RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in §1.1307(b)

FCC ID: 2AOKB-T8501 **EUT Specification**

Solo Smart Lock D20			
⊠ WLAN: 2.412GHz ~ 2.462GHz			
☐ WLAN: 5.18GHz ~ 5.24GHz			
☐ WLAN: 5.745GHz ~ 5.825GHz			
☑ Others: 2.402GHz~2.480GHz			
☐ Portable (<20cm separation)			
⊠ Mobile (>20cm separation)			
☐ Others			
☐ Occupational/Controlled exposure (S = 5mW/cm2)			
⊠ General Population/Uncontrolled exposure (S=1mW/cm2)			
⊠ Single antenna			
☐ Multiple antennas			
☐ Tx diversity			
☐ Rx diversity			
☐ Tx/Rx diversity			
WIFI 2.4G: 22.27dBm (0.1687W); BLE: 7.49dBm (0.0056W)			
BLE: 1.67 dBi			
WiFi 2.4G: 5.13 dBi			
⊠ MPE Evaluation			
☐ SAR Evaluation			

Limits for Maximum Permissible Exposure(MPE)

Frequency	Electric Field	Magnetic Field	Power	Average				
Range(MHz)	Strength(V/m)	Strength(A/m)	Density(mW/cm²)	Time				
(A) Limits for Occupational/Control Exposures								
300-1500			F/300	6				
1500-100000			5	6				
(B) Limits for General Population/Uncontrol Exposures								
300-1500	500 F/1500			6				
1500-100000		1		30				

Friis transmission formula: Pd=(Pout*G)\(4*pi*R2)

Where

Pd= Power density in mW/cm²

Pout=output power to antenna in Mw

G= gain of antenna in linear scale

Pi=3.1416

R= distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1mW/cm2. If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

Max Measurement Result (Worst case)

Operating Mode	Measured	Tune up	Max. Tune	Antenna	Power density	Power density
	Power	tolerance	up Power	Gain	at 20cm	Limits
	(dBm)	(dBm)	(dBm)	(dBi)	(mW/ cm2)	(mW/cm2)
WiFi 2.4G	22.27	22.27 ±1	23.27	5.13	0.1377	1
BLE	7.49	7.49 ±1	8.49	1.67	0.0021	1