preamp}: Preamplifier Gain A_{Factor}: Antenna Factor at 3m

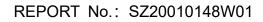
During the test, the total correction Factor A_T and A_{Factor} were built in test software.

Note 1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

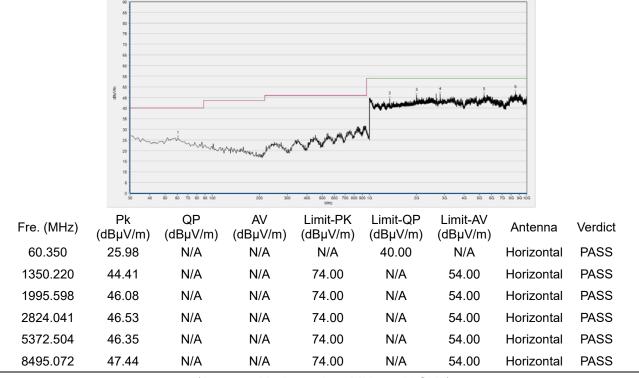

Note 2: The low frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.



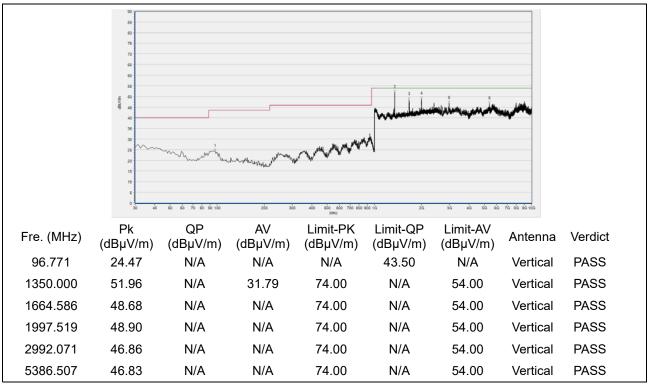
Plots for Channel = 1


(Antenna Horizontal, 30MHz to 10GHz)

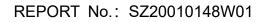
(Antenna Vertical, 30MHz to 10GHz)



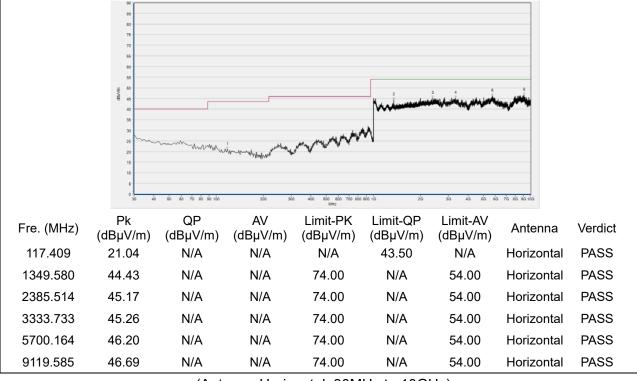
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



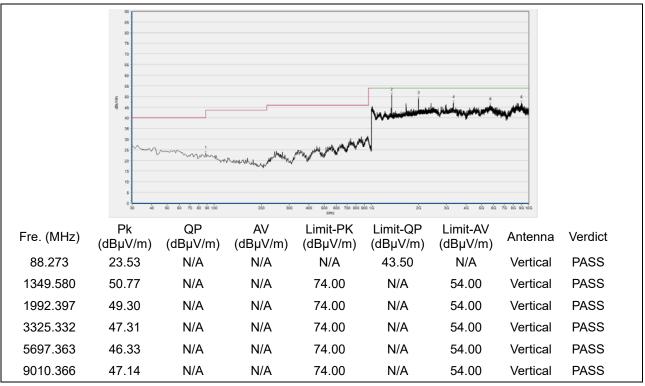
Plot for Channel = 3


(Antenna Horizontal, 30MHz to 10GHz)

(Antenna Vertical, 30MHz to 10GHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



Plot for Channel = 5

(Antenna Horizontal, 30MHz to 10GHz)

(Antenna Vertical, 30MHz to 10GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Bandwidth	±5%
Radiated Emission	±2.95dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Laboratory Name:	Shenzhen Morlab Communications Technology Co., Ltd.					
	Morlab Laboratory					
Laboratory Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang					
	Road, Block 67, BaoAn District, ShenZhen, GuangDong					
	Province, P. R. China					
Telephone:	+86 755 36698555					
Facsimile:	+86 755 36698525					

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.				
Name.	Morlab Laboratory				
	FL.3, Building A, FeiYang Science Park, No.8 LongChang				
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong				
	Province, P. R. China				

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

4. Test Equipments Utilized

4.1 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY54130016	N9038A	Agilent	2019.07.29	2020.07.28
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2019.11.23.	2022.11.22
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2019.02.14	2022.02.13
Test Antenna – Horn	01774	BBHA 9120D	Schwarzbeck	2019.07.26	2022.07.25
Test Antenna – Horn	BBHA9170 #774	BBHA9170	Schwarzbeck	2019.07.26	2022.07.25
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2019.05.08	2020.05.09
Anechoic Chamber	N/A	9m*6m*6m	CRT	2019.07.13	2022.07.12

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY56400093	N9038A	KEYSIGHT	2019.04.09	2020.04.08
LISN	812744	NSLK 8127	Schwarzbeck	2019.03.27	2020.03.26
Pulse Limiter (20dB)	9391	VTSD 9561-D	Schwarzbeck	2019.03.27	2020.03.26
Coaxial cable(BNC) (30MHz-26GHz)	CB01	EMC01	Morlab	N/A	N/A
Adapter	0502000EU	TEKA012	N/A	N/A	N/A
Mobile phone	2015CP1986	PLK-AL10	huawei	N/A	N/A

_____ END OF REPORT _____

